MATEMATIČKI VESNIK МАТЕМАТИЧКИ ВЕСНИК 73, 2 (2021), [111–](#page-0-0)[118](#page-7-0) June 2021

research paper оригинални научни рад

CONVERGENCE AND STABILITY OF PICARD S-ITERATION PROCEDURE FOR CONTRACTIVE-LIKE OPERATORS

G.V.R. Babu and G. Satyanarayana

Abstract. Let $(X, \|\cdot\|)$ be a normed linear space. Let K be a nonempty closed convex subset of X. Let $T: K \to K$ be a contractive-like operator with a nonempty fixed point set $F(T)$. We prove the strong convergence and T-stability of Picard S-iteration procedure with respect to the contractive-like operator T which are independent for any arbitrary choices of the sequences $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ in [0, 1].

1. Introduction

Let K be a nonempty closed convex subset of a normed linear space $(X, \|\cdot\|)$ and $T: K \to K$ be a selfmap of K. A point $x \in K$ is called a fixed point of T if $Tx = x$ and we denote the set of all fixed points of T by $F(T)$.

Harder and Hicks [\[3\]](#page-7-1) initiated the concept of T-stability of a general fixed point iteration procedure. In the following, we state the definition of T-stability of Harder and Hicks as in Berinde [\[1\]](#page-6-0).

DEFINITION 1.1 ([\[1\]](#page-6-0)). Let (X, d) be a metric space, $T : X \to X$ a mapping, $x_0 \in X$ and let us assume that the iteration procedure ${x_n}_{n=0}^{\infty}$ defined by

$$
x_{n+1} = f(T, x_n), \quad n = 0, 1, 2, \dots \tag{1}
$$

converges to a fixed point p of T. Let $\{y_n\}_{n=0}^{\infty}$ be an arbitrary sequence in X and set $\epsilon_n = d(y_{n+1}, f(T, y_n))$ for $n = 0, 1, 2, \ldots$ We say that the fixed point iteration procedure [\(1\)](#page-0-1) is T-stable or stable with respect to T if $\lim_{n\to\infty} \epsilon_n = 0$ if and only if $\lim_{n\to\infty}y_n=p.$

Let $(X, ||.||)$ be a normed linear space, K a nonempty subset of X. A map T : $K \to K$ is called a contractive-like operator [\[4\]](#page-7-2) if there exist $\delta \in [0,1)$, a monotone increasing function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\varphi(0) = 0$, such that for each $x, y \in K$,

$$
||Tx - Ty|| \le \delta ||x - y|| + \varphi(||x - Tx||),
$$
\n(2)

²⁰²⁰ Mathematics Subject Classification: 47H10, 54H25.

Keywords and phrases: Fixed point; contractive-like operator; Picard S-iteration procedure; T-stability.

where \mathbb{R}^+ denote $[0, \infty)$.

In order to prove some stability results, the contractive inequality condition [\(2\)](#page-0-2) was proposed and employed by Imoru and Olatinwo [\[4\]](#page-7-2). Let K be a nonempty convex subset of a normed linear space X and $T : K \to K$ be a map. In 1953, Mann [\[7\]](#page-7-3) introduced an iteration procedure as follows: For $x_0 \in K$, the Mann iteration procedure ${x_n}_{n=0}^{\infty}$ is defined by

$$
x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Tx_n , \quad n = 0, 1, 2, \dots
$$

where $\{\alpha_n\} \subset [0,1].$

In 1974, Ishikawa [\[5\]](#page-7-4) developed an iteration procedure in the following way: For $x_0 \in K$, the Ishikawa iteration procedure $\{x_n\}$ in K is defined by

$$
\begin{cases}\n x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n \\
 y_n = (1 - \beta_n)x_n + \beta_n T x_n\n\end{cases}
$$
\n(3)

where $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are real sequences in [0, 1].

