MATEMATIČKI VESNIK МАТЕМАТИЧКИ ВЕСНИК 73, 2 (2021), [141–](#page-0-0)[148](#page-7-0) June 2021

research paper оригинални научни рад

NEW CONGRUENCES MODULO SMALL POWERS OF 2 FOR OVERPARTITIONS INTO ODD PARTS

B. Hemanthkumar and S. Chandankumar

Abstract. In this article, we establish several infinite families of Ramanujan-type congruences modulo 16, 32 and 64 for $\bar{p}_{o}(n)$, the number of overpartitions of n in which only odd parts are used.

1. Introduction

An overpartition of the nonnegative integer n is a partition of n where the first occurrence of parts of each size may be overlined. For example, there are 8 overpartitions of the integer 3:

3, $\overline{3}$, $\overline{2}$ + 1, $\overline{2}$ + 1, $\overline{2}$ + $\overline{1}$, $\overline{2}$ + $\overline{1}$, $\overline{1}$ + 1 + 1, $\overline{1}$ + 1 + 1.

We denote the number of overpartitions of n by $\bar{p}(n)$. The generating function of $\overline{p}(n)$ is given by

$$
\sum_{n=0}^{\infty} \overline{p}(n)q^n = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}},
$$

$$
(a;q)_n = \begin{cases} 1, & \text{for } n = 0; \\ \prod_{k=1}^n (1 - aq^{k-1}), & \text{for } n > 0 \end{cases}
$$

where

is q-shifted factorial, $(a;q)_{\infty} = \lim_{n \to \infty} (a;q)_n$, $|q| < 1$ and let $f_k := (q^k; q^k)_{\infty}$. Many mathematicians have extensively studied overpartitions to obtain properties analogous to ordinary partitions, see, for example [\[4–](#page-7-1)[6,](#page-7-2) [9\]](#page-7-3).

In this context, we consider the number of overpartitions into odd parts. Let $\bar{p}_o(n)$ denote the number of such partitions. It is evident that

$$
\sum_{n=0}^{\infty} \overline{p}_o(n) q^n = \frac{(-q; q^2)_{\infty}}{(q; q^2)_{\infty}} = \frac{f_2^3}{f_1^2 f_4}.
$$
\n(1)

2020 Mathematics Subject Classification: 05A17, 11P83

Keywords and phrases: Partition; overpartition; congruence.

The generating function of $\bar{p}_{o}(n)$ appears in the following series-product identity of Lebesque [\[8\]](#page-7-4),

$$
\sum_{j=0}^{\infty} \frac{(-1;q)_j q^{j(j+1)/2}}{(q;q)_j} = \frac{(-q;q^2)_{\infty}}{(q;q^2)_{\infty}}.
$$

We assert that the sequence $\{\bar{p}_o(n)\}_{n\geq 0}$ is known and can be seen in [\[11,](#page-7-5) A080054]. Hirschhorn and Sellers [\[7\]](#page-7-6) considered $\bar{p}_{o}(n)$ in arithmetic point of view and obtained many congruences modulo 8 and 16 for $\bar{p}_o(n)$, for example they proved that $\bar{p}_o(2^{\alpha}(8n+$ (5)) $\equiv 0 \pmod{8}$ and

$$
\overline{p}_o(8n+7) \equiv 0 \pmod{16},\tag{2}
$$

for all nonnegative integers α and n, while Chen [\[3\]](#page-7-7) showed that

$$
\sum_{n=0}^{\infty} \overline{p}_o(16n+14)q^n = 112 \frac{f_2^{27}}{f_1^{25}f_4^2} + 256q \frac{f_2^3 f_4^{14}}{f_1^{17}} \equiv 48 \frac{f_2^{11}}{f_1} \pmod{64}.
$$
 (3)

which implies that $\bar{p}_o(16n + 14) \equiv 0 \pmod{16}$. Using elementary theory of modular forms, Chen [\[3\]](#page-7-7) extented these congruences to modulo 32 and 64. In particular, Chen showed the following theorem.

