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SOME CHEBYSHEV TYPE INEQUALITIES INVOLVING THE
HADAMARD PRODUCT OF HILBERT SPACE OPERATORS

R. Teimourian and A. G. Ghazanfari

Abstract. In this paper, we prove that if A is a Banach ∗-subalgebra of B(H), T is
a compact Hausdorff space equipped with a Radon measure µ and α : T → [0,∞) is a
integrable function and (At), (Bt) are appropriate integrable fields of operators in A having
the almost synchronous property for the Hadamard product, then∫

T

α(s)dµ(s)

∫
T

α(t)
(
At ◦Bt

)
dµ(t) ≥

∫
T

α(t)Atdµ(t) ◦
∫
T

α(t)Btdµ(t).

We also introduce a semi-inner product for square integrable fields of operators in a Hilbert
space and using it, we prove the Schwarz and Chebyshev type inequalities dealing with the
Hadamard product and the trace of operators.

1. Introduction

Let H be a complex Hilbert space with an orthonormal basis {ej} and B(H) denote
the C∗-algebra of all bounded linear operators on H. The Hadamard product A ◦B
of two operators A and B in B(H) is defined by 〈A ◦ Bei, ej〉 = 〈Aei, ej〉〈Bei, ej〉.
Clearly, A ◦B = B ◦A. It is known that the Hadamard product can be presented by
filtering the tensor product A⊗B through a positive linear map. In fact,

A ◦B = U∗(A⊗B)U, (1)

where U : H → H ⊗H is the isometry defined by Uej = ej ⊗ ej ; see [9]. It follows
from (1) that ‖A ◦B‖ ≤ ‖A‖‖B‖. If A ≥ 0, B ≥ 0, then A ◦B ≥ 0, because there are
two operators C,D ∈ B(H) such that A = C∗C and B = D∗D so

A ◦B = U∗(C∗C ⊗D∗D)U = U∗(C ⊗D)∗(C ⊗D)U ≥ 0.

For matrices, one easily observes [18] that the Hadamard product of A = (aij) and
B = (bij) is A ◦ B = (aijbij), a principal submatrix of the tensor product A ⊗ B =
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304 Chebyshev type inequalities

(aijB)1≤i,j≤n. From now on when we deal with the Hadamard product of operators,
we explicitly assume that an orthonormal basis is fixed.

Let us consider real sequences a = (a1, . . . , an), b = (b1, . . . , bn) and a non-negative
sequence w = (w1, . . . , wn). Then the weighed Chebyshev function is defined by

T (w; a, b) =

n∑
j=1

wj

n∑
j=1

wjajbj −
n∑
j=1

wjaj

n∑
j=1

wjbj . (2)

In 1882, Chebyshev [4] proved that if a and b are monotone in the same sense, then
T (w; a, b) ≥ 0.

The integral version of (2) states the following: For two Lebesgue integrable func-
tions f, g : [a, b]→ R, consider the following Chebyshev functional

T (f, g) :=
1

b− a

∫ b

a

f(t)g(t)dt− 1

b− a

∫ b

a

f(t)dt
1

b− a

∫ b

a

g(t)dt.

In 1934, G. Grüss [11] showed that

|T (f, g)| ≤ 1

4
(M −m)(N − n), (3)

provided m,M,n,N are real numbers with the property −∞ < m ≤ f ≤ M < ∞
and −∞ < n ≤ g ≤ N < ∞, a.e. on [a, b]. The constant 1

4 in (3) is best possible
in the sense that it cannot be replaced by a smaller quantity and is achieved for
f(x) = g(x) = sgn

(
x− a+b

2

)
.

In recent years several extensions and generalizations have been considered for
Chebyshev inequality. For some fundamental results and more information, see [6]
and the references therein. This inequality is a complement of the Grüss inequality
(see [16]). Some integral inequalities of Chebyshev type were given by Barza, Persson
and Soria [3]. In [1], generalizations of Chebyshev type inequalities for continuous
functions of self adjoint linear operators in Hilbert spaces are proved.