Based on these iteration procedures, several iteration procedures were developed. In 2014, Gürsoy and Karakaya [\[2\]](#page-7-5) introduced Picard S-iteration procedure as follows:

$$
\begin{cases}\nu_0 \in K \\
w_n = (1 - \beta_n)u_n + \beta_n T u_n \\
v_n = (1 - \alpha_n)T u_n + \alpha_n T w_n \\
u_{n+1} = T v_n\n\end{cases} \tag{4}
$$

where $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are real sequences in [0, 1].

Zeana and Ahmed [\[15\]](#page-7-6) proved that the sequence generated by Picard S-iteration procedure (4) is convergent for a contractive-like operator T having a fixed point under certain conditions on α_n and β_n . In fact, the following theorem was proved.

THEOREM 1.2 ([\[15,](#page-7-6) Theorem 2.1]). Let K be a nonempty closed convex subset of a Banach space X and $T: K \to K$ be a contractive-like operator with a fixed point p. Then for all $x_0 \in K$, the Picard S-iteration procedure [\(4\)](#page-1-0) converges to the unique fixed point of T if $\sum_{n=0}^{\infty} \alpha_n \beta_n = \infty$ and $\lim_{n \to \infty} \alpha_n = 0$.

We use the following lemma in our further discussion.

LEMMA 1.3 ([\[6\]](#page-7-7)). Let $\{a_n\}$ and $\{b_n\}$ be sequences of nonnegative real numbers. Assume that there exists a constant $0 \leq h < 1$ such that $a_{n+1} \leq ha_n + b_n$ for all n, and $\lim_{n \to \infty} b_n = 0$. Then $\lim_{n \to \infty} a_n = 0$.

Remark 1.4. Lemma [1.3](#page-1-1) is also contained in Berinde [\[1\]](#page-6-0) and the articles of the authors [\[4,](#page-7-2) [9,](#page-7-8) [11\]](#page-7-9).

For more literature on the convergence and T-stability of a general fixed point iteration procedure, we refer to [\[1,](#page-6-0) [8–](#page-7-10)[14\]](#page-7-11) and related references therein.

In this paper, we prove the strong convergence of Picard S-iteration procedure of a contractive-like operator with a fixed point defined on a nonempty closed convex

G.V.R. Babu, G. Satyanarayana 113

subset of a Banach space X. Also, we show that conditions $\sum_{n=0}^{\infty} \alpha_n \beta_n = \infty$ and $\lim_{n\to\infty} \alpha_n = 0$ of Theorem [1.2](#page-1-2) are redundant. Further, we prove the Picard S-iteration procedure [\(4\)](#page-1-0) is T-stable for any arbitrary choices of the sequences $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ in [0, 1].

2. Convergence and T-stability of Picard S-iteration procedure

In the following we prove that the convergence of Picard S-iteration procedure [\(4\)](#page-1-0) for contractive-like operators is independent of α_n and β_n .

THEOREM 2.1. Let K be a nonempty closed convex subset of an arbitrary Banach space X and $T: K \to K$ be a contractive-like operator. Suppose that $F(T) \neq \emptyset$. Let ${u_n}_{n=0}^{\infty}$ be the sequence generated by Picard S-iteration procedure with real sequences $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ in $[0,1]$. Then $\{u_n\}_{n=0}^{\infty}$ converges to a unique fixed point of T.

Proof. Since $F(T) \neq \emptyset$ and T is a contractive-like operator, we have $F(T) = \{p\}.$ First, we consider

$$
||w_n - p|| = ||(1 - \beta_n)u_n + \beta_n Tu_n - p|| \le (1 - \beta_n) ||u_n - p|| + \beta_n ||Tu_n - Tp||
$$

\n
$$
\le (1 - \beta_n) ||u_n - p|| + \beta_n [\delta ||u_n - p|| + \varphi(||p - Tp||)]
$$

\n
$$
\varphi(\underline{0}) = 0 \quad [1 - \beta_n (1 - \delta)] ||u_n - p|| \le ||u_n - p||. \tag{5}
$$

Next,

$$
||v_n - p|| = ||(1 - \alpha_n)Tu_n + \alpha_nTw_n - p|| \le (1 - \alpha_n)||Tu_n - Tp|| + \alpha_n||Tw_n - Tp||
$$

