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A NOTE ON THE EIGENVALUES OF n-CAYLEY GRAPHS
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Abstract. A graph Γ is called an n-Cayley graph over a group G if its automorphism
contains a semi-regular subgroup isomorphic to G with n orbits. Every n-Cayley graph over
a group G is completely determined by n2 suitable subsets of G. If each of these subsets is
a union of conjugacy classes of G, then it is called a quasi-abelian n-Cayley graph over G.
In this paper, we determine the characteristic polynomial of quasi-abelian n-Cayley graphs.
Then we exactly determine the eigenvalues and the number of closed walks of quasi-abelian
semi-Cayley graphs. Furthermore, we construct some integral graphs.

1. Introduction

In this paper, all graphs are finite, without loops and multiple edges. Vertex set of a
graph Γ and its edge set will be denoted by V (Γ) and E(Γ), respectively. The spectrum
of Γ is the spectrum of its adjacency matrix A, that is, the set of eigenvalues together
with their multiplicities. If λ1, . . . , λr are the distinct eigenvalues of Γ with multi-

plicities m1, . . . ,mr, respectively, then we shall write Spec(Γ) = {λ[m1]
1 , . . . , λ

[mr]
r }.

A graph with integer eigenvalues is called integral graph. During the last forty years
many mathematicians tried to construct and classify integral graphs; for a survey on
integral graphs up to 2002, see [3]. The characteristic polynomial of Γ is the char-
acteristic polynomial of A, that is the polynomial defined by χA(λ) = det(λI − A).
The spectrum of a graph is one of the most important algebraic invariants, and it is
known that numerous proofs in graph theory depend on the spectrum of graphs. The
basic relationships between algebraic properties of these eigenvalues and the usual
properties of graphs are available in [4].

Let G be a group and S be a subset of G not containing the identity element 1.
The Cayley digraph of G with respect to S, Cay(G,S), is a digraph with vertex set
G and edge set {(g, sg) | g ∈ G, s ∈ S}. If S = S−1 then Cay(G,S) is undirected. If
S is a union of conjugacy classes of G, then Cay(G,S) is called quasi-abelian Cayley
(di)graph of G with respect to S, according to Wang and Xu [10]. Quasi-abelian
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Cayley (di)graphs have been considered in various contexts since 1964, for a survey
up to 2002 see [11].

By a theorem of Sabidussi, a (di)graph Γ is a Cayley (di)graph of a group G if
and only if there exists a regular subgroup of Aut(Γ) isomorphic to G. Recall that a
subgroup G of the automorphism group Aut(Γ) of a graph Γ is called semi-regular if
all its point-stabilizers are trivial, i.e., for every vertex v of V (Γ) the only element of
G fixing v is the identity element. Also a regular subgroup is a semi-regular subgroup
with only one orbit. In other words, a regular subgroup is a transitive semi-regular
subgroup. So there is a natural generalization of the Sabidussi’s Theorem which was
introduced in [1]. A (di)graph Γ is called an n-Cayley (di)graph over a group G if there
exists an semi-regular subgroup of Aut(Γ) isomorphic to G with n orbits. Clearly,
every Cayley graph is an 1-Cayley graph. Furthermore, every Cayley graph of a group
G having a subgroup H of index n is an n-Cayley graph over H [1, Lemma 8]. The
undirected 2-Cayley graphs are called semi-Cayley graphs, according to Resmini and
Jungnickel [9]. Generalized Petersen graphs are examples of semi-Cayley graphs over
cyclic groups.

It is proved in [1, Lemma 2] that a (di)graph Γ is an n-Cayley (di)graph over G if
and only if there exist n2 subsets Tij , 1 ≤ i, j ≤ n, of G such that Γ ∼= Cay(G;Tij | 1 ≤
i, j ≤ n), where Cay(G;Tij | 1 ≤ i, j ≤ n) is a graph with vertex set G × {1, . . . , n}
and edge set

⋃
1≤i,j≤n{((g, i), (tg, j)) | g ∈ G, t ∈ Tij}. Hence we may denote an

n-Cayley graph over a group G with Cay(G;Tij | 1 ≤ i, j ≤ n) for some subsets
Tij of G. Note that Cay(G;Tij | 1 ≤ i, j ≤ n) is undirected if and only if for all
1 ≤ i, j ≤ n, Tij = T−1ji . Furthermore, it is loop-free if and only if for all 1 ≤ i ≤ n,
1 /∈ Tii. Let RG = {ρg | g ∈ G}, where ρg : G × {1, . . . , n} → G × {1, . . . , n} and
(x, i)ρg = (xg, i). Then RG is a semi-regular subgroup of the automorphism group of
Cay(G;Tij | 1 ≤ i, j ≤ n) with n orbits G×{i}, i = 1, . . . , n. We define quasi-abelian
n-Cayley graphs in analogous way to quasi-abelian Cayley graphs as follows.

