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NEW CONGRUENCES MODULO SMALL POWERS OF 2 FOR
OVERPARTITIONS INTO ODD PARTS

B. Hemanthkumar and S. Chandankumar

Abstract. In this article, we establish several infinite families of Ramanujan-type con-
gruences modulo 16, 32 and 64 for p,(n), the number of overpartitions of n in which only
odd parts are used.

1. Introduction

An overpartition of the nonnegative integer n is a partition of n where the first occur-
rence of parts of each size may be overlined. For example, there are 8 overpartitions
of the integer 3:
3, 3, 2+1, 241, 241, 241, 1+1+1, T+14+1.
We denote the number of overpartitions of n by p(n). The generating function of
p(n) is given by

S B = LD
n=0

(45 9)oo

1, for n = 0;
where (a;q)n = ﬁ(l —ag®1), forn>0

k=1

is g-shifted factorial, (a;q)ee = limy, _s00(a;q)n, lg| < 1 and let fi := (¢¥; ¢%)oo. Many
mathematicians have extensively studied overpartitions to obtain properties analogous
to ordinary partitions, see, for example [4-6,9].

In this context, we consider the number of overpartitions into odd parts. Let p,(n)
denote the number of such partitions. It is evident that
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142 Congruences for overpartitions into odd parts

The generating function of p,(n) appears in the following series-product identity of
Lebesque [§],

i (-50); 92 (~¢0%)e

= (¢:9); (4:¢%)o0

We assert that the sequence {p,(n)},>0 is known and can be seen in [11, A080054].
Hirschhorn and Sellers [7] considered p,(n) in arithmetic point of view and obtained
many congruences modulo 8 and 16 for p,(n), for example they proved that p,(2%(8n+
5)) =0 (mod 8) and

P,(8n+7)=0 (mod 16), (2)
for all nonnegative integers o and n, while Chen [3] showed that
o0 27 f3p14 11
> B,(16n + 14)¢" = 11252 + 2560272 = 48°2~  (mod 64). (3)
i fi i fi

n=0
which implies that p,(16n + 14) = 0 (mod 16). Using elementary theory of modular
forms, Chen [3] extented these congruences to modulo 32 and 64. In particular, Chen
showed the following theorem.

THEOREM 1.1. Let t be an integer, p =1 (mod 8) be a prime. Then for all integers
n with n # —% (mod p),

B, (0?7 (160 +14)) =0 (mod 32),
P, (p* 3 (16n +14)) =0 (mod 64).
Suppose that p1,p2 = 1 (mod 8) are two distinct primes. Then for all nonnegative

integers n satisfying n # —% (mod p1) andn £ —% (mod p2), D, (p1p2(16n+14)) =0
(mod 64).

Recently, C. Ray and R. Barman [10] obtained identities for p,(n) and as a con-
sequence derived many congruences modulo 8 and 16 for p,(n).

With this motivation, we prove several infinite families of congruences modulo 16,
32 and 64 for the partition function p,(n).

2. Congruences modulo small powers of 2 for p,(n)

Jacobi’s triple product identity can be stated in terms of the Ramanujan’s theta
function [1, p. 34] as follows:

(—a; ab) oo (—b; ab) oo (ab; ab) oo = Z a2 pr(n=D/2 5 gp) < 1, (4)

The following lemma plays a vital role in proving our main results.

LEMMA 2.1. The following 2-dissections hold:

o JofS
=T

fofTs
fs

_2q
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1 fs fifts
7R T )
10 f2 f4
f4 — 4 _ 4q 2J8 6
CRR YR 0
1 14 2 ¢4
and - = 13 1 +4q f41{)8 . (7)
fi 2 fs 2
Proof. Lemma 2.1 is an immediate consequence of dissection formulas of Ramanujan,
collected in Berndt’s book [1, Entry 25, p. 40]. O

The main results are the following.
THEOREM 2.2. For all integers n > 0 and « € {2,3,4,5},
Po(27"n) =7,(2°n)  (mod 2°72). (8)

THEOREM 2.3. Ifn cannot be represented as a sum of a triangular number and twice
a triangular number, then for any nonnegative integer o,

P,(2%(8n+3)) =0 (mod 32). (9)
COROLLARY 2.4. For any positive integer k, let p; > 3, 1 < j < k be primes. If
(—2/p;) = —1 for every j, then for all nonnegative integers o and n with py { n,
Po(2(8PTD5 - - i ypin + 3pEp5 - pi_1p7)) =0 (mod 32). (10)
THEOREM 2.5. For all integers a > 0 and n > 0,
P,(2%(8n+ 7)) =0 (mod 16). (11)

THEOREM 2.6. Let t > 0 be an integer and p = 1 (mod 8) be a prime. Then for all
nonnegative integers o and n with 8n % —7 (mod p),

Po(2°p* T (8n + 7)) =0 (mod 32),
Po(2°p**3(8n+ 7)) =0 (mod 64)
and Do(2%p1p2(8m + 7)) =0 (mod 64)

where p1,p2 = 1 (mod 8) are two distinct primes and m is any integer satisfying
8m #£ —7 (mod p1) and 8m #£ —7 (mod ps).

