МАТЕМАТІČКІ VESNIK МАТЕМАТИЧКИ ВЕСНИК 73, 2 (2021), 141–148 June 2021

research paper оригинални научни рад

NEW CONGRUENCES MODULO SMALL POWERS OF 2 FOR OVERPARTITIONS INTO ODD PARTS

B. Hemanthkumar and S. Chandankumar

Abstract. In this article, we establish several infinite families of Ramanujan-type congruences modulo 16, 32 and 64 for $\bar{p}_o(n)$, the number of overpartitions of n in which only odd parts are used.

1. Introduction

An overpartition of the nonnegative integer n is a partition of n where the first occurrence of parts of each size may be overlined. For example, there are 8 overpartitions of the integer 3:

 $3, \quad \overline{3}, \quad 2+1, \quad \overline{2}+1, \quad 2+\overline{1}, \quad \overline{2}+\overline{1}, \quad 1+1+1, \quad \overline{1}+1+1.$

We denote the number of overpartitions of n by $\overline{p}(n)$. The generating function of $\overline{p}(n)$ is given by

$$\sum_{n=0}^{\infty} \overline{p}(n)q^n = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}},$$
$$(a;q)_n = \begin{cases} 1, & \text{for } n = 0;\\ \prod_{k=1}^n (1 - aq^{k-1}), & \text{for } n > 0 \end{cases}$$

where

is q-shifted factorial, $(a;q)_{\infty} = \lim_{n \to \infty} (a;q)_n$, |q| < 1 and let $f_k := (q^k;q^k)_{\infty}$. Many mathematicians have extensively studied overpartitions to obtain properties analogous to ordinary partitions, see, for example [4–6,9].

In this context, we consider the number of overpartitions into odd parts. Let $\overline{p}_o(n)$ denote the number of such partitions. It is evident that

$$\sum_{n=0}^{\infty} \overline{p}_o(n) q^n = \frac{(-q;q^2)_{\infty}}{(q;q^2)_{\infty}} = \frac{f_2^3}{f_1^2 f_4}.$$
 (1)

2020 Mathematics Subject Classification: 05A17, 11P83

Keywords and phrases: Partition; overpartition; congruence.

The generating function of $\overline{p}_o(n)$ appears in the following series-product identity of Lebesque [8],

$$\sum_{j=0}^{\infty} \frac{(-1;q)_j q^{j(j+1)/2}}{(q;q)_j} = \frac{(-q;q^2)_{\infty}}{(q;q^2)_{\infty}}.$$

We assert that the sequence $\{\overline{p}_o(n)\}_{n\geq 0}$ is known and can be seen in [11, A080054]. Hirschhorn and Sellers [7] considered $\overline{p}_o(n)$ in arithmetic point of view and obtained many congruences modulo 8 and 16 for $\overline{p}_o(n)$, for example they proved that $\overline{p}_o(2^{\alpha}(8n+5)) \equiv 0 \pmod{8}$ and

$$\overline{p}_o(8n+7) \equiv 0 \pmod{16},\tag{2}$$

for all nonnegative integers α and n, while Chen [3] showed that

142

$$\sum_{n=0}^{\infty} \overline{p}_o(16n+14)q^n = 112\frac{f_2^{27}}{f_1^{25}f_4^2} + 256q\frac{f_2^3f_4^{14}}{f_1^{17}} \equiv 48\frac{f_2^{11}}{f_1} \pmod{64}.$$
(3)

which implies that $\overline{p}_o(16n + 14) \equiv 0 \pmod{16}$. Using elementary theory of modular forms, Chen [3] extented these congruences to modulo 32 and 64. In particular, Chen showed the following theorem.

THEOREM 1.1. Let t be an integer, $p \equiv 1 \pmod{8}$ be a prime. Then for all integers n with $n \not\equiv -\frac{7}{8} \pmod{p}$,

$$\overline{p}_o(p^{2t+1}(16n+14)) \equiv 0 \pmod{32},$$

$$\overline{p}_o(p^{4t+3}(16n+14)) \equiv 0 \pmod{64}.$$

Suppose that $p_1, p_2 \equiv 1 \pmod{8}$ are two distinct primes. Then for all nonnegative integers n satisfying $n \not\equiv -\frac{7}{8} \pmod{p_1}$ and $n \not\equiv -\frac{7}{8} \pmod{p_2}$, $\overline{p}_o(p_1p_2(16n+14)) \equiv 0 \pmod{64}$.