A number of papers have been written on this inequality providing some in-
equalities analogous to Chebyshev’s inequality given in (3) involving the Hadamard
product of linear operators, see [7, 15]. Moslehian and Bakherad in [15] considered
the Hadamard product of continuous fields of operators in C(T,A) with the norm
‖(At)‖ = supt∈T ‖At‖, where A is a C∗-algebra of operators acting on a Hilbert
space. They proved that if (At) and (Bt) are fields in C(T,A) with the synchronous
Hadamard property, then∫

T

α(s)dµ(s)

∫
T

α(t)
(
At ◦Bt

)
dµ(t) ≥

∫
T

α(t)Atdµ(t) ◦
∫
T

α(t)Btdµ(t). (4)

Motivated by the above results, in this paper we prove that inequality (4) holds
for some integrable field of operators (not necessarily continuous) on a Hilbert space.
We also introduce a semi-inner product involving the Hadamard product of linear
operators in a suitable field of Hilbert space operators. Using it, we provide some
new operator extensions of the Schwarz and Chebyshev type inequalities dealing with
the Hadamard product of operators.

Before we state our main results we remind that the Bochner integrals are gener-
alized Lebesgue integrals for functions whose values lie in a Banach space or, more
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generally, in a topological vector space. It is a straightforward abstraction of the
Lebesgue integral. Most of the basic properties of Bochner integration are forced on
it by the classical Lebesgue integration (see for example [5,13]). For Bochner integrals
in C∗-algebras (see [2, 12]). Hereafter, all integrals considered are Bochner integrals.

2. Main results

Let H be a complex Hilbert space with an orthonormal basis {ej}, A be a linear

operator on H, A∗ be the adjoint operator of A and |A| = (A∗A)
1
2 . Recall that the

operator norm, trace class norm and Hilbert-Schmidt norm of A, are respectively:

‖A‖=sup{‖A(x)‖ : ‖x‖ ≤ 1}, ‖A‖1 =tr|A|=
∑
j

〈|A|ej , ej〉, ‖A‖2 =

(∑
j

‖A(ej)‖2
) 1

2

.

An operator A is bounded if ‖A‖ <∞. The set of all bounded linear operators on H
is denoted by B(H). If ‖A‖1 <∞, we call A a trace-class operator and we denote the
set of trace-class operators on H by L1(H). If ‖A‖2 <∞, we call A a Hilbert-Schmidt
operator and we denote the set of these operators on H by L2(H). Also the set of
finite-rank operators on H is denoted by F (H) and the set of compact operators on
H is denoted by K(H).

It is easy to check that ‖ · ‖ ≤ ‖ · ‖2 ≤ ‖ · ‖1 and F (H) ⊆ L1(H) ⊆ L2(H) ⊆
K(H) ⊆ B(H), and for i = 1, 2, Li(H) is an ideal in K(H) and F (H) is dense in
Li(H) in the norm ‖. · ‖i, see [17].

Let A be a Banach ∗-subalgebra of B(H), T a compact Hausdorff space equipped
with a Radon measure µ and α : T → [0,∞) be an integrable function. If 1 ≤ p <∞
is a real number and if the function t 7→ At is strongly measurable, define

|||(At)|||p :=

(∫
T

α(t)‖At‖p dµ(t)

) 1
p

and let Lpα(T,A) consist of all fields (At) of operators in A for which |||(At)|||p <∞.
A field (At)t∈T of operators in A is called essentially bounded measurable field if the
function t 7→ At is strongly measurable and |||(At)|||∞ := ess sup ‖At‖ <∞.

We denote by L∞(T,A) the set of all essentially bounded measurable fields of
operators in A. It is trivial that C(T,A) ⊂ Lpα(T,A). If A is an ideal in B(H) and
its norm is unitarily invariant, then the norm on Lpα(T,A) is unitarily invariant:

|||U(At)V |||p =

(∫
T

α(t)‖UAtV ‖p dµ(t)

) 1
p

=

(∫
T

α(t)‖At‖p dµ(t)

) 1
p

= |||(At)|||p.