THEOREM 1.1. Let t be an integer, $p \equiv 1 \pmod{8}$ be a prime. Then for all integers $n \text{ with } n \not\equiv -\frac{7}{8} \pmod{p},$

$$
\overline{p}_o(p^{2t+1}(16n+14)) \equiv 0 \pmod{32},
$$

$$
\overline{p}_o(p^{4t+3}(16n+14)) \equiv 0 \pmod{64}.
$$

Suppose that $p_1, p_2 \equiv 1 \pmod{8}$ are two distinct primes. Then for all nonnegative integers n satisfying $n \not\equiv -\frac{7}{8} \pmod{p_1}$ and $n \not\equiv -\frac{7}{8} \pmod{p_2}$, $\overline{p}_o(p_1p_2(16n+14)) \equiv 0$ (mod 64).

Recently, C. Ray and R. Barman [\[10\]](#page-7-8) obtained identities for $\bar{p}_o(n)$ and as a consequence derived many congruences modulo 8 and 16 for $\bar{p}_{o}(n)$.

With this motivation, we prove several infinite families of congruences modulo 16, 32 and 64 for the partition function $\bar{p}_o(n)$.

2. Congruences modulo small powers of 2 for $\bar{p}_o(n)$

Jacobi's triple product identity can be stated in terms of the Ramanujan's theta function $[1, p. 34]$ $[1, p. 34]$ as follows:

$$
(-a; ab)_{\infty}(-b; ab)_{\infty}(ab; ab)_{\infty} = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}, \quad |ab| < 1.
$$
 (4)

The following lemma plays a vital role in proving our main results.

Lemma 2.1. The following 2-dissections hold:

$$
f_1^2 = \frac{f_2 f_8^5}{f_4^2 f_{16}^2} - 2q \frac{f_2 f_{16}^2}{f_8},
$$

B. Hemanthkumar, S. Chandankumar 143

$$
\frac{1}{f_1^2} = \frac{f_8^5}{f_2^5 f_{16}^2} + 2q \frac{f_4^2 f_{16}^2}{f_2^5 f_8},\tag{5}
$$

$$
f_1^4 = \frac{f_4^{10}}{f_2^2 f_8^4} - 4q \frac{f_2^2 f_8^4}{f_4^2} \tag{6}
$$

and $\frac{1}{\epsilon}$

$$
\frac{1}{f_1^4} = \frac{f_4^{14}}{f_2^{14}f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}}.\tag{7}
$$

Proof. Lemma [2.1](#page-1-0) is an immediate consequence of dissection formulas of Ramanujan, collected in Berndt's book [\[1,](#page-6-0) Entry 25, p. 40]. \Box

The main results are the following.

THEOREM 2.2. For all integers
$$
n \ge 0
$$
 and $\alpha \in \{2, 3, 4, 5\}$,
\n
$$
\overline{p}_o(2^{\alpha+1}n) \equiv \overline{p}_o(2^{\alpha}n) \pmod{2^{\alpha+2}}.
$$
\n(8)

THEOREM 2.3. If n cannot be represented as a sum of a triangular number and twice a triangular number, then for any nonnegative integer α ,

$$
\overline{p}_o(2^{\alpha}(8n+3)) \equiv 0 \pmod{32}.
$$
\n(9)

COROLLARY 2.4. For any positive integer k, let $p_j \geq 3$, $1 \leq j \leq k$ be primes. If $(-2/p_j) = -1$ for every j, then for all nonnegative integers α and n with $p_k \nmid n$,

$$
\overline{p}_o(2^{\alpha}(8p_1^2p_2^2 \cdots p_{k-1}^2p_kn + 3p_1^2p_2^2 \cdots p_{k-1}^2p_k^2)) \equiv 0 \pmod{32}.
$$
\nTHEOREM 2.5. For all integers $\alpha \geq 0$ and $n \geq 0$,

$$
\overline{p}_o(2^{\alpha}(8n+7)) \equiv 0 \pmod{16}.
$$
 (11)

