MATEMATIČKI VESNIK MATEMATИЧКИ ВЕСНИК 73, 3 (2021), 174–182 September 2021

research paper оригинални научни рад

ON WEAKLY STRETCH RANDERS METRICS

Akbar Tayebi, Asma Ghasemi and Mehdi Sabzevari

Abstract. The class of weakly stretch Finsler metrics contains the class of stretch metric. Randers metrics are important Finsler metrics which are defined as the sum of a Riemann metric and a 1-form. In this paper, we prove that every Randers metric with closed and conformal one-form is a weakly stretch metric if and only if it is a Berwald metric.

1. Introduction

In [5], L. Berwald introduced the non-Riemannian curvature, so-called stretch curvature as a natural extension of Landsberg curvature. He denoted it by Σ and proved that $\Sigma = 0$ if and only if the length of a vector remains unchanged under the parallel displacement along an infinitesimal parallelogram. A Finsler metric is said to be stretch metric if $\Sigma = 0$. Then Matsumoto investigated the class of stretch metrics with scalar flag curvature [8]. In [12], Shibata showed that every stretch metric of non-zero scalar flag curvature is a Riemannian metric of constant sectional curvature. In [13], he proved that a Kropina metric $F = \alpha^2/\beta$ has vanishing stretch curvature if and only if it is a Berwald metric. Bácsó-Matsumoto showed that a Douglas metric on a manifold of dimension $n \geq 3$ is R-quadratic if and only if it is a stretch metric with horizontally constant mean Berwald curvature [3]. In [9], Najafi-Bidabad-Tayebi proved that every R-quadratic Finsler metric is a stretch metric.

In 1941, Randers published a paper concerned with an asymmetric metric in the four-space of general relativity. His metric is in the form $F = \alpha + \beta$, where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is gravitation field and $\beta = b_i(x)y^i$ is the electromagnetic field. He regarded these metrics not as Finsler metrics but as "affinely connected Riemannian metrics". This metric was first recognized as a kind of Finsler metric in 1957 by Ingarden, who first named them Randers metrics. In [22], Tayebi-Tabatabeifar showed that a Randers metric $F = \alpha + \beta$ with closed one-form β is a stretch metric if and only if it is a Berwald metric. In [21], Tayebi-Sadeghi characterized the stretch (α, β) -metrics of non-Randers type with vanishing S-curvature. In [4], Bácsó-Szilasi showed

 $^{2020\} Mathematics\ Subject\ Classification:\ 53B40,\ 53C60.$

Keywords and phrases: Weakly stretch metric; Berwald metric; Randers metric.

that if the stretch tensor of a Finsler metric depends only on the position, then it vanishes identically. Recently, Tayebi-Najafi proved that a homogeneous (α, β) -metric is a stretch metric if and only if it is a Berwald metric [18].

Taking the trace with respect to \mathbf{g}_y in first and second variables of Σ_y gives rise to the mean stretch curvature $\bar{\Sigma}_y$. A Finsler metric is said to be weakly stretch metric if $\bar{\Sigma} = 0$. In [10], Najafi-Tayebi showed that every compact weakly stretch manifold is a weakly Landsberg manifold. Then, they proved a rigidity theorem stating that every compact weakly stretch manifold with negative flag curvature reduces to a Riemannian manifold. In [16], Tayebi-Izadian studied a square metrics $F = \alpha + 2\beta + \beta^2/\alpha$ with vanishing Douglas curvature. They showed that F is a weakly stretch metric if and only if it reduces to a Berwald metric.

By definition, we have the following

 $\{Berwald metrics\} \subseteq \{R-quadratic metrics\}$

 \subseteq {Stretch metrics} \subseteq {Weakly stretch metrics}.

In [7], Li-Shen found the necessary and sufficient condition under which a Randers metric is R-quadratic. It follows that a weakly stretch Randers metric is not a Berwald metric, in general. Najafi-Tayebi showed that every generalized Berwald Randers metric is a weakly stretch metric if and only if it is a Berwald metric [10]. A Finsler manifold (M, F) is called a generalized Berwald manifold if there exists a covariant derivative ∇ on M such that the parallel translations induced by ∇ preserve the Finsler function F. If the covariant derivative ∇ is also torsion-free, then (M, F)is called a Berwald manifold. It is interesting to find some curvature properties conditions under which a weakly stretch Randers metric reduces to a Berwald metric. Then, we prove the following.