\n
$$
\le (1 - \alpha_n)[\delta||u_n - p|| + \varphi(||p - Tp||)] + \alpha_n[\delta||w_n - p|| + \varphi(||p - Tp||)]
$$

 $= \delta [(1 - \alpha_n) ||u_n - p|| + \alpha_n ||w_n - p||] \stackrel{(5)}{\leq} \delta ||u_n - p||.$ $= \delta [(1 - \alpha_n) ||u_n - p|| + \alpha_n ||w_n - p||] \stackrel{(5)}{\leq} \delta ||u_n - p||.$ $= \delta [(1 - \alpha_n) ||u_n - p|| + \alpha_n ||w_n - p||] \stackrel{(5)}{\leq} \delta ||u_n - p||.$

Now, $||u_{n+1} - p|| = ||Tv_n - Tp|| \le \delta ||v_n - p|| + \varphi(||p - Tp||) \le \delta^2 ||u_n - p||$. Therefore, by induction on n, it is easy to see that $||u_{n+1}-p|| \leq \delta^{2(n+1)} ||u_0-p||$ for $n = 0, 1, 2...$ and by letting $n \to \infty$, we have $\lim_{n \to \infty} u_n = p$. $u_n = p.$

REMARK 2.2. From the previous proof, it follows that $\lim_{n\to\infty} v_n = \lim_{n\to\infty} w_n = p$.

In the following example, we consider all the possible choices of the sequences $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ in [0, 1] and show that the sequence generated by Picard S-iteration procedure [\(4\)](#page-1-0) is convergent for contractive-like operators.

EXAMPLE 2.3. Let $K = \begin{bmatrix} 1 & 3 \end{bmatrix}$ be a closed convex subset of the normed linear space $X = \mathbb{R}$ equipped with the usual norm.

Define $T : [1,3] \to [1,3]$ by $Tx = 2 + \frac{1}{x}$. Then T is a contractive-like operator with $\delta = \frac{2}{3}$ and $\varphi(x) = \frac{3x^2}{4}$ $\frac{x^2}{4}$, $x \ge 0$. Observe that $1 + \sqrt{2}$ is the unique fixed point of T.

Case (i): Let
$$
\alpha_n = \frac{n+1}{n+2}
$$
, $\beta_n = \frac{1}{n^2+1}$ so that $\sum_{n=0}^{\infty} \alpha_n = \infty$, $\sum_{n=0}^{\infty} \beta_n < \infty$ and
\n $\sum_{n=0}^{\infty} \alpha_n \beta_n < \infty$. For any $u_0 \in [1, 3]$,
\n $w_n = (1-\beta_n)u_n + \beta_n T u_n = \frac{n^2 u_n^2 + 2u_n + 1}{(n^2+1)u_n}$,
\n $v_n = (1-\alpha_n)Tu_n + \alpha_n T w_n = \frac{2u_n + 1}{(n+2)u_n} + \frac{n+1}{n+2}(2 + \frac{(n^2+1)u_n}{n^2 u_n^2 + 2u_n + 1})$
\n $= \frac{2u_n + 1}{(n+2)u_n} + \frac{n+1}{n+2}(\frac{2n^2 u_n^2 + 4u_n + 2 + (n^2+1)u_n}{n^2 u_n^2 + 2u_n + 1})$,
\n $= \frac{(2u_n^3 + u_n^2)n^3 + (4u_n^3 + 2u_n^2)n^2 + (5u_n^2 + 2u_n)n + 9u_n^2 + 6u_n + 1}{n^3 u_n^3 + 2n^2 u_n^3 + (2u_n^2 + u_n)n + 2u_n}$,
\n $u_{n+1} = Tv_n = 2 + \frac{n^3 u_n^3 + 2n^2 u_n^3 + (2u_n^2 + u_n)n + 2u_n}{(2u_n^3 + u_n^2)n^3 + (4u_n^3 + 2u_n^2)n^2 + (5u_n^2 + 2u_n)n + 9u_n^2 + 6u_n + 1}$
\n $= \frac{(5u_n^3 + 2u_n^2)n^3 + (10u_n^3 + 4u_n^2)n^2 + (12u_n^2 + 5u_n)n + (22u_n^2 + 14u_n + 2)}{(2u_n^3 + u_n^2)n^3 + (4u_n^3 + 2u_n^2)n^2 + (5u_n^2 + 2u_n)n + 9u_n^2 + 6u_n + 1} = \frac{5u_n + 2}{2u_n + 1} + A_n$,
\nwhere $A_n = \frac{(-u_n^$