THEOREM 2.6. Let $t \geq 0$ be an integer and $p \equiv 1 \pmod{8}$ be a prime. Then for all nonnegative integers α and n with $8n \not\equiv -7 \pmod{p}$,

$$
\overline{p}_o(2^{\alpha}p^{2t+1}(8n+7)) \equiv 0 \pmod{32},
$$

\n
$$
\overline{p}_o(2^{\alpha}p^{4t+3}(8n+7)) \equiv 0 \pmod{64}
$$

\n
$$
\overline{p}_o(2^{\alpha}p_1p_2(8m+7)) \equiv 0 \pmod{64}
$$

and

where $p_1, p_2 \equiv 1 \pmod{8}$ are two distinct primes and m is any integer satisfying $8m \not\equiv -7 \pmod{p_1}$ and $8m \not\equiv -7 \pmod{p_2}$.

Note that Theorem [1.1](#page-1-1) is the special case of Theorem [2.6](#page-2-0) for $\alpha = 2$.

THEOREM 2.7. If n cannot be represented as a sum of a triangular number and four times a triangular number, then for any nonnegative integer α ,

$$
\overline{p}_o(2^{\alpha}(8n+5)) \equiv 0 \pmod{32}.
$$
\n(12)

COROLLARY 2.8. For any positive integer k, let $p_j \geq 3$, $1 \leq j \leq k$ be primes. If $(-4/p_j) = -1$ for every j, then for all nonnegative integers α and n with $p_k \nmid n$,

$$
\overline{p}_o(2^{\alpha}(8p_1^2p_2^2\cdots p_{k-1}^2p_kn+5p_1^2p_2^2\cdots p_{k-1}^2p_k^2))\equiv 0\pmod{32}.
$$

By the binomial theorem, it is easy to see that for all positive integers k and m ,

$$
f_m^{2^k} \equiv f_{2m}^{2^{k-1}} \pmod{2^k}.
$$
 (13)

Proof (Proof of Theorem [2.2\)](#page-2-1). Consider the generating function (1) ,

$$
\sum_{n=0}^{\infty} \overline{p}_o(n) q^n = \frac{f_2^3}{f_1^2 f_4}.
$$
\n(14)

Substituting [\(5\)](#page-2-2) in [\(14\)](#page-3-0) and extracting the terms involving even and odd powers of q, we find that

$$
\sum_{n=0} \overline{p}_o(2n)q^n = \frac{f_4^5}{f_1^2 f_2 f_8^2} \tag{15}
$$

and

$$
\sum_{n=0} \overline{p}_o(2n+1)q^n = 2\frac{f_2f_8^2}{f_1^2f_4}.
$$
\n(16)

Again, employing [\(5\)](#page-2-2) in [\(15\)](#page-3-1),

$$
\sum_{n=0}^{\infty} \overline{p}_o(2n)q^n = \frac{f_4^5 f_8^3}{f_2^6 f_{16}^2} + 2q \frac{f_4^7 f_{16}^2}{f_2^6 f_8^3},
$$

$$
\sum_{n=0}^{\infty} \overline{p}_o(4n)q^n = \frac{f_2^5 f_4^3}{f_1^6 f_8^2}
$$
 (17)

which yields

and
$$
\sum_{n=0}^{\infty} \overline{p}_o(4n+2)q^n = 2\frac{f_2^7 f_8^2}{f_1^6 f_4^3}.
$$
 (18)

Employing (5) in (17) and extracting the terms involving even powers of q,

$$
\sum_{n=0}^{\infty} \overline{p}_o(8n)q^n = \frac{f_2^3 f_4^{13}}{f_1^{10} f_8^6} + 12q \frac{f_2^7 f_4 f_8^2}{f_1^{10}}.
$$
\n(19)

By (6),
$$
\frac{f_2^5 f_4^3}{f_1^6 f_8^2} = \frac{f_2^3 f_4^{13}}{f_1^{10} f_8^6} - 4q \frac{f_2^7 f_4 f_8^2}{f_1^{10}}.
$$
 (20)

