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QUANTALE-VALUED WIJSMAN CONVERGENCE

Gunther Jäger

Abstract. For the hyperspace of non-empty closed sets of a quantale-valued metric
space, we define a quantale-valued convergence tower which generalizes the classical Wijsman
convergence. We characterize this quantale-valued convergence tower by a quantale-valued
neighbourhood tower and show that it is uniformizable. Finally we study compactness and
completeness of the quantale-valued Wijsman convergence tower.

1. Introduction

In [26] a convergence notion for closed, non-empty subsets of a metric space (X, d)
was introduced, which proved to be fundamental in the study of hyperspaces [3].
A sequence of such sets An converges to a set A if the sequence of values of the
distance functionals d(x,An) converges to the value of the distance functional d(x,A)
for each x ∈ X. It is quite obvious, that this is nothing else than convergence in
the initial construction with respect to the source (d(x, ·))x∈X . However, because
initial constructions which behave well with respect to the underlying topologies are
in general not possible in the category of metric spaces, one is forced right from the
start to move to at least the bigger category of topological spaces, i.e. one has to
abandon in a certain sense the ”metrical information” and has to content oneself with
the ”topological information”. This has led Lowen and Sioen [19] and [18] to consider
the category of approach spaces as more suitable supercategory of the category of
metric spaces and to study Wijsman convergence there in terms of so-called approach
systems and gauges. In [14] we followed these approaches and generalized them for
quantale-valued metric spaces.

This paper goes in a similar direction and it has for this reason some overlap in the
results with [14]. However, the methods that we use are different. We note that for a
restricted choice of quantales, in particular for Lawvere’s quantale, the descriptions of
approach spaces by L-gauges, L-approach systems, L-approach distances and L-limit
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192 Quantale-valued Wijsman convergence

functions are all equivalent, see [10, 11]. However, e.g. in the probabilistic case with
the quantale of distance distribution functions, the transitions between the different
descriptions do not always yield isomorphism functors between the corresponding
categories [10,11]. It makes therefore sense, to study a theory of Wijsman convergence
from a different point of view in the general quantale-valued case.

While much of our inspiration goes back to [18], noting that approach structures
can as well be defined by limit functions, we generalize the setting in [18,19] further by
considering quantale-valued metric spaces. In this way, the theory developped here ap-
plies e.g. also to probabilistic metric spaces [25]. We use the framework of topological
quantale-valued convergence tower spaces [12] in order to define Wijsman convergence
for the hyperspace of non-empty closed subsets of a quantale-valued metric space as an
initial construction. We show that the quantale-valued metrical coreflection of the re-
sulting quantale-valued Wijsman convergence tower is the quantale-valued Hausdorff
metric as studied in [2]. Restricting to the ”classical” case of metric spaces by using
Lawvere’s quantale, we note that the topological coreflection of the quantale-valued
Wijsman convergence tower is the classical Wijsman topology [3]. We furthermore
describe the quantale-valued Wijsman convergence tower by suitable towers of neigh-
bourhood filters and uniform towers, thus showing that, just as in the classical case,
also the quantale-valued topological coreflection is uniformizable, i.e. is completely
regular. We show that the indices of compactness of a quantale-valued metric space
and both the hyperspaces endowed with the quantale-valued Hausdorff-metric and
the quantale-valued Wijsman convergence tower, respectively, coincide. Finally we
present some results about completeness of the quantale-valued Wijsman convergence
tower.

2. Preliminaries

We consider in this paper complete lattices L for which ⊤ ̸= ⊥ for the top element
⊤ and the bottom element ⊥. In any complete lattice L we can define the well-below
relation α ◁ β if for all subsets D ⊆ L such that β ≤

∨
D there is δ ∈ D such that

α ≤ δ. Then α ≤ β whenever α ◁ β and α ◁
∨
j∈J βj iff α ◁ βi for some i ∈ J . A

complete lattice is completely distributive if and only if we have α =
∨
{β : β ◁ α}

for any α ∈ L, [22]. For more results on lattices we refer to [7].
The triple L = (L,≤, ∗), where (L,≤) is a complete lattice, is called a commutative

and integral quantale if (L, ∗) is a commutative semigroup for which the top element of
L acts as the unit, i.e. α∗⊤ = α for all α ∈ L, and ∗ is distributive over arbitrary joins,
i.e. (