Recently, C. Ray and R. Barman [10] obtained identities for $\overline{p}_o(n)$ and as a consequence derived many congruences modulo 8 and 16 for $\overline{p}_o(n)$.

With this motivation, we prove several infinite families of congruences modulo 16, 32 and 64 for the partition function $\overline{p}_o(n)$.

2. Congruences modulo small powers of 2 for $\overline{p}_o(n)$

Jacobi's triple product identity can be stated in terms of the Ramanujan's theta function [1, p. 34] as follows:

$$(-a;ab)_{\infty}(-b;ab)_{\infty}(ab;ab)_{\infty} = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}, \quad |ab| < 1.$$
(4)

The following lemma plays a vital role in proving our main results.

LEMMA 2.1. The following 2-dissections hold:

$$f_1^2 = \frac{f_2 f_8^5}{f_4^2 f_{16}^2} - 2q \frac{f_2 f_{16}^2}{f_8},$$

B. Hemanthkumar, S. Chandankumar

$$\frac{1}{f_1^2} = \frac{f_8^2}{f_2^5 f_{16}^2} + 2q \frac{f_4^2 f_{16}^2}{f_2^5 f_8},\tag{5}$$

$$f_1^4 = \frac{f_4^{10}}{f_2^2 f_8^4} - 4q \frac{f_2^2 f_8^4}{f_4^2} \tag{6}$$

and

$$\frac{1}{f_1^4} = \frac{f_4^{14}}{f_2^{14}f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}}.$$
(7)

Proof. Lemma 2.1 is an immediate consequence of dissection formulas of Ramanujan, collected in Berndt's book [1, Entry 25, p. 40]. \Box

The main results are the following.

THEOREM 2.2. For all integers
$$n \ge 0$$
 and $\alpha \in \{2, 3, 4, 5\},$
$$\overline{p}_o(2^{\alpha+1}n) \equiv \overline{p}_o(2^{\alpha}n) \pmod{2^{\alpha+2}}.$$
(8)

THEOREM 2.3. If n cannot be represented as a sum of a triangular number and twice a triangular number, then for any nonnegative integer α ,

$$\overline{p}_o(2^\alpha(8n+3)) \equiv 0 \pmod{32}.$$
(9)

COROLLARY 2.4. For any positive integer k, let $p_j \ge 3$, $1 \le j \le k$ be primes. If $(-2/p_j) = -1$ for every j, then for all nonnegative integers α and n with $p_k \nmid n$,

$$\overline{p}_o(2^{\alpha}(8p_1^2p_2^2\cdots p_{k-1}^2p_kn + 3p_1^2p_2^2\cdots p_{k-1}^2p_k^2)) \equiv 0 \pmod{32}.$$
(10)

THEOREM 2.5. For all integers $\alpha \ge 0$ and $n \ge 0$,

$$\bar{p}_o(2^{\alpha}(8n+7)) \equiv 0 \pmod{16}.$$
 (11)

THEOREM 2.6. Let $t \ge 0$ be an integer and $p \equiv 1 \pmod{8}$ be a prime. Then for all nonnegative integers α and n with $8n \not\equiv -7 \pmod{p}$,

$$\begin{aligned} \overline{p}_o(2^{\alpha}p^{2t+1}(8n+7)) &\equiv 0 \pmod{32}, \\ \overline{p}_o(2^{\alpha}p^{4t+3}(8n+7)) &\equiv 0 \pmod{64} \\ \overline{p}_o(2^{\alpha}p_1p_2(8m+7)) &\equiv 0 \pmod{64} \end{aligned}$$

and

where $p_1, p_2 \equiv 1 \pmod{8}$ are two distinct primes and m is any integer satisfying $8m \not\equiv -7 \pmod{p_1}$ and $8m \not\equiv -7 \pmod{p_2}$.

Note that Theorem 1.1 is the special case of Theorem 2.6 for $\alpha=2$.