In view of (19) and (20),
$$
\sum_{n=0}^{\infty} \overline{p}_o(8n)q^n = \frac{f_2^5 f_4^3}{f_1^6 f_8^2} + 16q \frac{f_2^7 f_4 f_8^2}{f_1^{10}}.
$$
 (21)

From (17) and (21),
$$
\sum_{n=0}^{\infty} \overline{p}_o(8n)q^n = \sum_{n=0}^{\infty} \overline{p}_o(4n)q^n + 16q \frac{f_2^7 f_4 f_8^2}{f_1^{10}}.
$$
Let
$$
\sum_{n=0}^{\infty} a(n)q^n = q \frac{f_2^5 f_4 f_8^2}{f_1^{10}} = q \frac{f_2^3 f_4 f_8^2}{f_1^2}
$$
 (mod 8).

Substituting [\(5\)](#page-2-2) in the previous line and extracting the terms involving even powers of q ,

$$
\sum_{n=0}^{\infty} a(2n)q^n \equiv 2q \frac{f_2^3 f_4 f_8^2}{f_1^2} \pmod{8}.
$$

Last three identities yield,

$$
\sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha+1}n)q^n \equiv \sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha}n)q^n + 2^{\alpha+2}q \frac{f_2^3 f_4 f_8^2}{f_1^2} \pmod{128}
$$
 (22)

B. Hemanthkumar, S. Chandankumar 145

for all integers $\alpha \geq 2$. Congruence [\(8\)](#page-2-4) follows from [\(22\)](#page-3-6). *Proof* (Proof of Theorem [2.3\)](#page-2-5). Using (5) , we can rewrite (16) as

$$
\sum_{n=0}^{\infty} \overline{p}_o(2n+1)q^n = 2\frac{f_8^7}{f_2^4 f_4 f_{16}^2} + 4q \frac{f_4 f_8 f_{16}^2}{f_2^4}
$$
(23)

which yeilds

$$
\sum_{n=0}^{\infty} \overline{p}_o(4n+1)q^n = 2\frac{f_4^7}{f_1^4 f_2 f_8^2}
$$
 (24)

and
$$
\sum_{n=0}^{\infty} \overline{p}_o(4n+3)q^n = 4 \frac{f_2 f_4 f_8^2}{f_1^4}.
$$
 (25)

Invoking (7) in (25) and extracting the terms involving odd and even powers of q ,

$$
\sum_{n=0}^{\infty} \overline{p}_o(8n+7)q^n = 16 \frac{f_2^3 f_4^6}{f_1^9} \equiv 16 \frac{f_2^{11}}{f_1} \pmod{64}.
$$
 (26)

and
$$
\sum_{n=0}^{\infty} \overline{p}_o(8n+3)q^n = 4 \frac{f_2^{15}}{f_1^{13} f_4^2} = 4 \frac{f_1^3 f_4^2}{f_2} \frac{f_2^{16}}{f_1^{16} f_4^4} \equiv 4 \frac{f_1^3 f_4^2}{f_2}
$$
 (mod 32). (27)

From [\[2,](#page-7-9) Theorem 1.3.9, p.14], [\(4\)](#page-1-2) and [\(27\)](#page-4-1),

$$
\sum_{n=0}^{\infty} \overline{p}_o(8n+3)q^n = \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} (-1)^k (2k+1)q^{\frac{k(k+1)}{2}+m(m+1)} \pmod{32}.
$$
 (28)

Substituting [\(5\)](#page-2-2) and [\(7\)](#page-2-6) in [\(18\)](#page-3-8) and extracting the terms involving even and odd powers of q,

$$
\sum_{n=0}^{\infty} \overline{p}_o(8n+2)q^n = 2\frac{f_2^{11}f_4^3}{f_1^{12}f_8^2} + 16q\frac{f_2f_4^5f_8^2}{f_1^8}
$$
\n(29)

and
$$
\sum_{n=0}^{\infty} \overline{p}_o(8n+6)q^n = 4 \frac{f_2^{13} f_8^2}{f_1^{12} f_4^3} + 8 \frac{f_4^{11}}{f_1^8 f_8^2 f_2} \equiv 12 \frac{f_2 f_4 f_8^2}{f_1^4} \pmod{32}.
$$
 (30)