∨
i∈J αi) ∗β =

∨
i∈J(αi ∗β), see e.g. [8]. In a commutative and integral quantale

we can define an implication →: L× L −→ L by α → β =
∨
{γ ∈ L : α ∗ γ ≤ β} for

α, β ∈ L. Then α ∗ β ≤ γ iff α ≤ β → γ for all α, β, γ ∈ L. We consider in this paper
only commutative and integral quantales L = (L,≤, ∗) with completely distributive
lattices (L,≤).

A commutative and integral quantale L = (L,≤, ∗) with underlying completely
distributive lattice is called a value quantale if α∨β◁⊤ whenever α◁⊤ and β◁⊤. This
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concept goes back to the work of Flagg [6], however he uses the opposite order. Typical
examples of such quantales are e.g. the unit interval [0, 1] with a left-continuous t-
norm [25]. Another important example is given by Lawvere’s quantale, the interval
[0,∞] with the opposite order and addition α∗β = α+β (extended by α+∞ = ∞+a =
∞), see e.g. [6]. A further important example is the quantale of distance distribution
functions. A distance distribution function φ : [0,∞] −→ [0, 1], satisfies φ(x) =
supy<x φ(y) for all x ∈ [0,∞]. The set of all distance distribution functions is denoted
by ∆+. With the pointwise order, the set ∆+ becomes a completely distributive
lattice [6] with top-element ε0. A quantale operation on ∆+, ∗ : ∆+×∆+ −→ ∆+, is
also called a sup-continuous triangle function [25]. Note that in this case (∆+,≤, ∗)
is also a value quantale, [6].

For a set X, we denote its power set by P(X) and the set of all filters F,G, . . .
on X by F(X). The set F(X) is ordered by set inclusion and maximal elements of
F(X) in this order are called ultrafilters. The set of all ultrafilters on X is denoted
by U(X). In particular, for each x ∈ X, the point filter [x] = {A ⊆ X : x ∈ A} is
an ultrafilter. If F ∈ F(X) and f : X −→ Y is a mapping, then we define f(F) ∈
F(Y ) by f(F) = {G ⊆ Y : f(F ) ⊆ G for some F ∈ F}. In particular, we have
f([x]) = [f(x)] for any x ∈ X. For a filter G ∈ F(Y ) the set {f−1(G) : G ∈ G}
is a filter basis whenever none of the f−1(G) is empty. In this case we denote by
f−1(G) the filter on X generated by this filter basis and say that f−1(G) exists. We
then have f−1(f(F)) ≤ F and G ≤ f(f−1(G)) in case f−1(G) exists. For a family
of filters (Fi)i∈I we define their join,

∨
i∈I Fi, as the filter generated by the filter

basis of finite intersections Fi1 ∩ . . . ∩ Fin with Fik ∈ Fik for k = 1, . . . , n, whenever
all these finite intersections are non-empty. For G ∈ F(J) and Fj ∈ F(X) for each
j ∈ J , we denote κ(G, (Fj)j∈J) =

∨
G∈G

∧
j∈G Fj ∈ F(X) the diagonal filter [15].

For filters Φ,Ψ ∈ F(X ×X) we define Φ−1 as the filter generated by the filter basis
{F−1 : F ∈ Φ} where F−1 = {(x, y) ∈ X × X : (y, x) ∈ F} and Φ ◦ Ψ as the filter
generated by the filter basis {F ◦ G : F ∈ Φ, G ∈ Ψ}, whenever F ◦ G ̸= ∅ for all
F ∈ Φ, G ∈ Ψ, where F ◦G = {(x, y) ∈ X×X : (x, s) ∈ F, (s, y) ∈ G for some s ∈ X}.

For notions from category theory we refer to the textbooks [1, 21]. A construct
is a category C with a faithful functor U : C −→ SET , from C to the category of
sets. We always consider a construct as a category whose objects are structured
sets (S, ξ) and morphisms are suitable mappings between the underlying sets. A
construct is called topological if it allows initial constructions, i.e. if for every source
(fi : S −→ (Si, ξi))i∈I there is a unique structure ξ on S, such that a mapping
g : (T, η) −→ (S, ξ) is a morphism if and only if for each i ∈ I the composition
fi ◦ g : (T, η) −→ (Si, ξi) is a morphism.