THEOREM 1.1. Let $F = \alpha + \beta$ be a Randers metric on a manifold M and β a closed and conformal 1-form with respect to α . Then F is a weakly stretch metric if and only if it is a Berwald metric.

Theorem 1.1 is a generalization of [22, Theorem 1.1] which indicated that a Randers metric with closed 1-form and vanishing stretch curvature is a Berwald metric.

In Theorem 1.1, the condition on 1-form is necessary. See the following examples.

EXAMPLE 1.2 ([7]). Let |.| and \langle, \rangle denote the Euclidean norm and the inner product in \mathbb{R}^n , respectively. Consider the following Randers metric defined nearby the origin in \mathbb{R}^n

$$F := \frac{\sqrt{|y|^2 - (|xQ|^2|y|^2 - \langle y, xQ\rangle^2)}}{1 - |xQ|^2} - \frac{\langle y, xQ\rangle}{1 - |xQ|^2},$$

where $Q = (q_j^i)$ is an anti-symmetric matrix. F is a weakly stretch metric but it is not a Berwald metric when $Q \neq 0$.

EXAMPLE 1.3. Let us consider the well-known Shen's fish tank metric as follows. Let $X = (x, y, z) \in \mathbb{B}^3(1) \subset \mathbb{R}^3$ and $Y = (u, v, w) \in T_x \mathbb{B}^3(1)$. Put

$$F = \frac{\sqrt{(-yu+xv)^2 + (u^2 + v^2 + w^2)(1 - x^2 - y^2)}}{1 - x^2 - y^2} + \frac{xv - yu}{1 - x^2 - y^2}$$

The Shen's fish tank metric F is a weakly stretch metric which is not a Berwald metric [11].

There are many Riemannian metrics with nontrivial closed and conformal 1-forms. See the following.

EXAMPLE 1.4 ([23]). The Riemmannian metric $\alpha = e^{\rho} \sqrt{|y|^2 - \kappa \langle x, y \rangle^2}$ has closed and conformal 1-form expressed as $\beta = c\sqrt{1-\kappa |x|^2}e^{2\rho} \langle x, y \rangle$, where $\kappa = \kappa (|x|^2)$ and $\rho = \rho(|x|^2)$ are two arbitrary functions such that $1 - \kappa |x|^2 > 0$.

Every Randers metric $F = \alpha + \beta$ is a Douglas metric if and only if the 1-form β is a closed 1-form [2]. Then by Theorem 1.1, we get the following.

COROLLARY 1.5. Let $F = \alpha + \beta$ be a Randers metric on a manifold M and β conformal 1-form with respect to α . Then F is a weakly stretch metric with vanishing Douglas curvature if and only if it is a Berwald metric.

2. Preliminaries

Let M be an n-dimensional C^{∞} manifold. Denote by $T_x M$ the tangent space at $x \in M$, and by $TM = \bigcup_{x \in M} T_x M$ the tangent bundle of M. A Finsler metric on M is a function $F: TM \to [0, \infty)$ which has the following properties: (i) F is C^{∞} on $TM_0 := TM \setminus \{0\}$;

- (ii) F is positively 1-homogeneous on the fibers of tangent bundle TM;
- (iii) for each $y \in T_x M$, the following quadratic form \mathbf{g}_y on $T_x M$ is positive definite,

$$\mathbf{g}_{y}(u,v) := \frac{1}{2} \frac{\partial^{2}}{\partial s \partial t} \Big[F^{2}(y + su + tv) \Big]_{s,t=0}, \quad u,v \in T_{x}M.$$

Let $x \in M$ and $F_x := F|_{T_xM}$. To measure the non-Euclidean feature of F_x , define $\mathbf{C}_y : T_xM \times T_xM \times T_xM \to \mathbb{R}$ by

$$\mathbf{C}_y(u,v,w) := \frac{1}{2} \frac{d}{dt} \Big[\mathbf{g}_{y+tw}(u,v) \Big]_{t=0}, \quad u,v,w \in T_x M.$$

The family $\mathbf{C} := {\mathbf{C}_y}_{y \in TM_0}$ is called the Cartan torsion. It is well known that $\mathbf{C} = 0$ if and only if F is Riemannian. For $y \in T_x M_0$, define the mean Cartan torsion \mathbf{I}_y by $\mathbf{I}_y(u) := I_i(y)u^i$, where $I_i := g^{jk}C_{ijk}$. By Deicke Theorem, F is Riemannian if and only if $\mathbf{I}_y = 0$.