Definition 1.1. Cay(G;Tij | 1 ≤ i, j ≤ n) is called a quasi-abelian n-Cayley graph
if for all 1 ≤ i, j ≤ n, Tij ’s are unions of conjugacy classes of G.

The characteristic polynomial of an n-Cayley graph over a group G is determined
in terms of irreducible representations of G in [1]. We refer the reader to [2] for a
survey on the eigenvalues of n-Cayley graphs. In this paper, we study quasi-abelian
n-Cayley graphs over a group G and determine their spectrum in terms of irreducible
characters of G.

2. A characterization of quasi-abelian n-Cayley graphs

Let Γ = Cay(G;Tij | 1 ≤ i, j ≤ n). Recall that RG = {ρg : V (Γ) → V (Γ) | g ∈ G},
where (x, i)ρg = (xg, i) for all x ∈ G and i ∈ {1, . . . , n}, is a semi-regular subgroup
of Aut(Γ). Furthermore, recall that Γ is called quasi-abelian if all Tij ’s are a union
of conjugacy classes of G. In this section, we are going to determine quasi-abelian
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n-Cayley graphs using their automorphism group. We generalize them to n-Cayley
graphs, where n ≥ 2 is an arbitrary integer.

Let LG = {ψg : V (Γ) → V (Γ) | g ∈ G}, ∀x ∈ G, 1 ≤ i ≤ n, (x, i)ψg = (gx, i).
Then we have the following lemma.

Lemma 2.1. Let Γ = Cay(G;Tij | 1 ≤ i, j ≤ n). Then Γ is a quasi-abelian n-Cayley
graph over G if and only if LG ≤ Aut(Γ).

Proof. Let Γ be quasi-abelian and ψg ∈ LG. Then

((x, i), (y, j)) ∈ E(Γ)⇔ yx−1 ∈ Tij
⇔gyx−1g−1 ∈ Tij (since Tij is a union of conjugacy classes)

⇔((gx, i), (gy, j)) ∈ E(Γ)

⇔((x, i)ψg , (y, j)ψg )) ∈ E(Γ),

which proves that LG ≤ Aut(Γ). Conversely, suppose that LG ≤ Aut(Γ), t ∈ Tij for
some i, j ∈ {1, 2} and g ∈ G. Then ((1, i), (t, j)) ∈ E(Γ). So ((1, i)ψg , (t, j)ψg ) ∈ E(Γ)
which implies that ((g, i), (gt, j)) ∈ E(Γ). Hence gtg−1 ∈ Tij which means that
g−1Tijg = Tij i.e Tij is a union of conjugacy classes of G. This proves that Γ is a
quasi-abelian graph over G. �

Let IG = {θg : V (Γ) → V (Γ) | g ∈ G}, ∀x ∈ G, 1 ≤ i ≤ n, (x, i)θg = (g−1xg, i).
Then one can see that RGLG = RGIG. Furthermore, IG is a subgroup of the auto-
morphism group of quasi-abelian n-Cayley graphs over G as follows:

Lemma 2.2. Suppose that Γ = Cay(G;Tij | 1 ≤ i, j ≤ n). Then Γ is quasi-abelian if
and only if IG ≤ Aut(Γ).

Proof. Let θg ∈ IG. Then

((x, i), (y, j)) ∈ E(Γ)⇔ yx−1 ∈ Tij
⇔g−1yx−1g ∈ Tij (since Tij is a union of conjugacy classes)

⇔g−1ygg−1x−1g ∈ Tij
⇔((g−1xg, i), (g−1yg, j)) ∈ E(Γ)

⇔((x, i)ψg , (y, j)ψg )) ∈ E(Γ),

which means that θg ∈ Aut(Γ). This proves one direction. Conversely, suppose that
IG ≤ Aut(Γ). Since for all g, h ∈ G, we have ρgθh = θxρy, where x is an element
of centralizer of h in G and y = h−1gh, we have RGIG = IGRG, which means that
RGIG ≤ Aut(Γ). Since RGIG = RGLG, we conclude that LG ≤ Aut(Γ). Hence
Lemma 2.1 implies that Γ is quasi-abelian. �

Combining the above lemmas, one can obtain the following corollary.

Corollary 2.3. Let Γ=Cay(G;Tij |1 ≤ i, j ≤ n). Then the following are equivalent.
(i) Γ is quasi-abelian. (ii) LG ≤ Aut(Γ). (iii) IG ≤ Aut(Γ).

(iv) RGLG ≤ Aut(Γ). (v) RGIG ≤ Aut(Γ).
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3. Spectrum of quasi-abelian n-Cayley graphs

In this section, we determine the characteristic polynomial of a quasi-abelian n-Cayley
graph over a group G in terms of irreducible representations of G. Our notations in
character theory of finite groups are standard and mainly taken from [8].