In view of (25) and (30) , we see that

$$
\overline{p}_o(8n+6) \equiv 3 \overline{p}_o(4n+3) \pmod{32}.
$$
\n(31)

Substituting (5) and (7) in (17) and extracting the terms involving odd powers of q,

$$
\sum_{n=0}^{\infty} \overline{p}_o(8n+4)q^n = 2\frac{f_2^{19}f_8^2}{f_1^{14}f_4^7} + 4\frac{f_2^5f_4^7}{f_1^{10}f_8^2}.
$$
\n(32)

Employing (5) and (7) in (32) and extracting terms involving even and odd powers of q,

$$
\sum_{n=0}^{\infty} \overline{p}_o(16n+4)q^n = 6 \frac{f_2^{35}}{f_1^{28} f_4^{5} f_8^{2}} + 160q \frac{f_2^{11} f_4^{11}}{f_1^{20} f_8^{2}} + 112q \frac{f_2^{25} f_8^{2}}{f_1^{24} f_4^{3}} + 256q^2 \frac{f_2 f_4^{13} f_8^{2}}{f_1^{16}}
$$
(33)

and
$$
\sum_{n=0}^{\infty} \overline{p}_o(16n+12)q^n = 12 \frac{f_2^{37} f_8^2}{f_1^{28} f_4^{11}} + 320q \frac{f_2^{13} f_4^5 f_8^2}{f_1^{20}} + 56 \frac{f_2^{23} f_4^3}{f_1^{24} f_8^{2}} + 128q \frac{f_4^{19}}{f_1^{16} f_8^{2} f_2}
$$

$$
\equiv 12 \frac{f_2^{21} f_8^2 f_4^4}{f_4^{11}} + 56 \frac{f_2^{3} f_8^2}{f_4} \pmod{64}
$$
(34)

$$
\equiv 4 \frac{f_2 f_4 f_8^2}{f_1^4} \pmod{32}.
$$
 (35)

From [\(25\)](#page-4-0) and [\(35\)](#page-5-0),

 $\bar{p}_o(16n+12) \equiv \bar{p}_o(4n+3) \pmod{32}.$ (36) Employing (5) in (22) and extracting odd powers of q,

$$
\sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha+1}(2n+1))q^n \equiv \sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha}(2n+1))q^n + 2^{\alpha+2}\frac{f_2f_4^7}{f_1^2f_8^2} \pmod{128}.
$$
 (37)

Again, extracting the terms involving even and odd powers of q from the last expression,

$$
\sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha+1}(4n+1))q^n \equiv \sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha}(4n+1))q^n + 2^{\alpha+2} \frac{f_2^7 f_4^3}{f_1^4 f_8^2} \pmod{128} \tag{38}
$$

and
$$
\sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha+1}(4n+3))q^n \equiv \sum_{n=0}^{\infty} \overline{p}_o(2^{\alpha}(4n+3))q^n + 2^{\alpha+3}\frac{f_2^9 f_8^2}{f_1^4 f_4^3}
$$
 (mod 128) (39)

for all $\alpha \geq 2$. In view of [\(31\)](#page-4-4), [\(36\)](#page-5-1) and [\(39\)](#page-5-2), we see that

 $\bar{p}_o(2^{\alpha}(4n+3)) \equiv 3^{\beta} \bar{p}_o(4n+3) \pmod{32}$ (40)

for all
$$
\alpha > 0, n \ge 0
$$
 and $\beta = \begin{cases} 1, & \text{if } \alpha = 1; \\ 0, & \text{otherwise.} \end{cases}$
Congruence (9) follows from (28) and (40).