Now,
$$
u_{n+1} - (1 + \sqrt{2}) = \frac{5u_n + 2}{2u_n + 1} - (1 + \sqrt{2}) + A_n = \frac{(3 - 2\sqrt{2})u_n + 1 - \sqrt{2}}{2u_n + 1} + A_n
$$

=
$$
\frac{(3 - 2\sqrt{2})[u_n - (1 + \sqrt{2})]}{2u_n + 1} + A_n.
$$

 $2u_n + 1$
Therefore, $|u_{n+1} - (1 + \sqrt{2})| \le \frac{3 - 2\sqrt{2}}{3} |u_n - (1 + \sqrt{2})| + |A_n|$, for $n = 0, 1, 2, ...$ By applying limit superior on both sides and using $\lim_{n\to\infty} A_n = 0$, we have $\limsup |u_{n+1} (1+\sqrt{2})|\leq \frac{3-2\sqrt{2}}{3}\limsup |u_n-(1+\sqrt{2})|$, so that $\limsup |u_n-(1+\sqrt{2})|\leq 0$. Hence, $\lim_{n \to \infty} u_n = 1 + \sqrt{2}.$

Case (ii): Let $\alpha_n = \frac{1}{2^n}, \beta_n = \frac{1}{3^n}$ so that $\sum_{n=0}^{\infty} \alpha_n < \infty$, $\sum_{n=0}^{\infty}$ $\sum_{n=0}^{\infty} \beta_n < \infty$ and $\sum_{n=0}^{\infty} \alpha_n \beta_n < \infty$. For any $u_0 \in [1, 3]$, we have:

$$
w_n = (1 - \beta_n)u_n + \beta_n T u_n = \frac{(3^n - 1)u_n^2 + 2u_n + 1}{3^n u_n},
$$

\n
$$
v_n = (1 - \alpha_n)T u_n + \alpha_n T w_n = (1 - \frac{1}{2^n})(2 + \frac{1}{u_n}) + \frac{1}{2^n}(2 + \frac{3^n u_n}{(3^n - 1)u_n^2 + 2u_n + 1})
$$

\n
$$
= \frac{6^n (2u_n^3 + u_n^2) + 2^n (-2u_n^3 + 3u_n^2 + 4u_n + 1) + u_n^2 - 2u_n - 1}{6^n u_n^3 - 2^n u_n^3 + 2 \cdot 2^n u_n^2 + 2^n u_n}
$$

\n
$$
u_{n+1} = T v_n = 2 + \frac{6^n u_n^3 - 2^n u_n^3 + 2 \cdot 2^n u_n^2 + 2^n u_n}{6^n (2u_n^3 + u_n^2) + 2^n (-2u_n^3 + 3u_n^2 + 4u_n + 1) + u_n^2 - 2u_n - 1}
$$

G.V.R. Babu, G. Satyanarayana 115

$$
=\frac{6^n(5u_n^3+2u_n^2)+2^n(-5u_n^3+8u_n^2+9u_n+2)+2u_n^2-4u_n-2}{6^n(2u_n^3+u_n^2)+2^n(-2u_n^3+3u_n^2+4u_n+1)+u_n^2-2u_n-1}=\frac{5u_n+2}{2u_n+1}-B_n,
$$

where $B_n = \frac{u_n(u_n^2 - 2u_n - 1)}{(2u_n + 1)[6^n(2u_n^3 + u_n^2) + 2^n(-2u_n^3 + 3u_n^2 + 4u_n + 1) + u_n^2 - 2u_n - 1]}$. It is easy to see that $\lim_{n\to\infty} B_n = 0$. We consider