The horizontal covariant derivatives of **C** along geodesics give rise to the Landsberg curvature $\mathbf{L}_y : T_x M \times T_x M \times T_x M \to \mathbb{R}$ defined by $\mathbf{L}_y(u, v, w) := L_{ijk}(y)u^i v^j w^k$, where $L_{ijk} := C_{ijk|s}y^s$. The family $\mathbf{L} := {\mathbf{L}_y}_{y \in TM_0}$ is called the Landsberg curvature. A Finsler metric is called a Landsberg metric if $\mathbf{L=0}$.

The horizontal covariant derivatives of **I** along geodesics give rise to the mean Landsberg curvature $\mathbf{J}_y(u) := J_i(y)u^i$, where $J_i := g^{jk}L_{ijk} = I_{i|s}y^s$. A Finsler metric is said to be weakly Landsbergian if $\mathbf{J} = 0$ [15].

Define the stretch curvature $\Sigma_y : T_x M \times T_x M \times T_x M \times T_x M \to \mathbb{R}$ by $\Sigma_y(u, v, w, z) := \Sigma_{ijkl}(y) u^i v^j w^k z^l$, where $\Sigma_{ijkl} := 2(L_{ijk|l} - L_{ijl|k})$.

Here " | " denotes the horizontal derivation with respect to the Berwald connection of F. A Finsler metric is said to be stretch metric if $\Sigma = 0$ [5].

Taking an average on two first indices of the stretch curvature, we get a new non-Riemannian curvature, namely, mean stretch curvature. For $y \in T_x M_0$, define $\bar{\Sigma}_y : T_x M \times T_x M \to \mathbb{R}$ by $\bar{\Sigma}_y(u,v) := \bar{\Sigma}_{ij}(y) u^i v^j$, where $\bar{\Sigma}_{ij} := g^{kl} \Sigma_{klij}$.

A Finsler metric is said to be weakly stretch metric if $\bar{\Sigma} = 0$. Every Landsberg metric or stretch metric is a weakly stretch metric.

Given a Finsler manifold (M, F), a global vector field **G** is induced by F on TM_0 , which in a standard coordinate (x^i, y^i) for TM_0 is given by $\mathbf{G} = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i}$, where

$$G^{i}(x,y) := \frac{1}{4}g^{il} \Big\{ [F^{2}]_{x^{k}y^{l}} y^{k} - [F^{2}]_{x^{l}} \Big\}.$$

The vector field **G** is called the associated spray to (M, F).

For a tangent vector $y \in T_x M_0$, define $\mathbf{B}_y : T_x M \times T_x M \times T_x M \to T_x M$ and $\mathbf{E}_y : T_x M \times T_x M \to \mathbb{R}$ by $\mathbf{B}_y(u, v, w) := B^i_{jkl}(y) u^j v^k w^l \frac{\partial}{\partial x^i}|_x$ and $\mathbf{E}_y(u, v) := E_{jk}(y) u^j v^k$, where

$$B^{i}_{\ jkl} := \frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}}, \text{ and } E_{jk} := \frac{1}{2} B^{m}_{\ jkm}.$$

The non-Riemannian quantities **B** and **E** are called the Berwald curvature and mean Berwald curvature of F, respectively. F is a Berwald (resp. weakly Berwald) metric if it satisfies **B** = **0** (resp. **E** = **0**).

Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric, where $\phi = \phi(s)$ is a C^{∞} on $(-b_0, b_0)$ with certain regularity, $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on a manifold M. For an (α, β) -metric, let us define $b_{i|j}$ by $b_{i;j}\theta^j := db_i - b_j\theta_i^j$, where $\theta^i := dx^i$ and $\theta_i^j := \Gamma_{ik}^j dx^k$ denote the Levi-Civita connection form of α . Let

$$\begin{aligned} r_{ij} &:= \frac{1}{2} (b_{i;j} + b_{j;i}), \ s_{ij} := \frac{1}{2} (b_{i;j} - b_{j;i}), \ r_{i0} := r_{ij} y^j, \ r_{00} := r_{ij} y^i y^j, \ r_j := b^i r_{ij}, \\ s_{i0} &:= s_{ij} y^j, \ s_j := b^i s_{ij}, \ s^i{}_j = a^{im} s_{mj}, \ s^i{}_0 = s^i{}_j y^j, \ r_0 := r_j y^j, \ s_0 := s_j y^j. \end{aligned}$$

Put

$$Q := \frac{\phi'}{\phi - s\phi'}, \quad \Delta := 1 + sQ + (b^2 - s^2)Q', \quad \Theta := \frac{Q - sQ'}{2\Delta}$$
$$\Psi := \frac{Q'}{2\Delta} = \frac{\phi''}{2\left[(\phi - s\phi') + (b^2 - s^2)\phi''\right]},$$

where $b^2 := a^{ij}b_ib_j$. Let $G^i = G^i(x, y)$ and $G^i_{\alpha} = G^i_{\alpha}(x, y)$ denote the coefficients of F and α , respectively, in the same coordinate system. By definition, we have

$$G^i = G^i_\alpha + Py^i + Q^i, \tag{1}$$

where $P := \alpha^{-1} \Theta[r_{00} - 2\alpha Q s_0], Q^i := \alpha Q s^i_0 + \Psi[r_{00} - 2\alpha Q s_0] b^i$. Simplifying (1) yields the following

$$G^{i} = G^{i}_{\alpha} + \alpha Q s^{i}_{0} + (r_{00} - 2\alpha Q s_{0})(\alpha^{-1} \Theta y^{i} + \Psi b^{i}).$$
⁽²⁾

Clearly, if β is parallel with respect to α , that is $r_{ij} = 0$ and $s_{ij} = 0$, then P = 0 and

 $Q^i = 0$. In this case, $G^i = G^i_{\alpha}$ are quadratic in y and F reduces to a Berwald metric. β is conformal with respect to α if $r_{ij} = ca_{ij}$, where c = c(x) is a scalar function on M. Also, β is a closed 1-form if $s_{ij} = 0$. For more details, see [17, 19].

For an (α, β) -metric $F = \alpha \phi(s)$, the mean Landsberg curvature is given by

$$J_{j} = -\frac{1}{\Delta\alpha^{2}(b^{2} - s^{2})} \left[\frac{\Phi}{\Delta} + (n+1)(Q - sQ') \right] (r_{0} + s_{0})h_{i} - \frac{h_{i}}{2\alpha^{3}\Delta(b^{2} - s^{2})} \left(\psi_{1} + s\frac{\Phi}{\Delta} \right) \left(r_{00} - 2\alpha Qs_{0} \right) - \frac{\Phi}{2\alpha^{3}\Delta^{2}} \left[\alpha Q(\alpha^{2}s_{i} - s_{0}y_{i}) - \alpha Q's_{0}h_{i} + \alpha^{2}\Delta s_{i0} - \alpha^{2}(r_{i0} - 2\alpha Qs_{i}) - (r_{00} - 2\alpha Qs_{0})y_{i} \right],$$
(3)

where $\Phi := -(Q - sQ')(n\Delta + 1 + sQ) - (b^2 - s^2)(1 + sQ)Q'', \Psi_1 := \sqrt{b^2 - s^2}\Delta^{\frac{1}{2}} \left\lfloor \frac{\sqrt{b^2 - s^2}\Phi}{\Delta^{\frac{3}{2}}} \right\rfloor, h_i := \alpha b_i - sy_i.$

3. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. For this aim, we remark that the mean stretch curvature is given by following

$$\bar{\Sigma}_{ij} := g^{kl} \Sigma_{klij} = 2g^{kl} (L_{kli|j} - L_{klj|i}).$$

$$\tag{4}$$

For the Berwald connection, we have $g_{ij|k} = -2L_{ijk}$. Then, we get

$$(g^{ij})_{|k} = 2L^{ij}_{\ k}.$$
(5)

$$\stackrel{(5)}{\Longrightarrow} g^{kl}L_{kli|j} = J_{i|j} - 2L^{kl}_{\ j}L_{kli}.$$
(6)

$$\stackrel{(4),(6)}{\Longrightarrow} \quad \bar{\Sigma}_{ij} = 2(J_{i|j} - J_{j|i}). \tag{7}$$

By (7), F is a weakly stretch metric if and only if $J_{i|j} = J_{j|i}$.

LEMMA 3.1. Let $F = \alpha + \beta$ be a Randers metric on a manifold M and β a closed and conformal 1-form with respect to α . Suppose that F is a weakly stretch metric. Then the following hold

$$A_4 \alpha^4 + A_2 \alpha^2 + A_0 = 0, \tag{8}$$

$$A_5\alpha^4 + A_3\alpha^2 + A_1 = 0, (9)$$

where

$$\begin{split} A_0 &:= -2(n+1)r_{00;0}\beta^4 + (2n+1)r_{00}^2\beta^3, \\ A_1 &:= -8(n+1)r_{00;0}\beta^3 + (8n+5)r_{00}^2\beta^2, \\ A_2 &:= 4(n+1)r_{0;0}\beta^3 - 2(n+1)(5+b^2)r_{00;0}\beta^2 - (6n+4)r_0r_{00}\beta^2 + \left[6n+4+(4n+3)b^2\right]r_{00}^2\beta, \\ A_3 &:= 12(n+1)r_{0;0}\beta^2 - 4(n+1)(1+b^2)r_{00;0}\beta - 4(3n+2)r_0r_{00}\beta + (4n+3)b^2r_{00}^2, \\ A_4 &:= 12(n+1)r_{0;0}\beta - 2(n+1)b^2r_{00;0} - 2(3n+2)r_0r_{00}, \end{split}$$

 $A_5:=4(n{+}1)r_{0;0} \quad and \quad b^2:=a_{ij}b^ib^j.$

Proof. For a Randers metric $\phi = 1 + s$, we have

$$Q = Q - sQ' = 1, \qquad \Delta = 1 + s,$$

$$\Phi = -(n+1)(1+s), \quad \Psi_1 = \frac{n+1}{2(1+s)}(s^2 + 2s + b^2).$$
(10)

By assumption, β is a closed and conformal 1-form with respect to α . Thus it satisfies $b_{i;j} = ca_{ij}$, where c = c(x) is a scalar function on M, which implies that

$$s_{ij} = 0, \quad s_i = 0, \quad r_{ij} = ca_{ij}, \quad r_i = cb_i.$$
 (11)

By putting (11) in (2), we get $G^i = \overline{G}^i + \frac{r_{00}}{2F} y^i$. Also, putting (10) and (11) in (3) imply that

$$J_i = -\frac{n+1}{4\alpha^3(1+s)^2}r_{00}h_i + \frac{n+1}{2\alpha^3(1+s)}\Big[\alpha^2 r_{0i} - r_{00}y_i\Big].$$
 (12)

Taking a horizontal derivation of (12) with respect to the Berwald connection of F yields the following

$$\begin{split} J_{i|j} = & -\frac{(n+1)r_{00}}{4\alpha^4(1+s)^3} \Big[\alpha(1+s)(\alpha_{|j}b_i + \alpha b_{i|j} - s_{|j}y_i - sy_{i|j}) - (\alpha b_i - sy_i) \big(3(1+s)\alpha_{|j} + 2\alpha s_{|j}\big) \Big] \\ & + \frac{n+1}{4\alpha^6(1+s)^2} \Big[2(1+s)(2\alpha r_{i0}\alpha_{|j} + \alpha^2 r_{i0|j} - y_i r_{00|j} - r_{00}y_{i|j}) \alpha^3 \\ & - 2\alpha^2(\alpha^2 r_{i0} - r_{00}y_i)(3\alpha_{|j} + 3s\alpha_{|j} + \alpha s_{|j}) \Big] - \frac{(n+1)(\alpha b_i - sy_i)}{4\alpha^3(1+s)^2} r_{00|j}, \end{split}$$