Definition 2.1. (i) Let T be a compact Hausdorff space equipped with a Radon
measure µ. Two fields (At) and (Bt) of operators in B(H) are said to have the
almost synchronous property for Hadamard product if (At − As) ◦ (Bt − Bs) ≥ 0
almost everywhere with respect to µ× µ.

(ii) Two fields (At) and (Bt) of operators in B(H) are said to have the weakly syn-
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chronous property for Hadamard product if Λ
(
(At − As) ◦ (Bt − Bs)

)
≥ 0 almost

everywhere with respect to µ× µ, for all positive linear functionals Λ on B(H).

Theorem 2.2. Let p and q be conjugate exponents, 1 ≤ p ≤ ∞. Let A be a Banach
∗-algebra and T be a compact Hausdorff space equipped with a Radon measure µ. Let
(At)t∈T be a field in Lpα(T,A) and (Bt)t∈T be a field in Lqα(T,A) with the almost
synchronous Hadamard property and let α : T → [0,+∞) be an integrable function.
Then∫

T

α(s) dµ(s)

∫
T

α(t)
(
At ◦Bt

)
dµ(t) ≥

(∫
T

α(t)At dµ(t)

)
◦
(∫

T

α(s)Bs dµ(s)

)
. (5)

Proof. Let 1 < p < ∞ and (At) ∈ Lpα(T,A); we must state that integrands (5) are
Bochner integrable on Ω. These functions are strongly measurable and from inequality
‖A ◦B‖ ≤ ‖A‖‖B‖, we have∫

T

α(t)‖At ◦Bt‖ dµ(t) ≤
∫
T

α(t)‖At‖ ‖Bt‖ dµ(t)

≤
(∫

T

α(t)‖At‖p dµ(t)

)1
p
(∫

T

α(t)‖Bt‖q dµ(t)

)1
q

= |||(At)|||p|||(Bt)|||q <∞,

and

∥∥∥∥∫
T

α(t)At dµ(t) ◦
∫
T

α(t)Bt dµ(t)

∥∥∥∥ ≤ ∥∥∥∥∫
T

α(t)At dµ(t)

∥∥∥∥∥∥∥∥∫
T

α(t)Bt dµ(t)

∥∥∥∥
≤
∫
T

α(t)‖At‖ dµ(t)

∫
T

α(t)‖Bt‖ dµ(t)

≤
(∫

T

α(s) dµ(s)

)1
q
(∫

T

α(t)‖At‖p dµ(t)

)1
p
(∫

T

α(s) dµ(s)

)1
p
(∫

T

α(t)‖Bt‖q dµ(t)

)1
q

≤
(∫

T

α(s) dµ(s)

)
|||(At)|||p|||(Bt)|||q <∞.

For p = 1, we have∫
T

α(t)‖At ◦Bt‖dµ(t) ≤
∫
T

α(t)‖At‖ ‖Bt‖dµ(t)

≤
(∫

T

α(t)‖At‖dµ(t)

)
(ess sup ‖Bt‖) = |||(At)|||1|||(Bt)|||∞ <∞, and∥∥∥∥∫

T

α(t)Atdµ(t) ◦
∫
T

α(t)Btdµ(t)

∥∥∥∥ ≤ ∥∥∥∥∫
T

α(t)Atdµ(t)

∥∥∥∥ ∥∥∥∥∫
T

α(t)Btdµ(t)

∥∥∥∥
≤
∫
T

α(t)‖At‖dµ(t)

∫
T

α(t)‖Bt‖dµ(t) ≤
∫
T

α(t)‖At‖dµ(t)

∫
T

α(t)|||Bt|||∞dµ(t)

≤
(∫

T

α(s)dµ(s)

)
|||(At)|||1|||(Bt)|||∞ <∞.