$$
u_{n+1} - (1 + \sqrt{2}) = \frac{(3 - 2\sqrt{2})u_n + (1 - \sqrt{2})}{2u_n + 1} + B_n = \frac{(3 - 2\sqrt{2})[u_n - (1 + \sqrt{2})]}{2u_n + 1} + B_n,
$$

where $B_n = \frac{u_n(u_n^2 - 2u_n - 1)}{(2u_n + 1)[6^n(2u_n^3 + u_n^2) + 2^n(-2u_n^3 + 3u_n^2 + 4u_n + 1) + u_n^2 - 2u_n + 1]}$, so that $\lim_{n \to \infty} B_n = 0$. Therefore, for $n = 0, 1, 2 \ldots$, √

$$
|u_{n+1}-(1+\sqrt{2})| \le \frac{(3-2\sqrt{2})}{2u_n+1}|u_n-(1+\sqrt{2})|+|B_n| \le \frac{3-2\sqrt{2}}{3}|u_n-(1+\sqrt{2})|+|B_n|.
$$

By applying limit superior on both sides, we have $\frac{2\sqrt{2}}{3}$ lim sup $|u_n - (1 + \sqrt{2})| \le 0$, so that $\lim_{n \to \infty} u_n = 1 + \sqrt{2}$.

Case (iii): Let
$$
\alpha_0 = \beta_0 = 0
$$
, $\alpha_n = \beta_n = \frac{1}{\sqrt{n}}$ so that $\sum_{n=0}^{\infty} \alpha_n = \infty$, $\sum_{n=0}^{\infty} \beta_n = \infty$ and
\n $\sum_{n=0}^{\infty} \alpha_n \beta_n = \infty$. For any $u_0 \in [1, 3]$, we have:
\n $w_n = (1 - \beta_n)u_n + \beta_n T u_n = \frac{(\sqrt{n} - 1)u_n^2 + 2u_n + 1}{u_n \sqrt{n}}$, for $n = 1, 2, 3...$,
\n $v_n = (1 - \alpha_n) T u_n + \alpha_n T w_n = (1 - \frac{1}{\sqrt{n}})(2 + \frac{1}{u_n}) + \frac{1}{\sqrt{n}}(2 + \frac{1}{w_n})$
\n $= \frac{\sqrt{n} - 1}{\sqrt{n}} \frac{2u_n + 1}{u_n} + \frac{1}{\sqrt{n}}(2 + \frac{u_n \sqrt{n}}{(\sqrt{n} - 1)u_n^2 + 2u_n + 1})$
\n $= \frac{n(2u_n^3 + u_n^2) + \sqrt{n}[-2u_n^3 + 3u_n^2 + 4u_n + 1] + u_n^2 - 2u_n - 1}{\sqrt{n}u_n(\sqrt{n}u_n^2 - u_n^2 + 2u_n + 1)}$,
\n $u_{n+1} = 2 + \frac{nu_n^3 + \sqrt{n}(-u_n^3 + 2u_n^2 + u_n)}{n(2u_n^3 + u_n^2) + \sqrt{n}[-2u_n^3 + 3u_n^2 + 4u_n + 1] + u_n^2 - 2u_n - 1}$
\n $= \frac{n(5u_n^3 + 2u_n^2) + \sqrt{n}[-5u_n^3 + 8u_n^2 + 9u_n + 2] + 2u_n^2 - 4u_n - 2}{n(2u_n^3 + u_n^2) + \sqrt{n}[-2u_n^3 + 3u_n^2 + 4u_n + 1] + u_n^2 - 2u_n - 1} = \frac{5u_n + 2}{2u_n + 1} + C_n$,

where $C_n = \frac{-u_n^3 + 2u_n^2 + u_n}{(2u_n+1)[n(2u_n^3+u_n^2)+\sqrt{n}(-2u_n^3+3u_n^2+4u_n+1)+u_n^2-2u_n-1]}$ for $n = 1, 2, 3, \ldots$, so that $\lim_{n \to \infty} C_n = 0$. We consider