where $y_i = \alpha \alpha_{y^i}$. The following holds

$$\alpha_{|j} = \frac{\partial \alpha}{\partial x^{j}} - G_{j}^{m} \frac{\partial \alpha}{\partial y^{m}} = \frac{\partial \alpha}{\partial x^{j}} - \bar{G}_{j}^{m} \frac{\partial \alpha}{\partial y^{m}} - \frac{\partial \alpha}{\partial y^{m}} \left(\frac{2r_{j0}y^{m} + r_{00}\delta_{j}^{m}}{2F} - \frac{F_{j}r_{00}y^{m}}{2F^{2}}\right)$$
$$= -\frac{\alpha r_{j0}}{F} - \frac{r_{00}y_{j}}{2\alpha F} + \frac{\alpha F_{j}r_{00}}{2F^{2}}.$$
(13)

Also, we have

$$b_{i|j} = \frac{\partial b_i}{\partial x^j} - G_j^m \frac{\partial b_i}{\partial y^m} - b_m \Gamma_{ij}^m = r_{ij} - \frac{r_{ij}\beta + r_{i0}b_j + r_{0j}b_i}{F} + \frac{(2F_jr_{i0} + 2F_ir_{0j} + F_{ij}r_{00})\beta + (F_ib_j + F_jb_i)r_{00}}{2F^2} - \frac{F_jF_ir_{00}\beta}{F^3}.$$
 (14)

By (13) and (14), we get

$$\beta_{|j} = r_{0j} - \frac{1}{2F^2} [2Fr_{j0}\beta + Fr_{00}b_j - F_jr_{00}\beta],$$

$$s_{|j} = \frac{1}{\alpha}r_{j0} - \frac{1}{2\alpha^2 F} [\alpha r_{00}b_j - sr_{00}y_j].$$
(15)

The following holds

$$y_{i|j} = \frac{r_{00}y_iF_j + (2\alpha^2 r_{0j} + r_{00}y_j)F_i + (2\alpha^2 r_{i0} + r_{00}y_i)F_j + \alpha^2 r_{00}F_{ij}}{2F^2} - \frac{\alpha^2 r_{00}F_iF_j}{F^3} - \frac{4r_{j0}y_i + 2r_{i0}y_j + r_{00}a_{ij} + 2\alpha^2 r_{ij}}{2F}.$$
(16)

Since F is a weakly stretch metric, we get $J_{i|j}y^j = 0$. Thus $J_{i|j}y^jb^i = 0$. By putting (13), (14), (15) and (16) in $J_{i|j}y^jb^i = 0$, one can get the following

$$\frac{r_{00}}{A} \left[2(s+b^2)r_{00}\alpha^2\beta - 4r_{00}\alpha^2b^2F - 2(2r_0\beta + r_{00}b^2)F\alpha^2 + 6\beta Fr_{00}\beta + 4\beta Fr_0\alpha^2 + \alpha r_0 - 2\beta(s+b^2)r_{00}\alpha^2 - sr_{00} + 4(1+s)(\alpha b^2 - s\beta)r_{00}\alpha^2 \right] + \frac{n+1}{BF} \left[2F^2(\alpha^2 r_{i0|0}b^i - r_{00|0}\beta) - 4Fr_0r_{00}\alpha^2 + r_{00}[3Fr_{00}\beta + 2Fr_0\alpha^2 - (s+b^2)r_{00}\alpha^2] + 4Fr_{00}(\alpha^2 r_0 - r_{00}\beta) \right] \alpha^2 - \frac{n+1}{4\alpha^3(1+s)^2} (\alpha b^2 - s\beta)r_{00|0} = 0,$$
(17)

where $A := 16\alpha^6(1+s)^4$, $B := 4\alpha^6(1+s)^2$. By a simple calculation, we get

$$r_{ij|k} = r_{ij;k} - \frac{2}{F} \left[r_{ij}r_{0k} + r_{ik}r_{j0} + r_{kj}r_{i0} \right] + \frac{1}{2F^2} \left[F_i(2r_{0k}r_{0j} + r_{00}r_{kj}) + F_j(2r_{0k}r_{i0} + r_{00}r_{ik}) + 2F_k(2r_{i0}r_{0j} + r_{00}r_{ij}) + (F_{jk}r_{i0} + F_{ik}r_{0j})r_{00} \right] \\ - \frac{F_k}{F^3} (r_{0j}F_i + r_{i0}F_j)r_{00}.$$
(18)