Similarly, for p =∞ we get∫
T

α(t)‖At ◦Bt‖dµ(t) ≤ |||(At)|||∞|||(Bt)|||1 <∞, and
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∥∥∥∥∫
T

α(t)Atdµ(t) ◦
∫
T

α(t)Btdµ(t)

∥∥∥∥ ≤ (∫
T

α(s)dµ(s)

)
|||(At)|||∞|||(Bt)|||1 <∞.

Now, we show that the inequality (5) holds.∫
T

α(s) dµ(s)

∫
T

α(t)
(
At ◦Bt

)
dµ(t)−

(∫
T

α(t)At dµ(t)

)
◦
(∫

T

α(s)Bs dµ(s)

)
=

∫
T

∫
T

α(s)α(t)
(
At ◦Bt

)
dµ(t) dµ(s)−

∫
T

∫
T

α(t)α(s)
(
At ◦Bs

)
dµ(t) dµ(s)

=
1

2

∫
T

∫
T

α(s)α(t)
[
(At −As) ◦ (Bt −Bs)

]
dµ(t) dµ(s) ≥ 0.

Corollary 2.3. Let T be a compact Hausdorff space equipped with a Radon measure
µ, and α : T → [0,∞) be an integrable function. If (At) and (Bt) are fields in
L2
α(T, L2(H)) with the weakly synchronous property for Hadamard product, then

tr

(∫
T

α(t)At dµ(t) ◦
∫
T

α(t)Bt dµ(t)

)
≤
∫
T

α(s) dµ(s)

∫
T

α(t)tr(At ◦Bt) dµ(t)

Proof. It is easy to show that∫
T

α(s) dµ(s)

∫
T

α(t)tr(At ◦Bt) dµ(t)− tr

(∫
T

α(t)At dµ(t) ◦
∫
T

α(t)Bt dµ(t)

)
= tr

(∫
T

α(s) dµ(s)

∫
T

α(t)(At ◦Bt) dµ(t)−
∫
T

α(t)At dµ(t) ◦
∫
T

α(t)Bt dµ(t)

)
= tr

(
1

2

∫
T

∫
T

α(t)α(s)(At −As) ◦ (Bt −Bs) dµ(t) dµ(s)

)
=

1

2

∫
T

∫
T

α(t)α(s)tr
(
(At −As) ◦ (Bt −Bs)

)
dµ(t) dµ(s) ≥ 0,

since tr
(
(At −As) ◦ (Bt −Bs)

)
≥ 0, a.e. [µ× µ]. �

In the following, we introduce a semi-inner product on L2
α(T,A), where A is the

Banach ∗-algebra L2(H). First we state a simple proposition as follows:

Proposition 2.4. For all A,B ∈ L2(H) the following Schwarz inequality holds:

|tr(A ◦B∗)|2 ≤ tr(A ◦A∗)tr(B ◦B∗) = ‖1H ◦A‖22‖1H ◦B‖22 ≤ ‖A‖22‖B‖22. (6)

Proof. It is obvious that if A is a bounded linear operator on a Hilbert space H and
A∗ is the adjoint operator of A, then

tr(A ◦A∗) = tr(1H ◦A ◦A∗) = tr((1H ◦A)(1H ◦A)∗) = ‖1H ◦A‖22 ≥ 0.

This shows that 〈A,B〉 := tr(A ◦ B∗) is a semi-inner product on H. Using the
Schwarz’s inequality, we obtain the desired inequality (6). �

We know that A◦A∗ may not be positive, but it is always tr(A◦A∗) ≥ 0. Therefore
to define a semi-inner product and to obtain Schwarz and Chebyshev type inequalities,
we can consider that L2

α(T, L2(H)) consists of all square integrable field of operators
such that

|||(At)||| :=
(∫

T

α(t)‖At‖22 dµ(t)

)1
2

<∞.
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The following result concerning a semi-inner product on L2
α(T, L2(H)) may be

stated.