$$
u_{n+1} - (1 + \sqrt{2}) = \frac{(3 - 2\sqrt{2})u_n + 1 - \sqrt{2}}{2u_n + 1} + C_n = \frac{3 - 2\sqrt{2}}{2u_n + 1}[u_n - (1 + \sqrt{2})] + C_n,
$$

so that $|u_{n+1} - (1 + \sqrt{2})| \leq \frac{3-2\sqrt{2}}{3}|u_n - (1 + \sqrt{2})| + |C_n|$, for $n = 1, 2, 3, \dots$ By applying limit superior on both sides, we have $\frac{2\sqrt{2}}{3}$ lim sup $|u_n - (1 + \sqrt{2})| \le 0$, hence $\lim_{n\to\infty} u_n = 1 + \sqrt{2}.$

Case (iv): Let $\alpha_0 = 1$, $\beta_0 = 1$, $\alpha_n = \beta_n = \frac{1}{n}$, for $n = 1, 2, \ldots$, so that $\sum_{n=0}^{\infty} \alpha_n = \infty$, $\sum_{i=1}^{\infty}$ $\sum_{n=0}^{\infty} \beta_n = \infty$ and $\sum_{n=0}^{\infty} \alpha_n \beta_n < \infty$. Now, for any $u_0 \in [1, 3]$, $w_n = \frac{n^2 u_n - n u_n + 2u_n + 1}{n}$ $\frac{a_n}{n u_n},$ $v_n = \frac{n^2(2u_n^3 + u_n^2) + n(-2u_n^3 + 3u_n^2 + 4u_n + 1) + (u_n^2 - 2u_n - 1)}{2u_n^3 + u_n^2 + 3u_n^2 + 4u_n + 1}$ $\frac{n_1 - 2a_n + 3a_n + 12a_1 + 1}{n^2u_n^3 + n(-u_n^3 + 2u_n^2 + u_n)},$ $u_{n+1} = \frac{5u_n+2}{2u_{n+1}} + D_n,$ $2u_n+1$

where $D_n = \frac{-u_n^3 + 2u_n^2 + u_n}{(2u_n+1)[n^2(2u_n^3+u_n^2)+n(-2u_n^3+3u_n^2+4u_n+1)+u_n^2-2u_n-1]},$ for $n = 1, 2, \ldots$. Clearly, $\lim_{n\to\infty} D_n = 0$ and $u_{n+1} - (1+\sqrt{2}) = \frac{3-2\sqrt{2}}{2u_n+1} [u_n - (1+\sqrt{2})] + D_n$, so that $\lim_{n\to\infty} u_n = 1 + \sqrt{2}.$

Case (v): Let $\alpha_0 = 1$, $\alpha_n = \frac{1}{n^2}$ for $n = 1, 2, \ldots$, and $\beta_n = \frac{1}{2}$ for all n. Therefore, $\sum_{i=1}^{\infty}$ $\sum_{n=0}^{\infty} \alpha_n < \infty$, $\sum_{n=0}^{\infty}$ $\sum_{n=0}^{\infty} \beta_n = \infty$ and $\sum_{n=0}^{\infty} \alpha_n \beta_n < \infty$. For any $u_0 \in [1, 3]$ and $n = 1, 2, ...,$ $w_n = \frac{u_n^2 + 2u_n + 1}{2}$ $\frac{-2u_n+1}{2u_n}$, $v_n = \frac{n^2(2u_n+1)(u_n^2+2u_n+1)+u_n^2-2u_n}{n^2u_n(u_n^2+2u_n+1)}$ $\frac{(n^2+2u_n+1)+u_n^2-2u_n}{n^2u_n(u_n^2+2u_n+1)}, \quad u_{n+1} = \frac{5u_n+2}{2u_n+1}$ $\frac{3u_n+2}{2u_n+1} + E_n,$ where $E_n = \frac{-u_n^3 + 2u_n^2}{(2u_n+1)[n^2(2u_n+1)(u_n^2+2u_n+1)+u_n^2-2u_n]}$. Clearly, $\lim_{n\to\infty} E_n = 0$. Therefore, $|u_{n+1} - (1+\sqrt{2})| \leq \frac{3-2\sqrt{2}}{2u_n+1}|u_n - (1+\sqrt{2})| + E_n$, for $n = 1, 2, 3, ...$ Now, by applying limit superior on both sides, we have $\limsup |u_{n+1} - (1 + \sqrt{2})| \le \frac{3-2\sqrt{2}}{3} \limsup |u_n - (1 + \sqrt{2})|$, which implies that $\limsup |u_n - (1 + \sqrt{2})| \le 0$, so that $\lim_{n \to \infty} u_n = 1 + \sqrt{2}$.