—_ —

Note that Theorem 1.1 is the special case of Theorem 2.6 for a =2 .

THEOREM 2.7. If n cannot be represented as a sum of a triangular number and four
times a triangular number, then for any nonnegative integer

P,(2%(8n+5)) =0 (mod 32). (12)
COROLLARY 2.8. For any positive integer k, let p; > 3, 1 < j < k be primes. If
(—4/p;) = —1 for every j, then for all nonnegative integers o and n with py { n,

Po(2%(80%03 -+ PR_1pkn + 5pip3 -+ pi_1pi)) =0 (mod 32).
By the binomial theorem, it is easy to see that for all positive integers k and m,

F2r = g2t (mod 2%). (13)

2m



144 Congruences for overpartitions into odd parts

Proof (Proof of Theorem 2.2). Consider the generating function (1),
S B = L2 (14
n=0 fl f4

Substituting (5) in (14) and extracting the terms involving even and odd powers of
q, we find that

_ 1
Do(2n)q"™ = 15
2o = (1)
_ n o f2f3
and > B2n+ )¢t =28 (16)
= fifa
Again, employing (5) in (15),
o fif3 f1f7%
Po(2n)q" = +2q :
2 T AT
. . - — n __ f2 f4
which yields Z Po(4n)q" = 55 (17)
n=0 fs
and > By(4n+2)¢" = f2 i . (18)
f1 fi
Employing (5) in (17) and extracting the terms involving even powers of g,
o f3 15 f3faf8
D,(8n)q" = + 12¢q . 19
2 To(E" = i 120 g 1
BB, A
By (6), - —4q . 20
7 (® 5 0 .
In view of (19) and (20), Zﬁo(8n)q" ff i + 16 13 f4f8 . (21)
1
From (17) and (21), Zpo (8n)q Zpo (4n)q™ + 164 f2f4f8.
n=0

o T 2 3. 12
Z a(n)q™ = f2£0f8 = qu ;i;fg (mod ).
n=0

Substituting (5) in the previous line and extracting the terms involving even powers

Let

of q,

> a(2n)g" f 2 Jfff & (mod 8).
n=0
Last three identities yield,

f:po(za“n)q" = if?o(T’n)q" + 20%2 13 JJ:UPS (mod 128) (22)
1
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for all integers a > 2. Congruence (8) follows from (22). O
Proof (Proof of Theorem 2. 3) Using (5), we can rewrite (16) as
fg fafsfis
Do(2n +1)¢" =2 +4q (23)
;) f3 faffs 5
f7
which yeilds Do(dn+ 1)g 24
Z f L2 f3 @)
and Zf)o(ém +3)¢" = f2f4f8 . (25)
Invoking (7) in (25) and extracting the terms 1nvolving odd and even powers of g,
> D,Bn+T7)g" = 16f2 fi_ = 1622 (mod 64). (26)
bEd f 1
e 15 f3f2 16 f3f2
and P, (8n43)¢" =42 =421 22— yc1ld (04 32). 27
2B 4 0" =i =T ey g (meds (D
From [2 Theorem 1.3.9, p. 14] ( ) and (27),
Zpo (8n + 3)q Z Z B2k 4+ 1)g 2 2+t (mod 32). (28)

k=0m=0
Substltutmg (5) and (7) in (18) and extracting the terms involving even and odd
powers of ¢,

o le L3 fafi 13
Do(8n +2)q" = + 164 (29)
Z f 1218 f
le?’fs i f2f4fs
and Do (8n+6)q 3 +38 =12 mod 32). 30
Z R eds 60
In view of (25) and (30), we see that
Do(8n+6) =3 P,(4n+3) (mod 32). (31)
Substituting (5) and (7) in (17) and extracting the terms involving odd powers of ¢,
o f2 °fE S
Do (8n +4)q +4 . 32
Z “i .
Employing (5) and (7) in (32) and extracting terms involving even and odd powers of g,
35 11 p11 25 f2 Fof 132
P, (16n+4)q" 5 +160g 52 +112¢°2 5 +2564° 8 (33)
,ZO = Oy 100+ 120 "
c- 53 3f4fs 3012 i’
and 7. (16n+12)g" = 12 1320q +5622 04 1 1984
nz:% o( ) f28f11 1 124 f116f8 f2
21 2
= 122 fol +56f2f8 (mod 64) (34)