THEOREM 2.7. If n cannot be represented as a sum of a triangular number and four times a triangular number, then for any nonnegative integer α ,

$$\overline{p}_o(2^\alpha(8n+5)) \equiv 0 \pmod{32}.$$
(12)

COROLLARY 2.8. For any positive integer k, let $p_j \ge 3$, $1 \le j \le k$ be primes. If $(-4/p_j) = -1$ for every j, then for all nonnegative integers α and n with $p_k \nmid n$, $\overline{n} (2^{\alpha}(8n^2n^2 \dots n^2 \dots n^2 \dots n^2 \dots n^2 \dots n^2 \dots n^2)) = 0 \pmod{32}$

$$p_o(2^{-}(8p_1^-p_2^-\cdots p_{k-1}^-p_kn + 5p_1^-p_2^-\cdots p_{k-1}^-p_k^-)) \equiv 0 \pmod{32}.$$

By the binomial theorem, it is easy to see that for all positive integers k and m,

$$f_m^{2^k} \equiv f_{2m}^{2^{k-1}} \pmod{2^k}.$$
 (13)

Proof (Proof of Theorem 2.2). Consider the generating function (1),

$$\sum_{n=0}^{\infty} \overline{p}_o(n) q^n = \frac{f_2^3}{f_1^2 f_4}.$$
(14)

Substituting (5) in (14) and extracting the terms involving even and odd powers of q, we find that

$$\sum_{n=0} \overline{p}_o(2n)q^n = \frac{f_4^5}{f_1^2 f_2 f_8^2} \tag{15}$$

and

$$\sum_{n=0} \overline{p}_o(2n+1)q^n = 2\frac{f_2 f_8^2}{f_1^2 f_4}.$$
(16)

Again, employing (5) in (15),

$$\sum_{n=0}^{\infty} \overline{p}_{o}(2n)q^{n} = \frac{f_{4}^{5}f_{8}^{3}}{f_{2}^{6}f_{16}^{2}} + 2q\frac{f_{1}^{7}f_{16}^{2}}{f_{2}^{6}f_{8}^{3}},$$
$$\sum_{n=0}^{\infty} \overline{p}_{o}(4n)q^{n} = \frac{f_{2}^{5}f_{4}^{3}}{f_{1}^{6}f_{8}^{2}}$$
(17)

which yields

and

$$\sum_{n=0}^{\infty} \overline{p}_o(4n+2)q^n = 2\frac{f_2^7 f_8^2}{f_1^6 f_4^3}.$$
(18)

Employing (5) in (17) and extracting the terms involving even powers of q,

$$\sum_{n=0}^{\infty} \overline{p}_o(8n)q^n = \frac{f_2^3 f_4^{13}}{f_1^{10} f_8^6} + 12q \frac{f_2^7 f_4 f_8^2}{f_1^{10}}.$$
(19)

By (6),
$$\frac{f_2^5 f_4^3}{f_1^6 f_8^2} = \frac{f_2^3 f_4^{13}}{f_1^{10} f_8^6} - 4q \frac{f_2^7 f_4 f_8^2}{f_1^{10}}.$$
 (20)

In view of (19) and (20),
$$\sum_{n=0}^{\infty} \overline{p}_o(8n)q^n = \frac{f_2^5 f_4^3}{f_1^6 f_8^2} + 16q \frac{f_2^7 f_4 f_8^2}{f_1^{10}}.$$
 (21)

From (17) and (21),
$$\sum_{n=0}^{\infty} \overline{p}_o(8n)q^n = \sum_{n=0}^{\infty} \overline{p}_o(4n)q^n + 16q \frac{f_2^7 f_4 f_8^2}{f_1^{10}}.$$

Let
$$\sum_{n=0}^{\infty} a(n)q^n = q \frac{f_2^7 f_4 f_8^2}{f_1^{10}} \equiv q \frac{f_2^3 f_4 f_8^2}{f_1^2} \pmod{8}.$$

Substituting (5) in the previous line and extracting the terms involving even powers of q,

$$\sum_{n=0}^{\infty} a(2n)q^n \equiv 2q \frac{f_2^3 f_4 f_8^2}{f_1^2} \pmod{8}.$$

Last three identities yield,

$$\sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha+1}n)q^n \equiv \sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha}n)q^n + 2^{\alpha+2}q \frac{f_2^3 f_4 f_8^2}{f_1^2} \pmod{128}$$
(22)