By applying comparison test, it is easy to see that the following cases do not arise.

Case (vi): $\sum_{n=0}^{\infty} \alpha_n < \infty$, $\sum_{n=0}^{\infty}$ $\sum_{n=0}^{\infty} \beta_n < \infty$ and $\sum_{n=0}^{\infty} \alpha_n \beta_n = \infty$.

Case (vii):
$$
\sum_{n=0}^{\infty} \alpha_n = \infty
$$
, $\sum_{n=0}^{\infty} \beta_n < \infty$ and $\sum_{n=0}^{\infty} \alpha_n \beta_n = \infty$.

Case (viii): $\sum_{n=0}^{\infty} \alpha_n < \infty$, $\sum_{n=0}^{\infty}$ $\sum_{n=0}^{\infty} \beta_n = \infty$ and $\sum_{n=0}^{\infty} \alpha_n \beta_n = \infty$.

Hence, by considering all the above cases, we conclude that the convergence of Picard S-iteration procedure is independent of the choices of $\{\alpha_n\}$ and $\{\beta_n\}$ for contractive-like operators.

REMARK 2.4. Theorem [2.1](#page-2-1) and Example [2.3](#page-2-2) suggest that the conditions $\sum_{n=0}^{\infty} \alpha_n \beta_n = \infty$ and $\lim_{n \to \infty} \alpha_n = 0$ are redundant in Theorem [1.2.](#page-1-2)

G.V.R. Babu, G. Satyanarayana 117

THEOREM 2.5. Let K be a nonempty closed convex subset of an arbitrary Banach space X and $T : K \to K$ be a contractive-like operator. Suppose that $F(T) \neq \emptyset$. Let $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ be arbitrary sequences in [0, 1]. Then the Picard S-iteration procedure (4) is T-stable.

Proof. Since T has a unique fixed point in K, we let it be p. Let $\{y_n\}_{n=0}^{\infty}$ be an arbitrary sequence in K and $\epsilon_n = ||y_{n+1}-f(T, y_n)||$ where $f(T, y_n) = T((1-\alpha_n)T y_n +$ $\alpha_n T t_n$), $t_n = (1 - \beta_n) y_n + \beta_n T y_n$ for $n = 0, 1, 2, \dots$.

First we prove that

$$
|| f(T, y_n) - p|| \le \delta^2 ||y_n - p|| \text{ for } n = 0, 1, 2 \dots
$$
 (6)

We consider

$$
||f(T, y_n) - p|| = ||T((1 - \alpha_n)Ty_n + \alpha_n Tt_n) - Tp||
$$

\n
$$
\leq \delta ||(1 - \alpha_n)Ty_n + \alpha_n Tt_n - Tp|| + \varphi(||p - Tp||)
$$

\n
$$
\leq \delta [(1 - \alpha_n) ||Ty_n - Tp|| + \alpha_n ||Tt_n - Tp||]
$$

\n
$$
\leq \delta^2 [(1 - \alpha_n) ||y_n - p|| + \alpha_n ||t_n - p||] + \delta \varphi(||p - Tp||).
$$

Hence,

$$
||f(T, y_n) - p|| \le \delta^2 [(1 - \alpha_n) ||y_n - p|| + \alpha_n ||t_n - p||]. \tag{7}
$$

Now, since

$$
||t_n - p|| = ||(1 - \beta_n)y_n + \beta_n Ty_n - p|| \le (1 - \beta_n) ||y_n - p|| + \beta_n ||Ty_n - Tp||
$$

\n(2)
\n
$$
\le (1 - \beta_n) ||y_n - p|| + \beta_n \delta ||y_n - p|| + \beta_n \varphi(||p - Tp||)
$$

\n
$$
\le (1 - \beta_n (1 - \delta)) ||y_n - p|| \le ||y_n - p||,
$$

we have

$$
||t_n - p|| \le ||y_n - p||. \tag{8}
$$

Therefore from [\(7\)](#page-6-1) and [\(8\)](#page-6-2), it follows that [\(6\)](#page-6-3) holds.