Proof (Proof of Corollary [2.4\)](#page-2-8). By [\(28\)](#page-4-5)

$$
\sum_{n=0}^{\infty} \overline{p}_o(8n+3)q^{8n+3} \equiv 4 \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} (-1)^k (2k+1)q^{(2k+1)^2 + 2(2m+1)^2} \pmod{32},
$$

which implies that if $8n+3$ is not of the form $(2k+1)^2+2(2m+1)^2$, then $\overline{p}_o(8n+3) \equiv 0$ (mod 32). Let $k \ge 1$ be an integer and let $p_i \ge 3$, $1 \le i \le k$ be primes with $\left(\frac{-2}{p_i}\right) = -1$. If N is of the form $x^2 + 2y^2$, then $v_{p_i}(N)$ is even since $\left(\frac{-2}{p_i}\right) = -1$. Let

$$
N = 8\left(p_1^2p_2^2\cdots p_{k-1}^2p_kn + 3\frac{p_1^2p_2^2\cdots p_{k-1}^2p_k^2 - 1}{8}\right) + 3
$$

= $8p_1^2p_2^2\cdots p_{k-1}^2p_kn + 3p_1^2p_2^2\cdots p_{k-1}^2p_k^2$.

If $p_k \nmid n$, then $v_{p_k}(N)$ is an odd number and hence N is not of the form $x^2 + 2y^2$. Thus, $(8p_1^2p_2^2 \tildes p_{k-1}^2p_kn + 3p_1^2p_2^2 \tildes p_{k-1}^2p_k^2) \equiv 0 \pmod{32}.$ (41) Congruence [\(10\)](#page-2-9) follows from [\(41\)](#page-5-4) and [\(40\)](#page-5-3). \Box

Proof (Proof of Theorems [2.5](#page-2-10) and [2.6\)](#page-2-0). Applying [\(6\)](#page-2-3) in [\(34\)](#page-4-6) and extracting the terms involving odd powers of q,

$$
\sum_{n=0}^{\infty} \overline{p}_o(32n+28)q^n \equiv -48 \frac{f_1^{23} f_4^6}{f_2^{13}} \equiv 16 \frac{f_2^{11}}{f_1} \pmod{64}.
$$
 (42)

From [\(39\)](#page-5-2),

$$
\overline{p}_o(2^{a+1}(8n+7)) \equiv \overline{p}_o(2^{\alpha}(8n+7)) \pmod{128}
$$
\n(43)

for all $\alpha \ge 2$ and $n \ge 0$. In view of [\(26\)](#page-4-7), [\(3\)](#page-1-3), [\(42\)](#page-5-5) and [\(43\)](#page-5-6),

$$
\overline{p}_o(2^{\alpha}(8n+7)) \equiv 3^{\beta} \ \overline{p}_o(8n+7) \pmod{64} \tag{44}
$$

for all $\alpha > 0, n \geq 0$ and $\beta =$ $\int 1$ if $\alpha = 1$, 0 otherwise.

Congruence [\(11\)](#page-2-11) follows from [\(2\)](#page-1-4) and [\(44\)](#page-6-1). Theorem [2.6](#page-2-0) follows from Theorem [1.1](#page-1-1) and (44) .

Proof (Proof of Theorem [2.7\)](#page-2-12). By employing [\(7\)](#page-2-6) in [\(23\)](#page-4-8) and extracting the terms involving odd powers of q,

$$
\sum_{n=0}^{\infty} \overline{p}_o(8n+5)q^n = 8\frac{f_2^9 f_4^2}{f_1^{11}} \equiv 8\frac{f_1 f_8^2}{f_2} \pmod{32}.
$$
 (45)

Using (13) in (29) ,

$$
\sum_{n=0}^{\infty} \overline{p}_o(8n+2)q^n \equiv 2\frac{f_1^4 f_2^3 f_4^3}{f_8^2} + 16q \frac{f_2 f_{16}^2}{f_4} \pmod{32}.
$$
 (46)