3. Topological L-convergence tower spaces

Let L = (L,≤, ∗) be a commutative and integral quantale with completely distributive
lattice (L,≤).
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Let X be a set. A family of mappings c = (cα : F(X) −→ P(X))α∈L which satisfies
the axioms
(LC1) x ∈ cα([x]) for all x ∈ X,α ∈ L;

(LC2)
⋂
j∈J cα(Fj) = cα(

∧
j∈J Fj) for all {Fj : j ∈ J} ⊆ F(X);

(LC3)
⋂
α∈M cα(F) = c∨M (F) for all M ⊆ L;

(LC4) For all G,Fy ∈ F(X) (y ∈ X) we have that
x ∈ cα∗β(κ(G, (Fy)y∈X)) whenever x ∈ cβ(G) and y ∈ cα(Fy) for all y ∈ X;
is called an topological L-convergence tower on X and the pair (X, c) is called an topo-
logical L-convergence tower space. A mapping f : X −→ X ′ between the topological
L-convergence tower spaces (X, c) and (X ′, c′), is called continuous if, for all x ∈ X
and all F ∈ F(X), f(x) ∈ c′α(f(F)) whenever x ∈ cα(F). The category of topological
L-convergence tower spaces with continuous mappings as morphisms is denoted by
L-TCTS.

For a topological L-convergence tower c on X we can define a limit operator
λc : F(X) −→ LX by λc(F)(x) =

∨
{α ∈ L : x ∈ cα(F)}. This limit operator

satisfies the axioms (L1) λc([x])(x) = ⊤; (L2) λc(
∧
j∈J Fj) =

∧
j∈J λ

c(Fj) and (L3)

λc(G)(x) ∗
∧
y∈X λ

c(Fy)(y) ≤ λc(κ(G, (Fy)y∈X)). Conversely, given a limit opera-

tor λ : F(X) −→ LX satisfying the axioms (L1), (L2) and (L3), x ∈ cλα(F) ⇐⇒
λ(F)(x) ≥ α defines a topological L-convergence tower on X. In this sense, limit op-
erators and topological L-convergence towers are equivalent concepts. For Lawvere’s
quantale, Lowen [18] describes approach spaces by such limit operators and it is shown
in [4] that a description with topological convergence towers, called limit towers in
the paper, is equivalent. In a quantale-valued generalization of approach spaces, [16]
uses a similar approach based on ultrafilters in the realm of monoidal topology. We
prefer to work with topological L-convergence towers because arguments and proofs
often become more transparent.

We note some simple consequences of the axioms (LC2) and (LC3). For F,G ∈
F(X) and α, β ∈ L we have that F ≤ G implies cα(F) ⊆ cα(G); and that α ≤ β
implies cβ(F) ⊆ cα(F); and c⊥(F) = X for all F ∈ F(X).

We call a topological L-convergence tower space (X, c) symmetric if y ∈ cα([x])
implies y ∈ cα([x]) and it is called separated if x, y ∈ c⊤(F) implies x = y.

We will now introduce a strengthening of the axiom (LC4). We say that (X, c) ∈
|L-TCTS| satisfies the axiom (LCF) if for all sets J , all G ∈ F(J), all h : J −→ X and
all Fj ∈ F(X) (j ∈ J) we have x ∈ cα∗β(κ(G, (Fj)j∈J)) whenever x ∈ cβ(h(G)) and
h(j) ∈ cα(Fj) for all j ∈ J .

Lemma 3.1. Let (X, c) ∈ |L-TCTS|. Then (LCF) is equivalent to (LC2) and (LC4).