Theorem 2.5. (i) The map 〈·, ·〉 : L2
α(T, L2(H))× L2

α(T, L2(H))→ C,

〈(At), (Bt)〉 : =

∫
T

α(s) dµ(s)

∫
T

α(t)tr
(
At ◦B∗t

)
dµ(t)

− tr

(∫
T

α(t)At dµ(t) ◦
∫
T

α(t)B∗t dµ(t)

)
, (7)

is a semi-inner product on L2
α(T, L2(H)) and the following inequality holds∣∣∣∣∫

T

α(s) dµ(s)

∫
T

α(t)tr
(
At ◦Bt

)
dµ(t)− tr

(∫
T

α(t)At dµ(t) ◦
∫
T

α(t)Bt dµ(t)

)∣∣∣∣
≤
∫
T

α(s) dµ(s) |||(At)||| |||(Bt)||| −
∥∥∥∥1H ◦

∫
T

α(t)At dµ(t) ◦
∫
T

α(t)Bt dµ(t)

∥∥∥∥
2

. (8)

(ii) If (At), (Bt) ∈ L2
α(T, L2(H)) and A,B ∈ L2(H), then∫

T

α(s) dµ(s)

∫
T

α(t)(At −A) ◦ (Bt −B)∗ dµ(t)

−
∫
T

α(t)
(
At −A) dµ(t) ◦

∫
T

α(t)(Bt −B)∗ dµ(t)

=

∫
T

α(s) dµ(s)

∫
T

α(t)At ◦B∗t dµ(t)−
∫
T

α(t)At dµ(t) ◦
∫
T

α(t)B∗t dµ(t). (9)

Proof. (i) Let (At), (Bt) ∈ L2
α(T, L2(H)); we must state that integrands (7) are

Bochner integrable on Ω. These functions are strongly measurable and from the
inequality (6), we have∫

T

α(t)tr
(
At ◦B∗t

)
dµ(t) ≤

∫
T

α(t)‖At‖2‖Bt‖2 dµ(t)

≤
(∫

T

α(t)‖At‖22 dµ(t)

)1
2
(∫

T

α(t)‖Bt‖22 dµ(t)

)1
2

= |||(At)||| |||(Bt)||| <∞.

We also have

tr

(∫
T

α(t)At dµ(t) ◦
∫
T

α(t)B∗t dµ(t)

)
≤
∥∥∥∥∫

T

α(t)At dµ(t)

∥∥∥∥
2

∥∥∥∥∫
T

α(t)B∗t dµ(t)

∥∥∥∥
2

≤
∫
T

α(t)‖At‖2 dµ(t)

∫
T

α(t)‖B∗t ‖2 dµ(t) ≤
(∫

T

α(s) dµ(s)

)1
2
(∫

T

α(t)‖At‖22 dµ(t)

)1
2

×
(∫

T

α(s) dµ(s)

)1
2
(∫

T

α(t)‖B∗t ‖22 dµ(t)

)1
2

≤
∫
T

α(s) dµ(s) |||(At)||| |||(Bt)||| <∞.

It is easy to show that 〈·, ·〉 is a semi-inner product on L2
α(T, L2(H)). Therefore the

following Schwarz inequality holds:

|〈(At), (Bt)〉|2 ≤ 〈(Bt), (Bt)〉 〈(At), (At)〉. (10)
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On the other hand, we have

〈(At), (At)〉 =

∫
T

α(s) dµ(s)

∫
T

α(t)tr
(
At ◦A∗t

)
dµ(t)−tr

(∫
T

α(t)At dµ(t) ◦
∫
T

α(t)A∗t dµ(t)

)
=

∫
T

α(s) dµ(s)

∫
T

α(t)‖1H ◦At‖22 dµ(t)−
∥∥∥∥1H ◦

∫
T

α(t)At dµ(t)

∥∥∥∥2
2

≤
∫
T

α(s) dµ(s)|||(At)|||2−
∥∥∥∥1H ◦

∫
T

α(t)At dµ(t)

∥∥∥∥2
2

, (11)

and similarly

〈(Bt), (Bt)〉 ≤
∫
T

α(s) dµ(s) |||(Bt)|||2 −
∥∥∥∥1H ◦

∫
T

α(t)Bt dµ(t)

∥∥∥∥2
2

. (12)

Using inequalities (11), (12), the Schwarz’s inequality (10) and the elementary in-
equality for real numbers (m2 − n2)(p2 − q2) ≤ (mp − nq)2, we obtain the desired
inequality in (8).