Using (6) in the last expression and extracting the terms involving odd powers of q,

$$
\sum_{n=0}^{\infty} \overline{p}_o(16n+10)q^n \equiv -8f_1^5f_2f_4^2 + 16\frac{f_1f_8^2}{f_2} \equiv 8\frac{f_1f_8^2}{f_2} \pmod{32}.
$$
 (47)

Using [\(13\)](#page-2-13) in [\(33\)](#page-4-10), $\sum_{n=0}^{\infty} \bar{p}_o(16n+4)q^n \equiv 6 \frac{f_1^4 f_2^3 f_3^3}{f_5^2} + 48q \frac{f_2 f_{16}^2}{f_4} \pmod{32}$. Extracting coefficients of odd powers of q from (38) ,

$$
\overline{p}_o(2^{\alpha+1}(8n+5)) \equiv \overline{p}_o(2^{\alpha}(8n+5)) \pmod{64} \tag{48}
$$

for all $\alpha \geq 2$ and $n \geq 0$. From [\(45\)](#page-6-2)- [\(48\)](#page-6-3) it is evident that $\bar{p}_o(2^{\alpha}(8n+5)) \equiv 3^{\beta} \bar{p}_o(8n+5) \pmod{32}$ (49)

for all $\alpha > 0, n \geq 0$ and $\beta =$ $\int 0$ if $\alpha = 1$, 1 otherwise.

Furthermore,

$$
\frac{f_1 f_8^2}{f_2} = (q; q^2)_{\infty} (q^8; q^8)_{\infty} (q^4; q^8)_{\infty} (-q^4; q^8)_{\infty} (q^{16}; q^{16})_{\infty}
$$

= $(q; q^2)_{\infty} (q^4; q^4)_{\infty} (-q^4; q^8)_{\infty} (q^{16}; q^{16})_{\infty}$
=
$$
\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} (-1)^{\lceil k/2 \rceil} q^{\frac{k(k+1)}{2} + 2m(m+1)}.
$$

Last equality follows from [\(4\)](#page-1-2). Thus, congruence [\(12\)](#page-2-14) follows from [\(45\)](#page-6-2), [\(49\)](#page-6-4) and the \Box last equality.

Proof of Corollary [2.8](#page-2-15) is similar to Corollary [2.4,](#page-2-8) so we skip the details.

REFERENCES

[1] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, 1991.

- [2] B. C. Berndt, Number Theory in the Spirit of Ramanujan, Student Mathematical Library, AMS, 2006.
- [3] S. C. Chen, On the number of overpartitions into odd parts, Discrete Math., 325 (2014), 32–37.
- [4] S. Corteel, J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc., 356 (2004), 1623–1635.
- [5] M. D. Hirschhorn, J. A. Sellers, An infinite family of overpartition congruences modulo 12, Integers, 5 (2005), #A20.
- [6] M. D. Hirschhorn, J. A. Sellers, Arithmetic relations for overpartitions, J. Combin. Math. Combin. Comput., 53 (2005), 65–73.
- [7] M. D. Hirschhorn, J. A. Sellers, Arithmetic properties of overpartitions into odd parts, Ann. Comb., 10 (2006), 353–367.
- [8] V. A. Lebesgue, Sommation de quelques séries, J. Math. Pure. Appl., 5 (1840), 42–71.
- [9] K. Mahlburg, The overpartition function modulo small powers of 2, Discrete Math., 286 (2014), 263–267.
- [10] C. Ray, R. Barman, New congruences for overpartitions into odd parts, Integers, 18 (2018), #A50.
- [11] M. Somos, The on-line encyclopedia of integer sequences, published electronically at http:// oeis.org.

(received 21.02.2020; in revised form 08.06.2020; available online 17.12.2020)

Department of Mathematics, M. S. Ramaiah University of Applied Sciences, Peenya Campus, Peenya 4th Phase, Bengaluru-560 058, Karnataka, India

E-mail: hemanthkumarb.30@gmail.com

Department of Mathematics, M. S. Ramaiah University of Applied Sciences, Peenya Campus, Peenya 4th Phase, Bengaluru-560 058, Karnataka, India

E-mail: chandan.s17@gmail.com