Let G be a finite group and Irr(G) = {χ1, . . . , χm} be the set of all inequivalent
irreducible characters of G. Let Γ = Cay(G;Tij | 1 ≤ i, j ≤ n) and for all χ ∈ Irr(G)
define a matrix χ(Γ) = 1

χ(1) (
∑
t∈Tij χ(t))1≤i,j≤n. Note that χ(1) is a positive integer

for all χ ∈ Irr(G). Keeping the above notations, we have the following theorem.

Theorem 3.1. Let Γ = Cay(G,Tij | 1 ≤ i, j ≤ n) be a finite n-Cayley digraph over
a group G and each Tij is a union of conjugacy classes of G. Then the spectrum of
Γ is the union of spectrum of χk(Γ), where k = 1, . . . ,m. Moreover, if λ occurs with
multiplicity mk(λ) in χk(Γ), then the multiplicity of λ in Γ is

∑m
k=1mk(λ)χk(1)2.

Proof. Let A be the adjacency matrix of Γ. Then by a suitable ordering of vertices of
Γ, we can write A = (Aij)1≤i,j≤n, where Aij is the adjacency matrix of Cayley graph
Cay(G,Tij). Since each Tij is a union of conjugacy classes of G, each Cay(G,Tij)

is a quasiabelian Cayley graph with eigenvalues

∑
t∈Tij

χk(t)

χk(1)
, k = 1, . . . ,m [6]. Also

rows of the matrix Dk = (χk(xix
−1
j ))1≤i,j≤g, 1 ≤ k ≤ m, where G = {x1, x2, . . . , xg},

are eigenvectors of Aij corresponding to the eigenvalue

∑
t∈Tij

χk(t)

χk(1)
and dimension

of Dk is χk(1)2 (see [6, pages 1-3]). So the matrices Aij , 1 ≤ i, j ≤ n, have a
common eigenvector basis. Let elements of this common basis are column vectors
v1, . . . , vg. On the other hand, Aij = PBijP

−1, where P = [v1, . . . , vg], Bij =
diag(λ1ij , . . . , λ

g
ij) and λlij is the corresponding eigenvalue of vl of Aij . Now A =

(Aij)1≤i,j≤n = (PBijP
−1)1≤i,j≤n = CDC−1, where C = diag(P, . . . , P ) and D =

(Bij)1≤i,j≤n are both ng × ng matrices. So the eigenvalues of A are the same as
eigenvalues of D. Now there is a permutation matrix which establishes a similarity
relation between D and the diagonal matrix diag(Id1 ⊗ A1, . . . , Idm ⊗ Am) where
Ak = χk(Γ)⊗ Idk , dk = χk(1) and Idk is the dk × dk identity matrix. This completes
the proof. �

Now we focus on semi-Cayley graphs. Recall that semi-Cayley graphs are undi-
rected 2-Cayley graphs. So every semi-Cayley graph over a group G is of the form
Cay(G;T11, T22, T12, T21), where T12 = T−121 ⊆ G, T11 = T−111 , T22 = T−122 ⊆ G \ {1}.
Let us denote Cay(G;T11, T22, T12, T21) by SC(G;R,L, S), where R = T11, L = T22
and S = T12 = T−121 .

Corollary 3.2. Let Γ = SC(G;R,L, S) be a quasi-abelian semi-Cayley graph. Then

the characteristic polynomial of Γ is
∏m
k=1(λ− λ+k )χk(1)

2

(λ− λ−k )χk(1)
2

,

λ+k =
αk + βk +

√
(αk − βk)2 + 4|γk|2
2χk(1)

, λ−k =
αk + βk −

√
(αk − βk)2 + 4|γk|2
2χk(1)

where αk =
∑
r∈R χk(r), βk =

∑
l∈L χk(l), γk =

∑
s∈S χk(s) and k = 1, . . . ,m.
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In what follows, we keep the notation of Corollary 3.2.

Example 3.3. Let G be a finite non-abelian group, R = G \ Z(G), L = Z(G) \ {1},
and Γ = SC(G;R,L, {1}). Then the eigenvalues of Γ are

|G| − 1±
√

(|G| − 2|Z(G)|+ 1)2 + 4

2

and
−χ(1)±

√
5χ(1)2 − 4

∑
r∈R,l∈L χ(r)χ(l)

2χ(1)
, 1 6= χ ∈ Irr(G)

with multiplicity χ(1)2.
It is clear that Γ is a quasi-abelian semi-Cayley graph. Let 1 6= χ ∈ Irr(G). Then

by the row orthogonality relations,
∑
g∈G χ(g) = 0, which implies that

∑
r∈R χ(r) +∑

l∈L χ(l) = −χ(1). Now the result is a direct consequence of Corollary 3.2.