(ii) Now, if (At), (Bt) ∈ L2
α(T, L2(H)) and A,B ∈ L2(H), then we have∫

T

α(s) dµ(s)

∫
T

α(t)(At −A) ◦ (Bt −B)∗ dµ(t)

−
∫
T

α(t)(At −A) dµ(t) ◦
∫
T

α(t)(Bt −B)∗ dµ(t)

=

∫
T

α(s) dµ(s)

∫
T

α(t)
(
At ◦B∗t −At ◦B∗ −A ◦B∗t +A ◦B∗

)
dµ(t)

−
(∫

T

α(t)At dµ(t)−A
∫
T

α(t) dµ(t)

)
◦
(∫

T

α(t)B∗t dµ(t)−B∗
∫
T

α(t) dµ(t)

)
=

∫
T

α(s) dµ(s)

∫
T

α(t)At ◦B∗t dµ(t)−
∫
T

α(t)At dµ(t) ◦
∫
T

α(t)B∗t dµ(t).

Theorem 2.6. Let (At), (Bt) ∈ L2
α(T, L2(H)) and there exist some vectors A,A′, B,B′ ∈

L2(H) such that∣∣∣∣∣∣∣∣∣∣∣∣(At)− A′ +A

2

∣∣∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣(At − A′ +A

2

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 1

2
|||A′ −A|||,∣∣∣∣∣∣∣∣∣∣∣∣(Bt)− B′ +B

2

∣∣∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣(Bt − B′ +B

2

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 1

2
|||B′ −B|||.

(13)

Then the following inequality holds:∣∣∣∣∫
T

α(s) dµ(s)

∫
T

α(t)tr
(
At ◦Bt

)
dµ(t)− tr

(∫
T

α(t)At dµ(t) ◦
∫
T

α(t)Bt dµ(t)

)∣∣∣∣
≤1

4

∫
T

α(s) dµ(s) |||A′ −A||| |||B′ −B|||

−
∥∥∥∥∫

T

α(t) 1H ◦
(
At −

A′ +A

2

)
◦
(
Bt −

B′ +B

2

)
dµ(t)

∥∥∥∥
2

. (14)

The coefficient 1
4 in the inequality (14) is sharp in the sense that it cannot be
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replaced by a smaller quantity.

Proof. Using (9) with At = Bt and A′+A
2 instead of A and B, we get

〈(At), (At)〉 =

∫
T

α(s) dµ(s)

∫
T

α(t)tr
(
At ◦A∗t

)
dµ(t)

− tr

(∫
T

α(t)At dµ(t) ◦
∫
T

α(t)A∗t dµ(t)

)
=

∫
T

α(s) dµ(s)

∫
T

α(t)tr

((
At −

A′ +A

2

)
◦
(
At −

A′ +A

2

)∗)
dµ(t)

− tr

(∫
T

α(t)

(
At −

A′ +A

2

)
dµ(t) ◦

∫
T

α(t)

(
At −

A′ +A

2

)∗
dµ(t)

)
=

∫
T

α(s) dµ(s)

∫
T

α(t)

∥∥∥∥1H ◦
(
At −

A′ +A

2

)∥∥∥∥2
2

dµ(t)

−
∥∥∥∥1H ◦

∫
T

α(t)

(
At −

A′ +A

2

)
dµ(t)

∥∥∥∥2
2

≤
∫
T

α(s) dµ(s)

∣∣∣∣∣∣∣∣∣∣∣∣(At)− A′ +A

2

∣∣∣∣∣∣∣∣∣∣∣∣2 − ∥∥∥∥1H ◦
∫
T

α(t)

(
At −

A′ +A

2

)
dµ(t)

∥∥∥∥2
2

.