B. Hemanthkumar, S. Chandankumar 145

for all integers $\alpha \geq 2$. Congruence (8) follows from (22). P

Proof (Proof of Theorem 2.3). Using
$$(5)$$
, we can rewrite (16) as

$$\sum_{n=0}^{\infty} \overline{p}_o(2n+1)q^n = 2\frac{f_8^7}{f_2^4 f_4 f_{16}^2} + 4q \frac{f_4 f_8 f_{16}^2}{f_2^4} \tag{23}$$

which yeilds

$$\sum_{n=0} \overline{p}_o(4n+1)q^n = 2\frac{J_4}{f_1^4 f_2 f_8^2}$$
(24)

and

$$\sum_{n=0}^{\infty} \overline{p}_o(4n+3)q^n = 4\frac{f_2 f_4 f_8^2}{f_1^4}.$$
(25)

Invoking (7) in (25) and extracting the terms involving odd and even powers of q,

$$\sum_{n=0}^{\infty} \overline{p}_o(8n+7)q^n = 16\frac{f_2^3 f_4^6}{f_1^9} \equiv 16\frac{f_2^{11}}{f_1} \pmod{64}.$$
(26)

and
$$\sum_{n=0}^{\infty} \overline{p}_o(8n+3)q^n = 4\frac{f_2^{15}}{f_1^{13}f_4^2} = 4\frac{f_1^3f_4^2}{f_2}\frac{f_2^{16}}{f_1^{16}f_4^4} \equiv 4\frac{f_1^3f_4^2}{f_2} \pmod{32}.$$
 (27)

From [2, Theorem 1.3.9, p.14], (4) and (27),

$$\sum_{n=0}^{\infty} \overline{p}_o(8n+3)q^n = \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} (-1)^k (2k+1)q^{\frac{k(k+1)}{2} + m(m+1)} \pmod{32}.$$
(28)

Substituting (5) and (7) in (18) and extracting the terms involving even and odd powers of q,

$$\sum_{n=0}^{\infty} \overline{p}_o(8n+2)q^n = 2\frac{f_2^{11}f_3^4}{f_1^{12}f_8^2} + 16q\frac{f_2f_4^5f_8^2}{f_1^8}$$
(29)

and
$$\sum_{n=0}^{\infty} \overline{p}_o(8n+6)q^n = 4\frac{f_2^{13}f_8^2}{f_1^{12}f_4^3} + 8\frac{f_4^{11}}{f_1^8f_8^2f_2} \equiv 12\frac{f_2f_4f_8^2}{f_1^4} \pmod{32}. \tag{30}$$

In view of (25) and (30), we see that

$$\overline{p}_o(8n+6) \equiv 3 \ \overline{p}_o(4n+3) \pmod{32}. \tag{31}$$

Substituting (5) and (7) in (17) and extracting the terms involving odd powers of q,

$$\sum_{n=0}^{\infty} \overline{p}_o(8n+4)q^n = 2\frac{f_2^{19}f_8^2}{f_1^{14}f_4^7} + 4\frac{f_2^5f_4^7}{f_1^{10}f_8^2}.$$
(32)

Employing (5) and (7) in (32) and extracting terms involving even and odd powers of q,

$$\sum_{n=0}^{\infty} \overline{p}_o(16n+4)q^n = 6\frac{f_2^{35}}{f_1^{28}f_4^5f_8^2} + 160q\frac{f_2^{11}f_4^{11}}{f_1^{20}f_8^2} + 112q\frac{f_2^{25}f_8^2}{f_1^{24}f_4^3} + 256q^2\frac{f_2f_4^{13}f_8^2}{f_1^{16}}$$
(33)

and
$$\sum_{n=0}^{\infty} \overline{p}_{o}(16n+12)q^{n} = 12 \frac{f_{2}^{37} f_{8}^{2}}{f_{1}^{28} f_{4}^{11}} + 320q \frac{f_{2}^{13} f_{4}^{5} f_{8}^{2}}{f_{1}^{20}} + 56 \frac{f_{2}^{23} f_{4}^{3}}{f_{1}^{24} f_{8}^{2}} + 128q \frac{f_{4}^{19}}{f_{1}^{16} f_{8}^{2} f_{2}}$$
$$\equiv 12 \frac{f_{2}^{21} f_{8}^{2} f_{4}^{1}}{f_{4}^{11}} + 56 \frac{f_{2}^{3} f_{8}^{2}}{f_{4}} \pmod{64}$$
(34)

$$\equiv 4 \frac{f_2 f_4 f_8^2}{f_1^4} \pmod{32}.$$
 (35)

From (25) and (35),

 $\overline{p}_o(16n+12) \equiv \overline{p}_o(4n+3) \pmod{32}.$ (36) Employing (5) in (22) and extracting odd powers of q,

$$\sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha+1}(2n+1))q^n \equiv \sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha}(2n+1))q^n + 2^{\alpha+2}\frac{f_2f_4^7}{f_1^2f_8^2} \pmod{128}.$$
(37)