Proof. The choice J = X and h = idX shows that (LCF) implies (LC4). We now
show that (LCF) implies (LC2). Let Fi ∈ F(X) for all i ∈ J . With h(i) = x
and G = [J ] we obtain h(G) = [x] and κ(G, (Fj)j∈J) =

∧
i∈J Fi. If x ∈ cα(Fi)

for all i ∈ J , then because x ∈ c⊤([x]) and h(i) = x ∈ cα(Fi) we have by (LCF)
x ∈ c⊤∗α(

∧
i∈J Fi) = cα(

∧
i∈J Fi).
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Let now (LC2) and (LC4) be true. Let J be a set, h : J −→ X, G ∈ F(J)
and, for all i ∈ J , let Fi ∈ F(X). If x ∈ cβ(h(G)) and h(j) ∈ cα(Fj) for all j ∈ J ,
then by (LC2) h(G) ≥ Uβx and for all j ∈ J we have Fj ≥ Uαh(j). With (LC4) we

conclude x ∈ cβ∗α(κ(Uβx , (Uαh(j)))) and therefore Uα∗βx ≤ κ(Uβx , (Uαh(j))). It is not

difficult to show that κ(Uβx , (Uαh(j))) ≤ κ(G, (Fj)j∈J) and hence, using (LC2), we

obtain x ∈ cα∗β(κ(G, (Fj)j∈J)) and (LCF) is true. □

Theorem 3.2. The category L-TCTS is a topological construct.

Proof. Let (fi : X −→ (Xi, ci))i∈I be a source. We define the initial L-convergence
tower on X by x ∈ cα(F) if and only if for all i ∈ I we have fi(x) ∈ ciα(fi(F)). The
axiom (LC1) is easy to see. We show (LC3). Let M ⊆ L and let x ∈ cα(F) for all
α ∈ M . Then fi(x) ∈ ciα(fi(F)) for all α ∈ M and all i ∈ I. Hence, for all i ∈ I,
fi(x) ∈ ci∨M (fi(F)) and this means x ∈ c∨M (F). To show (LCF), let J be a set,

h : J −→ X, G ∈ F(J) and for all j ∈ J let Fj ∈ F(X). If x ∈ cα(h(G)) and
for all j ∈ J , h(j) ∈ cβ(Fj), then for all i ∈ J we have fi(x) ∈ ciα(fi(h(G))) and
fi(h(j)) ∈ ciβ(fi(Fj)) for all j ∈ J . We denote ki = fi ◦ h : J −→ Xi for all i ∈ I.

Then fi(x) ∈ ciα∗β(κ(G, (fi(Fj))j∈J)) for all i ∈ I. It is not difficult to show that

κ(G, (fi(Fj))j∈J) = fi(κ(G, (Fj)j∈J)). Hence fi(x) ∈ ciα∗β(fi(κ(G, (Fj)j∈J))) for all

i ∈ I, i.e. p ∈ cα∗β(κ(G, (Fj)j∈J)). □

It is not difficult to show that if all (Xi, ci) are symmetric, then also the initial con-

struction is symmetric. Finally we mention that if the source (fi : X −→ (Xi, ci))i∈I
is point-separating, i.e. if for x ̸= y there is an i ∈ I with fi(x) ̸= fi(y), and if all

(Xi, ci) are separated, then the initial construction (X, c) is also separated. For if
x, y ∈ cα(F) then fi(x), fi(y) ∈ ciα(fi(F)) for all i ∈ I and hence fi(x) = fi(y) for all
i ∈ I, which implies x = y.

4. L-metric spaces and topological spaces as topological L-convergence
tower spaces

For a quantale L = (L,≤, ∗), an L-metric space is a pair (X, d) of a set X and an
L-metric d : X ×X −→ L such that
(LM1) d(x, x) = ⊤ for all x ∈ X (reflexivity);

(LM2) d(x, y) ∗ d(y, z) ≤ d(x, z) for all x, y, z ∈ X (transitivity).
A mapping between two L-metric spaces, f : (X, d) −→ (X ′, d′) is called an L-metric
morphism if d(x1, x2) ≤ d′(f(x1), f(x2)) for all x1, x2 ∈ X. We denote the category
of L-metric spaces with L-metric morphisms by L-MET.

If the L-metric satisfies d(x, y) = d(y, x) for all x, y ∈ X, it is called symmetric. If
d(x, y) = ⊤ implies x = y, it is called separated.