4 fa
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_ 4t 2;4f & (mod 32). (35)
1
From (25) and (35),
p,(16n +12) = p,(4n +3) (mod 32). (36)
Employing (5) in (22) and extracting odd powers of g,
7
Z P,(2°7 (20 + 1)) Z Po(2%(2n +1))g" + 2212 ;3;42 (mod 128).  (37)
n=0 n=0 1/8

Again, extracting the terms involving even and odd powers of g from the last expression,

iﬁo@(’"'l(éln—i—l))q" Eiﬁo(ZaMn—l—l))q 4o0+2 1318 (mod 128)  (38)

n=0 n=0 fl fg
and Y p, (277 (4n+3))g" =) P, (2° (4nt3))g" 427+ fi f%, (mod 128)  (39)
n=0 n=0 174
for all & > 2. In view of (31), (36) and (39), we see that
P,(2%(4n +3)) =3° p,(4n + 3) (mod 32) (40)
foralla>0,n>0and g= {0 W @=L
0, otherwise.
Congruence (9) follows from (28) and (40). 4
Proof (Proof of Corollary 2. 4) By (28)
Zpo (8n +3)™ " = 42 Z B(2k + 1)gPRHDTH2EmEDT (104 32),
k=0m=0

Wthh 1mphes that if 8n+3 is not of the form (2k+1)242(2m+1)2, then p, (8 —|— 3)=0

(mod 32). Let k > 1 be an integer and let p; > 3, 1 <4 < k be primes with (> ) —1.
If N is of the form 2% + 2y?, then v, (N) is even since (p )=—1. Let
Pips - Diapi — 1
N=8<P?p§---pilpkn+3 = ) +3
= 8pip3 - Pi1Pkn + 3PTD3 - PP}

If p { n, then v,, (V) is an odd number and hence N is not of the form z? + 2y2.
Thus, Po(8P1P5 - - piypn + 3pip ... pE_1pk) =0 (mod 32). (41)
Congruence (10) follows from (41) and (40). U

Proof (Proof of Theorems 2.5 and 2.6). Applying (6) in (34) and extracting the terms
involving odd powers of ¢,

nZZOﬁO(SQn +28)¢" = 48 fjf‘* =16 ]fl (mod 64). (42)

From (39),
7,2 (8n + 7)) =p,(2%(8n + 7)) (mod 128) (43)
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for all @ > 2 and n > 0. In view of (26), (3), (42) and (43),
P,(2%(8n+17)) =3 5,(8n +7) (mod 64) (44)
for all @ > 0,n >0 and 8 = Lo a:.l’
0 otherwise.

Congruence (11) follows from (2) and (44). Theorem 2.6 follows from Theorem 1.1
and (44). O

Proof (Proof of Theorem 2.7). By employing (7) in (23) and extracting the terms
involving odd powers of ¢,

o0 9 £2 2
> B8 +5)¢" :8f21fl4 — g1 (mod 32). (45)
n=0 fl f2
Using (13) in (29),
0 4¢3 £3 2
> B,(8n+2)q" = hi fgf4 + 16472710 (mod 32). (46)
n=0 f8 f4
Using (6) in the last expression and extracting the terms involving odd powers of g,
o~ n_ 5p g2 his _ JhifE
> B,(16n+10)q" = —8f7 fofi + 16 i = 8 i (mod 32). (47)
2 2

n=0
. . o - fL13 18 f2f3 :
Using (13) in (33), 32,2 Po(16n + 4)¢" = 63" + 48¢=1¢ (mod 32). Extracting
8
coefficients of odd powers of ¢ from (38),

P,(2°TH(8n +5)) =7,(2%(8n +5)) (mod 64) (48)
for all @ > 2 and n > 0. From (45)- (48) it is evident that
7,(2%(8n +5)) =37 ,(8n +5) (mod 32) (49)
foralla > 0,n>0and 3= 0 if a:'l,
1 otherwise.
Furthermore,
ffg s 8. 8 4. 8 4. 8 16. 16
PE (4:07)(076%) 0 (07547 ) oo (=010 ) (@347 ) oo
= (:0%)o0(q"50") oo (—¢": 6%) oo (4% ¢"%) oo
> k(k+1)
= Z Z(_l)fk/ﬂq—z +2m(m+1)
k=0 m=0
Last equality follows from (4). Thus, congruence (12) follows from (45), (49) and the
last equality. O

Proof of Corollary 2.8 is similar to Corollary 2.4, so we skip the details.
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