Again, extracting the terms involving even and odd powers of q from the last expression,

$$\sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha+1}(4n+1))q^n \equiv \sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha}(4n+1))q^n + 2^{\alpha+2} \frac{f_2^7 f_4^3}{f_1^4 f_8^2} \pmod{128}$$
(38)

and
$$\sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha+1}(4n+3))q^n \equiv \sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha}(4n+3))q^n + 2^{\alpha+3}\frac{f_2^9 f_8^2}{f_1^4 f_4^3} \pmod{128}$$
(39)

for all $\alpha \geq 2$. In view of (31), (36) and (39), we see that

 $\overline{p}_o(2^{\alpha}(4n+3)) \equiv 3^{\beta} \ \overline{p}_o(4n+3) \pmod{32}$ (40)

for all
$$\alpha > 0, n \ge 0$$
 and $\beta = \begin{cases} 1, & \text{if } \alpha = 1; \\ 0, & \text{otherwise.} \end{cases}$
Congruence (9) follows from (28) and (40).

Proof (Proof of Corollary 2.4). By (28)

$$\sum_{n=0}^{\infty} \overline{p}_o(8n+3)q^{8n+3} \equiv 4\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} (-1)^k (2k+1)q^{(2k+1)^2+2(2m+1)^2} \pmod{32},$$

which implies that if 8n+3 is not of the form $(2k+1)^2+2(2m+1)^2$, then $\overline{p}_o(8n+3) \equiv 0 \pmod{32}$. Let $k \geq 1$ be an integer and let $p_i \geq 3$, $1 \leq i \leq k$ be primes with $\left(\frac{-2}{p_i}\right) = -1$. If N is of the form $x^2 + 2y^2$, then $v_{p_i}(N)$ is even since $\left(\frac{-2}{p_i}\right) = -1$. Let

$$N = 8\left(p_1^2 p_2^2 \cdots p_{k-1}^2 p_k n + 3 \frac{p_1^2 p_2^2 \cdots p_{k-1}^2 p_k^2 - 1}{8}\right) + 3$$
$$= 8p_1^2 p_2^2 \cdots p_{k-1}^2 p_k n + 3p_1^2 p_2^2 \cdots p_{k-1}^2 p_k^2.$$

If $p_k \nmid n$, then $v_{p_k}(N)$ is an odd number and hence N is not of the form $x^2 + 2y^2$. Thus, $\overline{p}_o(8p_1^2p_2^2\dots p_{k-1}^2p_kn + 3p_1^2p_2^2\dots p_{k-1}^2p_k^2) \equiv 0 \pmod{32}$. (41) Congruence (10) follows from (41) and (40).

Proof (Proof of Theorems 2.5 and 2.6). Applying (6) in (34) and extracting the terms involving odd powers of q,

$$\sum_{n=0}^{\infty} \overline{p}_o(32n+28)q^n \equiv -48 \frac{f_1^{23} f_4^6}{f_2^{13}} \equiv 16 \frac{f_2^{11}}{f_1} \pmod{64}.$$
 (42)

From (39),

$$\overline{p}_o(2^{\alpha+1}(8n+7)) \equiv \overline{p}_o(2^{\alpha}(8n+7)) \pmod{128}$$
(43)

B. Hemanthkumar, S. Chandankumar 147

for all $\alpha \ge 2$ and $n \ge 0$. In view of (26), (3), (42) and (43), $\overline{p}_o(2^{\alpha}(8n+7)) \equiv 3^{\beta} \ \overline{p}_o(8n+7) \pmod{64}$ (44)

for all $\alpha > 0, n \ge 0$ and $\beta = \begin{cases} 1 & \text{if } \alpha = 1, \\ 0 & \text{otherwise.} \end{cases}$

Congruence (11) follows from (2) and (44). Theorem 2.6 follows from Theorem 1.1 and (44). $\hfill \Box$

Proof (Proof of Theorem 2.7). By employing (7) in (23) and extracting the terms involving odd powers of q,

$$\sum_{n=0}^{\infty} \overline{p}_o(8n+5)q^n = 8\frac{f_2^9 f_4^2}{f_1^{11}} \equiv 8\frac{f_1 f_8^2}{f_2} \pmod{32}.$$
(45)