For a value quantale and using the opposite order, Flagg [6] calls an L-metric
space a continuity space. Other names for the same concept are L-categories [8, 17],
or L-preordered sets [27].
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In case L = {0, 1}, an L-metric space is a preordered set. If L = ([0,∞],≥,+),
an L-metric space is a quasimetric space. If L = (∆+,≤, ∗), an L-metric space is a
probabilistic quasimetric space, see [6].

Theorem 4.1 ([12]). The category L-MET can be coreflectively embedded into the
category L-TCTS.

Proof. The embedding of (X, d) ∈ |L-MET| into (X, cd) ∈ |L-TCTS| is given by x ∈
cdα(F) ⇐⇒

∨
F∈F

∧
y∈F

d(x, y) ≥ α. [12] shows the axioms (LC1), (LC2) and (LC3). We

need only show the topological axiom (LC4). Let
∨
G∈G

∧
y∈G d(x, y) ≥ β and for

each y ∈ X, let
∨
Fy∈Fy

∧
z ∈ F yd(y, z) ≥ α. Consider ϵ ◁ β and δ ◁ α. Then there

is G ∈ G such that for all y ∈ G we have d(x, y) ≥ ϵ and for each y ∈ X there is
F y ∈ Fy such that for all z ∈ F y we have d(y, z) ≥ δ. The set HG =

⋃
y∈G F

y ∈∧
y∈G Fy ≤ κ(G, (Fy)y∈Y ) and for z ∈ HG then z ∈ F y for some y ∈ G. Hence

d(x, z) ≥ d(x, y) ∗ d(y, z) ≥ ϵ ∗ δ. We conclude
∧
z∈HG d(x, z) ≥ ϵ ∗ δ and from this

we obtain
∨
K∈κ(G,(Fy)y∈Y )

∧
u∈K d(x, u) ≥

∧
z∈HG d(x, z) ≥ ϵ ∗ δ. This is true for all

ϵ◁ β and all δ ◁ α and L being a quantale and (L,≤) being completely distributive,
the claim follows.

Given (X, c) ∈ |L-TCTS| we define dc(x, y) =
∨

x∈cα([y])

α. Then (X, dc) ∈ |L-MET|.

It was further shown in [12] that for (X, d) ∈ |L-MET| we have dc
d
= d and for

(X, c) ∈ |L-TCTS| we have c
(dc)
α (F) ⊆ cα(F) for all α ∈ L,F ∈ F(X). As morphisms

are preserved as well, this completes the proof. □

Note that we have x ∈ cdα([y]) if and only if d(x, y) ≥ α, see [12]. Furthermore,

it is easy to prove that if (X, d) is symmetric, then (X, cd) is symmetric. If (X, d) is

symmetric and separated, then also (X, cd) is separated. To see this, let x, y ∈ cd⊤(F)
and let ϵ ◁ ⊤. Then there are F x, F y ∈ F such that for all u ∈ F x and all v ∈ F y

we have d(x, u) ≥ ϵ and d(y, v) ≥ ϵ. The set F = F x ∩ F y ∈ F and for all all
w ∈ F we have d(x,w) ≥ ϵ and d(y, w) ≥ ϵ. By symmetry, we conclude d(x, y) ≥
d(x,w) ∗ d(w, y) ≥ ϵ ∗ ϵ, for all ϵ◁⊤. L being a quantale and (L,≤) being completely
distributive, we conclude d(x, y) = ⊤. This implies x = y.

Following [18], we call, for a topological L-convergence tower space (X, c), the
space (X, dc) the L-MET-coreflection. It is straightforward to show that if (X, c) is
symmetric, then also the L-MET-coreflection (X, dc) is symmetric. Furthermore, if
(X, c) is separated, also the L-MET-coreflection is separated. To see this, let ϵ◁⊤ =
dc(x, y). Then there is α ≥ ϵ such that x ∈ cα([y]). Hence, by (LC3), x ∈ cϵ([y]).
Using again (LC3) yields x ∈ c⊤([y]). From (LC1) we obtain x = y.