Therefore

〈(At), (At)〉 ≤
1

4
|||A′−A|||2

∫
T

α(s) dµ(s)−
∥∥∥∥∫

T

α(t) 1H ◦
(
At−

A′ +A

2

)
dµ(t)

∥∥∥∥2
2

. (15)

Similarly,

〈(Bt), (Bt)〉 ≤
1

4
|||B′−B|||2

∫
T

α(s) dµ(s)−
∥∥∥∥∫

T

α(t) 1H ◦
(
Bt−

B′ +B

2

)
dµ(t)

∥∥∥∥2
2

.

(16)

By Schwarz inequality (10) and inequalities (15), (16), we deduce (14).
Now, suppose that (14) holds with the constants C > 0 in the inequality. That is,∣∣∣∣∫

T

α(s) dµ(s)

∫
T

α(t)tr(At ◦B∗t ) dµ(t)− tr

(∫
T

α(t)At dµ(t) ◦
∫
T

α(t)B∗t dµ(t)

)∣∣∣∣
≤C|||A′ −A||| |||B′ −B|||

∫
T

α(s) dµ(s). (17)

Let {eα} be an orthonormal basis of a Hilbert space H, and PH1
: H → H1 be

the orthogonal projection onto subspace H1 generated by eα1
. It is obvious that

tr(PH1) = 1 and PH1 ◦ PH1 = PH1 . If we choose α : T = [0, 1]→ R, α(t) = 1, and

At = Bt =

{
−PH1 0 ≤ t ≤ 1

2

PH1

1
2 < t ≤ 1

(18)

then clearly (At) belongs to L2
α(T, L2(H)), but is not continuous. Since supt∈T ‖At−

At0‖ < ε for t sufficiently closed to t0, then ‖PH1
+ At0‖ ≤ supt∈T ‖At − At0‖ < ε,

and ‖PH1
− At0‖ ≤ supt∈T ‖At − At0‖ < ε. Therefore ‖At0‖ ≤ 1

2‖PH1
+ At0‖ +

1
2‖PH1

− At0‖ < ε, implying that At0 = 0, which is a contradiction with |||(At)||| =
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supt∈T ‖At‖ = 1.

For A′ = B′ = PH1
, A = B = −PH1

and Lebesgue measure µ on Ω, the condi-
tion (15) holds. By (17) we deduce C ≥ 1

4 , and the proof is completed. �

Corollary 2.7. Let A1, A2, . . . , An and B1, B2, . . . , Bn be operators in L2(H) and
ω1, ω2, . . . , ωn be positive numbers. Then∣∣∣∣∣

n∑
i=1

ωi

n∑
i=1

ωitr(Ai ◦Bi)− tr

(
n∑
i=1

ωiAi ◦
n∑
i=1

ωiBi

)∣∣∣∣∣
≤

n∑
i=1

ωi

n∑
i=1

ωi‖Ai‖2‖Bi‖2 −
∥∥∥∥1H ◦

n∑
i=1

ωiAi ◦
n∑
i=1

ωiBi

∥∥∥∥
2

.

Proof.∣∣∣∣∣
n∑
i=1

ωi

n∑
i=1

ωitr(Ai ◦Bi)− tr

(
n∑
i=1

ωiAi ◦
n∑
i=1

ωiBi

)∣∣∣∣∣
≤

n∑
i=1

ωi

n∑
i=1

ωi‖1H ◦Ai‖2‖1H ◦Bi‖2 −
∥∥∥∥1H ◦

n∑
i=1

ωiAi

∥∥∥∥
2

∥∥∥∥1H ◦
n∑
i=1

ωiBi

∥∥∥∥
2

≤
n∑
i=1

ωi

n∑
i=1

ωi‖Ai‖2‖Bi‖2 −
∥∥∥∥1H ◦

n∑
i=1

ωiAi ◦
n∑
i=1

ωiBi

∥∥∥∥
2

.