In the following example, for every odd integer n ≥ 3, we construct an (n + 1)-
regular integral and bipartite graph with 4n vertices.

Example 3.4. Let n ≥ 3 be odd, G = 〈a, b | an = b2 = (ab)2 = 1〉 ∼= D2n, and
Γ = SC(G;R,L, {1}), where R = L = {b, ba, ba2, . . . , ban−1}. Then Spec(Γ) = {n ±
1,−n± 1, (±1)[2(n−1)]}.

It is well-known that {b, ba, . . . , ban−1} is a conjugacy class of D2n. The irreducible
characters of D2n are

χ0 : biaj 7→ 1, χ1 : bras 7→ (−1)r, χj : as 7→ 2 cos(
2πjs

n
), bas 7→ 0, 1 ≤ j ≤ n− 1

2
.

Now the result is a direct consequence of Corollary 3.2.

A conjugacy class C of a finite group G is called rational, if an element c of C has
order r and if (s, r) = 1 then cs belongs to C.

Corollary 3.5. Let Γ = SC(G; Cl(g),Cl(g),Cl(h)). If Cl(g) and Cl(h) are both
rational then Γ is integral. In particular, if Cl(g) = Cl(h), then Γ is integral if and
only if Cl(g) is rational.

Proof. By Corollary 3.2, eigenvalues of Γ are λ±k = αk±|γk|
χk(1)

both with multiplicity

χk(1)2, k = 1, . . . ,m. Furthermore, αk = |Cl(g)|χk(g) and |γk| = |Cl(h)||χk(h)|. Sup-
pose that Cl(g) and Cl(h) are rational. Then, by [8, Theorem 22.16], χk(g), χk(h) ∈ Z.
Hence λ+k and λ−k are both rational numbers. On the other hand, both are algebraic
integers (recall that a complex number λ is an algebraic integer if and only if λ is
an eigenvalue of some matrix, all of whose entries are integers [8, Definition 22.1]).
Hence [8, Proposition 22.5] implies that λ+k and λ−k are both integers, which means
that Γ is an integral graph.

Now suppose that Cl(g) = Cl(h). If Cl(g) is rational then Γ is integral, by previous

paragraph. Conversely, suppose that Γ is integral.Then |Cl(g)|
χk(1)

(χk(g) ± |χk(g)|), k =

1, . . . ,m, are integers. Thus χk(g) + |χk(g)| and χk(g)− |χk(g)| are rational, and so
χk(g) is rational for all k. Hence Cl(g) is rational [7, Problem 2.12], which completes
the proof. �
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Keeping the notation of Corollary 3.2, one can compute the number of closed
walks in quasi-abelian semi-Cayley graphs as follows.

Corollary 3.6. Let Γ = SC(G;R,L, S) be quasi-abelian and ωn(Γ) be the number
of closed walks of length n in Γ. Then

ωn(Γ) =
1

2n−1

m∑
k=1

[n/2]∑
i=0

1

χk(1)n−2
(αk + βk)n−2i((αk − βk)2 + 4|γk|2)i,

where αk =
∑
r∈R χk(r), βk =

∑
l∈L χk(l), γk =

∑
s∈S χk(s).

Proof. By [4, Lemma 2.5], it is enough to note that ωn(Γ) =
∑m
k=1 χk(1)2

(
(λ+k )n +

(λ−k )n
)

and use Corollary 3.2. �

It is clear that every n-Cayley graph over an abelian group is a quasi-abelian n-
Cayley graph. Furthermore, every finite abelian groupG has |G| irreducible characters
and for any character χ of G we have χ(1) = 1. Hence one can find the eigenvalues
and the number of closed walks of semi-Cayley graphs over abelian groups as a direct
consequence of Corollaries 3.2 and 3.6.

Let Γ be a graph with eigenvalues λ1, λ2, . . . , λn. Then the Estrada index of
Γ is defined as EE(Γ) =

∑n
i=1 e

λi . This quantity which has many applications in
chemistry and computer science, was defined in 2000 by Ernesto Estrada [5].

Corollary 3.7. Let Γ = SC(G;R,L, S) be a quasi-abelian semi-Cayley graph. The
EE(Γ) is equal to

2

m∑
k=1

χk(1)2e
αk+βk
2χk(1) cosh(

√
(αk − βk)2 + 4|γk|2

2χk(1)
).

In particular, if R = L then EE(Γ) = 2
∑m
k=1 χk(1)2e

αk
χk(1) cosh( |γk|χk(1)

).

Proof. It is enough to note that ex+y + ex−y = 2ex cosh(y) and use Corollary 3.2. �
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