We assume that $\lim_{n \to \infty} \epsilon_n = 0$ and consider

$$
\|y_{n+1} - p\| \le \|y_{n+1} - f(T, y_n)\| + \|f(T, y_n) - p\| \le \epsilon_n + \delta^2 \|y_n - p\|.
$$

By applying Lemma [1.3,](#page-1-1) we have $\lim_{n\to\infty} y_n = p$.

Conversely, we assume that $\lim_{n\to\infty} y_n = p$ and consider

 $\epsilon_n = ||y_{n+1} - f(T, y_n)|| \le ||y_{n+1} - p|| + ||f(T, y_n) - p||.$

It follows from [\(6\)](#page-6-3) that $\epsilon_n \leq ||y_{n+1} - p|| + \delta^2 ||y_n - p||$, for $n = 0, 1, 2, \ldots$, so that $\lim_{n\to\infty}\epsilon_n=0.$

Thus the Picard S-iteration procedure is T-stable. \square

Acknowledgement. The authors are thankful to the referee for his/her careful reading and valuable suggestions which improved the presentation of the paper.

REFERENCES

[1] V. Berinde, *Iterative approximation of fixed points*, Springer-Verlag Berlin Heidelberg, New York, 2007.

- [2] F. Gürsoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, arXiv:1403.2546vl [math.FA] (2014), 16 pages.
- [3] A. M. Harder, T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japon., 33(5) (1988), 693–706.
- [4] C. O. Imoru, M. O. Olatinwo, On the stability of Picard and Mann iteration processes, Carpathian J. Math., 19(2) (2003), 155–160.
- [5] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Mah. Soc., 44(1) (1974), 147–150.
- [6] Liu Qihou, A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings, J. Math. Anal. Appl., **146** (1990), 301-305.
- [7] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(3) (1953), 506–510.
- [8] M. O. Olatinwo, Some strong convergence results for Mann and Ishikawa iterative processes in Banach spaces, Bull. Math. Anal. Appl., 2(4) (2010), 152–158.
- [9] M. O. Olatinwo, M. Postolache, Some stability and convergence results for Picard, Mann, Ishikawa and Jungck type iterative algorithms for Akram-Zafar-Siddiqui type contraction map*pings*, Nonlinear Anal. Forum, $21(1)$ (2016), 65–75.
- [10] M. O. Osilike, Some stability results for fixed point iteration procedures, J. Nigerian Math. Soc., 14/15 (1995), 17–29.
- [11] M. O. Osilike, A. Udomene, Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings, Indian J. Pure Appl. Math., $30(12)$ (1999), 1229– 1234.
- [12] B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures, Indian J. Pure Appl. Math., 21(1) (1990), 1–9.
- [13] B. E. Rhoades, Some fixed point iteration procedures, Internat. J. Math. Math. Sci., 14(1) (1991), 1–16.
- [14] B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures, II, Indian J. Pure Appl. Math., 24(11) (1993), 691–703.
- [15] Zeana Z. Jamil, Buthainah A. A. Ahmed, Convergence and data dependence result for Picard S-Iterative scheme using contractive-like operators, American Review of Mathematics and Statistics, 3(2) (2015), 83–86.

(received 13.10.2019; in revised form 11.06.2020; available online 28.03.2021)

Department of Mathematics, Andhra University, Visakhapatnam-530 003, India E-mail: gvr babu@hotmail.com

Department of Mathematics, Andhra University, Visakhapatnam-530 003, India

Department of Mathematics, Dr. Lankapalli Bullayya College, Visakhapatnam-530 013, India

E-mail: gedalasatyam@gmail.com