Multiplying (18) with $y^j y^k$ implies that

$$r_{i0|0} = r_{i0;0} - \frac{6}{F} r_{00} r_{i0} + \frac{1}{2F^2} (5r_{00}F_i + 11Fr_{i0})r_{00}.$$
 (19)

Contracting (19) with y^i implies that

$$r_{00|0} = r_{00;0} - \frac{2}{F} r_{00}^2.$$
⁽²⁰⁾

 \square

By putting (19) and (20) in (17), we get

$$A_5\alpha^5 + A_4\alpha^4 + A_3\alpha^3 + A_2\alpha^2 + A_1\alpha + A_0 = 0.$$
⁽²¹⁾

By (21), we get (8) and (9).

Proof (of Theorem 1.1). Since $r_{ij} = ca_{ij}$ then we have $r_{00} = c\alpha^2$, $r_{i0;j} = c_{x^j}y_i$ and $r_{00;0} = c_0\alpha^2$, where $y_i = a_{im}y^m$ and $c_0 := c_{x^i}y^i$. Putting these relations in (8) and (9) imply that

$$b^{2}[(4n+3)\beta c^{2}-2(n+1)c_{0}]\alpha^{4}+2[(n+1)(1-b^{2})c_{0}\beta^{2}-(2n+1)c^{2}\beta^{3}]\alpha^{2}+2(n+1)c_{0}\beta^{4}=0,$$

$$[(4n+3)b^{2}c^{2}]\alpha^{4}+[-(4n+3)\beta^{2}c^{2}-4(n+1)b^{2}\beta c_{0}]\alpha^{2}+4(n+1)c_{0}\beta^{3}=0.$$
(22)

From here, we have $\theta \alpha^2 = c_0 \beta^4$, where $\theta := \delta \alpha^2 + \eta \beta^2$, and δ and η are two 1-forms on M. This means that $\alpha^2 | c_0 \beta$, which contradicts with the positive-definiteness of α . Then $c_0 = 0$. In this case, (22) reduces to following $(4n + 3)c^2(b^2\alpha^2 - \beta^2) = 0$. It is easy to see that $b^2\alpha^2 - \beta^2 = 0$ contradicts with the positive-definiteness of α . Hence, c = 0. In this case, (11) implies that β is parallel with respect to α and then F reduces to a Berwald metric.

COROLLARY 3.2. Let $F = \alpha + \beta$ be a non-Riemannian Randers metric on a manifold M and β conformal 1-form with respect to α . Then F is a weakly stretch metric with vanishing mean Berwald curvature if and only if it is a Berwald metric.

Proof. In [6], it is proved that a Randers metric has vanishing mean Berwald curvature

if and only if the following holds

$$r_{ij} = -b_i s_j - b_j s_i. aga{23}$$

Contracting (23) with $y^i y^j$ implies that

$$r_{00} = -2\beta s_0. (24)$$

Let β be a conformal 1-form with respect to α , i.e., $r_{ij} = ca_{ij}$, where c = c(x) is a scalar function on M. Multiplying it with $y^i y^j$ yields

$$r_{00} = c\alpha^2. \tag{25}$$

By (24) and (25), we have

$$c\alpha^2 = -2\beta s_0. \tag{26}$$

Since F is a non-Riemannian metric, then (26) implies that c = 0. In this case, we get $r_{ij} = 0$ and (24) implies that $s_i = 0$. By the same method used in the proof of [10, Theorem 1.3], we get $s_{ij} = 0$. Thus F reduces to a Berwald metric.