Example 2.8. Let {ei}∞i=1 be an orthonormal basis of a separable Hilbert space H,
and Hn be the subspace of H generated by the vectors e1, e2, . . . , en. Suppose that
PHn

: H → Hn is the orthogonal projection onto subspace Hn, and α : T = [0, 1] →
R, α(t) = 1. It is obvious that tr(PHn

) = rank(Hn) = n and PHn
◦ PHm

= PHm∧n
,

where m ∧ n = min{m,n}. If (At) belong to L2(T, L2(H)), and m ≥ 1, then∣∣∣∣∫ 1

0

tm−1tr(PHn
◦At) dt−

1

m
tr

(
PHn

◦
∫ 1

0

At dt

)∣∣∣∣ ≤√ n

2m−1
− n

m2
|||(At)|||,

and

∣∣∣∣∫ 1

0

et tr(PHn
◦At) dt−(e−1)tr

(
PHn

◦
∫ 1

0

At dt

)∣∣∣∣ ≤
√
n(e−1)(3−e)

2
|||(At)|||.

From inequality (12), for Bt = tm−1PHn
, we have∣∣∣∣∫ 1

0

tm−1tr(PHn ◦At) dt− tr

(∫ 1

0

tm−1PHn dt ◦
∫ 1

0

At dt

)∣∣∣∣2
≤
[∫ 1

0

tr(t2m−2PHn
) dt− tr

(∫ 1

0

tm−1PHn
dt ◦

∫ 1

0

tm−1PHn
dt

)]
×
[∫ 1

0

tr(A∗t ◦At) dt− tr

(∫ 1

0

A∗t dt ◦
∫ 1

0

At dt

)]
≤
(

n

2m− 1
− n

m2

)∫ 1

0

tr(A∗t ◦At) dt,
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therefore

lim sup
n→∞

1√
n

∣∣∣∣∫ 1

0

tm−1tr(PHn ◦At) dt −
1

m
tr

(
PHn ◦

∫ 1

0

At dt

)∣∣∣∣ ≤
√

1

2m− 1
− 1

m2
|||(At)|||,

and consequently,∣∣∣∣∫ 1

0

tm−1tr(PHn ◦At) dt −
1

m
tr

(
PHn ◦

∫ 1

0

At dt

)∣∣∣∣ = O(
√
n).

Now, for Bt = exp(t)PHn
, from inequality (12), we get∣∣∣∣∫ 1

0

et tr(PHn
◦At) dt− tr

(∫ 1

0

et PHn
dt ◦

∫ 1

0

At dt

)∣∣∣∣2
≤
[∫ 1

0

tr(e2t PHn) dt− tr

(∫ 1

0

et PHn dt ◦
∫ 1

0

et PHn dt

)]
×
[∫ 1

0

tr(A∗t ◦At) dt− tr

(∫ 1

0

A∗t dt ◦
∫ 1

0

At dt

)]
≤
(
n(e− 1)(3− e)

2

)∫ 1

0

tr(A∗t ◦At) dt,

therefore

lim sup
n→∞

1√
n

∣∣∣∣∫ 1

0

et tr(PHn
◦At) dt −(e− 1)tr

(
PHn

◦
∫ 1

0

At dt

)∣∣∣∣
≤
√

(e− 1)(3− e)
2

|||(At)|||,

and consequently∣∣∣∣∫ 1

0

et tr(PHn
◦At) dt −(e− 1)tr

(
PHn

◦
∫ 1

0

At dt

)∣∣∣∣ = O(
√
n).
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[1] M. W. Alomari, Pompeiu-Čebyšev type inequalities for selfadjoint operators in Hilbert spaces,
Adv. Oper. Theory, 3(3) (2018), 459–472. MR3795094.

[2] F. Bahrami, A. Bayati Eshkaftaki, S. M. Manjegani, Operator-valued Bochner integrable func-
tions and Jensen’s inequality, Georgian Math. J., 20 (2013), 625–640.

[3] S. Barza, L.-E. Persson, J. Soria, Sharp weighted multidimensional integral inequalities of
Chebyshev type, J. Math. Anal. Appl., 236(2) (1999), 243–253.

[4] P. L. Chebyshev, O priblizhennyh vyrazheniyah odnih integralov cherez drugie, in:
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