We can define closed sets for an L-metric space (X, d). For A ⊆ X we define the

d-closure of A by x ∈ A
d
if and only if there is F ∈ F(X) such that A ∈ F and

x ∈ cd⊤(F). If L is a value quantale then x ∈ A
d
iff
∨
a∈A d(x, a) = ⊤, see [14]. For

an L-metric space (X, d) we call A ⊆ X closed (in (X, d)) if A
d ⊆ A. Then A ⊆ X

is closed iff for all U ∈ U(X) we have x ∈ A whenever A ∈ U and x ∈ cd⊤(U). The
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sets X, ∅ are closed, A ∪ B is closed whenever A,B are closed and
⋂
j∈J Aj is closed

whenever Aj is closed for all j ∈ J . We denote the set of all non-empty closed sets
of an L-metric space by CL(X). We note that, for a value quantale L, the mapping
from CL(X) to LX , A 7−→ d(·, A) is an injection. In fact, if d(x,A) = d(x,B) for
all x ∈ X, then for x ∈ A we have d(x,B) = d(x,A) = ⊤ and hence x ∈ B = B.
Similarly, x ∈ B implies x ∈ A and hence A = B.

We now turn our attention to topological spaces. We identify a topological space
(X, T ) with the topological convergence space (X, cT ), where cT : F(X) −→ X is
defined by x ∈ cT (F) if and only if F ≥ UT

x with the neighbourhood filter UT
x of x in

(X, T ). For ease of notation, we also write F T−→ x for x ∈ cT (F).

Theorem 4.2. The category TOP can be coreflectively embedded into the category
L-TCTS.

Proof. Given a topological space (X, T ) we define cT = (cTα )α∈L be x ∈ cTα (F) if

and only if F T−→ x in case α ̸= ⊥ and for α = ⊥ we define cT⊥(F) = X. Then it

is not difficult to show that (X, cT ) is a topological L-convergence tower space and

that for a continous mapping f : (X, T ) −→ (X ′, T ′) also f : (X, cT ) −→ (X ′, cT ′) is
continuous.

For a topological L-convergence tower space (X, c) we define the topological space

(X, T c) by F T c

−→ x if and only if x ∈ c⊤(F). Clearly, this defines the convergence of
a topology and for a continuous mapping f : (X, c) −→ (X ′, c′) also f : (X, T c) −→
(X ′, T c′) is continous.

For (X, T ) ∈ |TOP| we have cT = cT⊤ and for (X, c) ∈ |L-TCTS| we have c(T
c)

α (F) ⊆
cα(F) for all α ∈ L,F ∈ F(X). To see the latter we consider α ̸= ⊥. We have x ∈
c
(T c)
α (F) if and only if F T c

−→ x. This is equivalent to x ∈ c⊤(F) and the axiom (LC3)
implies x ∈ cα(F). □

Following [18], for a topological L-convergence tower space (X, c) we call (X, T c)
the topological coreflection.

5. The L-Wisjman convergence tower of an L-metric space

A commutative and integral quantale L = (L,≤, ∗) becomes a symmetric, separated
L-metric space if we define dL(α, β) = (α → β) ∧ (β → α), (α, β ∈ L). In the case of
Lawvere’s quantale L = ([0,∞],≥,+) we have α → β = (β − α) ∨ 0 and dL(α, β) =
|α − β| is the standard metric on [0,∞]. We denote the underlying topological L-

convergence tower space of (L, dL) by (L, cL).
For an L-metric space (X, d) there is an important L-metric on CL(X). For

A,B ∈ CL(X) we define Hd(A,B) =
∧
x∈X dL(d(x,A), d(x,B)). Then Hd : CL(X)×

CL(X) −→ L is called the L-Hausdorff metric of the L-metric space (X, d). It
is symmetric and for, a value quantale L, separated. Furthermore, Hd(A,B) =∧
a∈A d(a,B) ∧

∧
b∈B d(A, b). For further details see [2].
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In the sequel, we mimick the definition of Wijsman convergence [26]. We define

an L-convergence tower cW on CL(X) by defining for A ∈ CL(X) and F ∈ F(CL(X))

A ∈ cWα (F) ⇐⇒ d(x,A) ∈ cLα(d(x,F)) for all x ∈ X.