References

- M. Atashafrouz, B. Najafi, A. Tayebi, Weakly Douglas Finsler metrics, Periodica Math Hungarica. 81 (2020), 194–200.
- [2] S. Bácsó, M. Matsumoto, On Finsler spaces of Douglas type, A generalization of notion of Berwald space, Publ. Math. Debrecen. 51 (1997), 385–406.
- [3] S. Bácsó, M. Matsumoto, Finsler spaces with h-curvature tensor H dependent on position alone, Publ. Math. Debrecen. 55 (1999), 199–210.
- [4] S. Bácsó, Z. Szilasi, On the direction independence of two remarkable Finsler tensors, Differ. Geom. Appl. Proc. Conf., in Honour of Leonhard Euler, Olomouc, August 2007, 397–406.
- [5] L. Berwald, Über Parallelübertragung in Räumen mit allgemeiner Massbestimmung, Jber. Deutsch. Math.-Verein. 34 (1926), 213–220.
- [6] X. Cheng, Z. Shen, Randers metric with special curvature properties, Osaka. J. Math. 40 (2003), 87–101.
- [7] B. Li, Z. Shen, On Randers metrics of quadratic Riemann curvature, Int. J. Math. 20(2009), 369–376.
- [8] M. Matsumoto, An improvement proof of Numata and Shibata's theorem on Finsler spaces of scalar curvature, Publ. Math. Debrecen. 64 (2004), 489–500.
- B. Najafi, B. Bidabad, A. Tayebi, On R-quadtratic Finsler metrics, Iran. J. Science, Tech. Trans A. 31 (2007), 439–443.
- [10] B. Najafi, A. Tayebi, Weakly stretch Finsler metrics, Publ. Math. Debrecen. 91 (2017),441– 454.
- [11] Z. Shen, Finsler metrics with $\mathbf{K} = 0$ and $\mathbf{S} = 0$, Canadian J. Math. 55 (2003), 112–132.
- [12] C. Shibata, On the curvature R_{hijk} of Finsler spaces of scalar curvature, Tensor, N.S. 32 (1978), 311–317.
- [13] C. Shibata, On Finsler spaces with Kropina metric, Rep. Math. Phys. 13 (1978), 117–128.
- [14] A. Tayebi, On the class of generalized Landsberg manifolds, Period. Math. Hungarica. 72 (2016), 29–36.
- [15] A. Tayebi, On 4-th root Finsler metrics of isotropic scalar curvature, Math. Slovaca. 70 (2020), 161–172.
- [16] A. Tayebi, N. Izadian, Douglas-square metrics with vanishing mean stretch curvature, Int. Electronic. J. Geom. 12 (2019), 188–201.
- [17] A. Tayebi, B. Najafi, Classification of 3-dimensional Landsbergian (α, β)-mertrics, Publ. Math. Debrecen. 96 (2020), 45–62.

On weakly stretch Randers metrics

- [18] A. Tayebi, B. Najafi, On a class of homogeneous Finsler metrics, J. Geom. Phys. 140 (2019), 265–270.
- [19] A. Tayebi, M. Razgordani, On H-curvature of (α, β) -metrics, Turkish. J. Math. 44 (2020), 207–222.
- [20] A. Tayebi, H. Sadeghi, On Cartan torsion of Finsler metrics, Publ. Math. Debrecen. 82(2) (2013), 461–471.
- [21] A. Tayebi, H. Sadeghi, On a class of stretch metrics in Finsler geometry, Arab. J. Math. 8 (2019), 153–160.
- [22] A. Tayebi, T. Tabatabaeifar, Douglas-Randers manifolds with vanishing stretch tensor, Publ. Math. Debrecen. 86 (2015), 423–432.
- [23] C. Yu, Douglas metrics of (α, β) -type, arXiv:1609.04109v1.

(received 03.12.2019; in revised form 07.03.2021; available online 06.07.2021)

Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran *E-mail*: akbar.tayebi@gmail.com

Department of Mathematics, University of Hormozgan, Bandar-Abbas, Iran *E-mail*: ghasemi.asmaa@gmail.com

Department of Mathematics, University of Hormozgan, Bandar-Abbas, Iran *E-mail*: sabzevari@hormozgan.ac.ir