Using (13) in (29),

$$\sum_{n=0}^{\infty} \overline{p}_o(8n+2)q^n \equiv 2\frac{f_1^4 f_2^3 f_4^3}{f_8^2} + 16q\frac{f_2 f_{16}^2}{f_4} \pmod{32}. \tag{46}$$

Using (6) in the last expression and extracting the terms involving odd powers of q,

$$\sum_{n=0}^{\infty} \overline{p}_o(16n+10)q^n \equiv -8f_1^5 f_2 f_4^2 + 16\frac{f_1 f_8^2}{f_2} \equiv 8\frac{f_1 f_8^2}{f_2} \pmod{32}. \tag{47}$$

Using (13) in (33), $\sum_{n=0}^{\infty} \overline{p}_o(16n+4)q^n \equiv 6\frac{f_1^4 f_2^3 f_4^3}{f_8^2} + 48q \frac{f_2 f_{16}^2}{f_4} \pmod{32}$. Extracting coefficients of odd powers of q from (38),

$$\overline{p}_o(2^{\alpha+1}(8n+5)) \equiv \overline{p}_o(2^{\alpha}(8n+5)) \pmod{64}$$
 (48)

for all $\alpha \ge 2$ and $n \ge 0$. From (45)- (48) it is evident that $\overline{p}_o(2^{\alpha}(8n+5)) \equiv 3^{\beta} \ \overline{p}_o(8n+5) \pmod{32}$ (49)

for all $\alpha > 0, n \ge 0$ and $\beta = \begin{cases} 0 & \text{if } \alpha = 1, \\ 1 & \text{otherwise.} \end{cases}$

Furthermore,

$$\begin{split} \frac{f_1 f_8^2}{f_2} &= (q;q^2)_\infty (q^8;q^8)_\infty (q^4;q^8)_\infty (-q^4;q^8)_\infty (q^{16};q^{16})_\infty \\ &= (q;q^2)_\infty (q^4;q^4)_\infty (-q^4;q^8)_\infty (q^{16};q^{16})_\infty \\ &= \sum_{k=0}^\infty \sum_{m=0}^\infty (-1)^{\lceil k/2\rceil} q^{\frac{k(k+1)}{2}+2m(m+1)}. \end{split}$$

Last equality follows from (4). Thus, congruence (12) follows from (45), (49) and the last equality. \Box

Proof of Corollary 2.8 is similar to Corollary 2.4, so we skip the details.

References

[1] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, 1991.

- [2] B. C. Berndt, Number Theory in the Spirit of Ramanujan, Student Mathematical Library, AMS, 2006.
- [3] S. C. Chen, On the number of overpartitions into odd parts, Discrete Math., 325 (2014), 32–37.
- [4] S. Corteel, J. Lovejoy, *Overpartitions*, Trans. Amer. Math. Soc., **356** (2004), 1623–1635.
- [5] M. D. Hirschhorn, J. A. Sellers, An infinite family of overpartition congruences modulo 12, Integers, 5 (2005), #A20.
- [6] M. D. Hirschhorn, J. A. Sellers, Arithmetic relations for overpartitions, J. Combin. Math. Combin. Comput., 53 (2005), 65–73.
- [7] M. D. Hirschhorn, J. A. Sellers, Arithmetic properties of overpartitions into odd parts, Ann. Comb., 10 (2006), 353–367.
- [8] V. A. Lebesgue, Sommation de quelques séries, J. Math. Pure. Appl., 5 (1840), 42-71.
- [9] K. Mahlburg, The overpartition function modulo small powers of 2, Discrete Math., 286 (2014), 263–267.
- [10] C. Ray, R. Barman, New congruences for overpartitions into odd parts, Integers, 18 (2018), #A50.
- [11] M. Somos, The on-line encyclopedia of integer sequences, published electronically at http:// oeis.org.

(received 21.02.2020; in revised form 08.06.2020; available online 17.12.2020)

Department of Mathematics, M. S. Ramaiah University of Applied Sciences, Peenya Campus, Peenya 4th Phase, Bengaluru-560 058, Karnataka, India

E-mail: hemanthkumarb.30@gmail.com

Department of Mathematics, M. S. Ramaiah University of Applied Sciences, Peenya Campus, Peenya 4th Phase, Bengaluru-560 058, Karnataka, India

E-mail: chandan.s17@gmail.com