Here, we define d(x,F) as the filter generated by the filter basis {d(x,F) : F ∈ F},
i.e. the image of the filter F for the mapping d(x, ·) : CL(X) −→ L. It is clear by

this definition that cW is the initial topological L-convergence tower on CL(X) with
respect to the source (

d(x, ·) :

{
CL(X) −→ (L, cL)

A 7−→ d(x,A)

)
x∈X

.

As (L, dL) is symmetric and separated, also (L, cL) is symmetric and separated
and, in case of a value quantale L, the family of mappings (d(x, ·))x∈X being point-

separating, we see that (CL(X), cW ) is symmetric and separated in this case.

We note that convergence in the topological coreflection of (CL(X), cW ) means
convergence in the ⊤-level. So we have

F
T cW

−→ A ⇐⇒ d(x,A) ∈ cL⊤(d(x,F)) for all x ∈ X.

This means that d(x,F) ≥ UdLd(x,A). In case of Lawvere’s quantale, i.e. in the metric

case, this is convergence in the Wijsman topology, [3]. Hence, as in the case of
Lawvere’s quantale [18], a natural candidate for the Wijsman topology of an L-metric

space is the topological coreflection of (CL(X), cW ).

Also the following results have been established for the definition of the Wijsman
structure by gauges in the case of Lawvere’s quantele in [18]. Similar results in terms
of L-gauges have been obtained in [14].

Proposition 5.1. Let (X, d) be an L-metric space. The L-MET-coreflection of the

L-Wijsman convergence tower is the L-Hausdorff metric, i.e. we have dc
W

= Hd.

Proof. We have by definition of the L-MET-coreflection, for A,B ∈ CL(X),

dc
W
(A,B) =

∨
{α ∈ L : d(x,A) ∈ cLα(d(x, [B])) for all x ∈ X}.

From d(x, [B])=d(x, ·)([B])=[d(x, ·)(B)]=[d(x,B)] we conclude d(x,A) ∈ cLα(d(x, [B]))
= cLα([d(x,B)]) if and only if dL(d(x,A), d(x,B)) ≥ α. As a consequence, we get

dc
W
(A,B) =

∨
{α ∈ L : dL(d(x,A), d(x,B)) ≥ α for all x ∈ X} and hence dc

W
(A,B)

=
∧
x∈X dL(d(x,A), d(x,B)) = Hd(A,B). □

Following [18,19] we call, for an L-metric space (X, d), a topological L-convergence

tower c on CL(X) admissible [20] if ψ : (X, cd) −→ (CL(X), c) defined by ψ(x) = {x}
is an embedding in L-TCTS. Clearly, we need that the one-point subsets {x} are
closed, i.e. that (X, d) is separated.

Proposition 5.2. Let (X, d) be a separated and symmetric L-metric space. Then cW

is admissible.
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Proof. We first show that ψ : (X, cd) −→ (CL(X), cW ) is continuous. To this end,
we first note that from transitivity (LM2) we obtain d(x, y) ≤ d(z, x) → d(z, y)
and d(y, x) ≤ d(z, y) → d(z, x) for all x, y, z ∈ X. Hence, by symmetry, we have
d(x, y) ≤ dL(d(z, x), d(z, y)). Let now x ∈ cdα(F). Then, for all z ∈ X, we have

α ≤
∨
F∈F

∧
y∈F

d(x, y) ≤
∨
F∈F

∧
y∈F

dL(d(z, x), d(z, y)).

Therefore also
∨

H∈d(z,ψ(F))

∧
β∈H

dL(d(z, x), β) =
∨
F∈F

∧
y∈F

dL(d(z, x), d(z, {y}) ≥ α,

which means d(z, {x}) = d(z, x) ∈ cLα(d(z, ψ(F))) for all z ∈ X, i.e. ψ(x) = {x} ∈
cWα (ψ(F)).

Next we show that ψ−1 : (ψ(X), cW |ψ(X)) −→ (X, cd) is continuous. Here,

cW |ψ(X) denotes the subspace structure of cW , i.e. the initial structure on ψ(X) =

{{x} : x ∈ X} with respect to the inclustion mapping ι : ψ(X) −→ (CL(X), cW ).
We have ψ(x) = {x} ∈ cWα |ψ(X)(F) = cWα (ι(F)) if and only if for all z ∈ X we

have d(z, x) = d(z, ψ(x)) ∈ cLα(d(z, ι(F))) = cWα (ι(d(z,F))). This is equivalent to∨
F∈F

∧
{y}∈F dL(d(z, x), d(z, y)) ≥ α for all z ∈ X. Choosing z = x this en-

tails
∨
H∈ψ−1(F)

∧
y∈H d(ψ

−1({x}), y) =
∨

F∈F

∧
{y}∈F d(x, y) ≥ α, i.e. ψ−1({x}) ∈

cdα(ψ
−1(F)). □

6. Neighbourhoods and uniformization

For a topological L-convergence tower space (X, c), x ∈ X and α ∈ L we define the
α-neighbourhood filter of x by Uc,αx =

∧
x∈cα(F) F. We then have, by (LC2), x ∈ cα(F)

if and only if F ≥ Uc,αx .

Proposition 6.1. Let (X, c) be a topological L-convergence tower space. The system

Uc = (Uc,αx )α∈L,x∈X then satisfies the following properties.

(U0) Uc,⊥x =
∧
F(X);

(U1) Uc,αx ≤ [x];

(U2) Uc,α∗βx ≤ κ(Uc,βx , (Uc,αy )y∈X);

(U3) Uc,
∨
A

x =
∨
α∈A Uc,αx for ∅ ≠ A ⊆ L.

Furthermore, a mapping f : X −→ X ′ between topological L-convergence tower
spaces (X, c), (X ′, c′) is continuous if and only if for all x ∈ X and all α ∈ L we have

Uc
′,α
f(x) ≤ f(Uc,αx ).

Proof. The properties follow easily from the properties of a topological L-convergence
tower space. We demonstrate only (U2). By (LC2), we have x ∈ cβ(Uc,βx ) and
y ∈ cα(Uc,αy ) for all y ∈ X. Hence by (LC4), x ∈ cα∗β(κ(Uc,βx , (Uc,αy )y∈X)) and

again (LC2) implies Uc,α∗βx ≤ κ(Uc,βx , (Uc,αy )y∈X). □



200 Quantale-valued Wijsman convergence

For Lawvere’s quantale a description of approach spaces by such systems of neigh-
bourhood filters was explicitely verified in [9].

If we have a system of filters U = (Uαx)α∈L,x∈X satisfying the properties (U0)

– (U3), then we define a topological L-convergence tower cU by x ∈ cUα(F) if and only
if F ≥ Uαx .

Furthermore, it is not difficult to show that for a topological L-convergence tower

space (X, c) we have c(Uc) = c and for a pair (X,U) with (U0) – (U3) we have

UcU = U. Hence we can characterize topological L-convergence tower spaces by their
L-neighbourhood systems.

Let now (X, d) be an L-metric space. Flagg [6] defines, for x ∈ X and ϵ ◁ ⊤ the
ϵ-ball around x by F d(x, ϵ) = {y ∈ X : d(x, y)▷ ϵ}. The collection {F d(x, ϵ) : ϵ◁⊤}
is then a filter basis, provided that L is a value quantale. Similarly, we would need to
consider also the collections {F d(x, ϵ) : ϵ◁ α} for α ∈ L. Unfortunately, these are in
general not filter bases unless we require that ϵ, δ◁α implies ϵ∨ δ◁α. However, this
implication is not true in the important probabilistic case, L = (∆+,≤).

Example 6.2. Define fδ,ϵ(x) =

{
0 if 0 ≤ x ≤ δ

ϵ if x > δ
.

Then fδ,ϵ ∈ ∆+ and for η ∈ ∆+ we have η =
∨
{fδ,ϵ ◁ η} and fδ,ϵ ◁ η if and only

if ϵ < η(δ). Define now η(x) =

{
x if 0 ≤ x ≤ 1

1 if x > 1
. Then f1/2,1/4, f3/4,1/2 ◁ η, but

f1/2,1/4 ∨ f3/4,1/2 ⋪ η. Else there would be fδ,ϵ such that f1/2,1/4 ∨ f3/4,1/2 ≤ fδ,ϵ ◁ η
and hence f1/2,1/2 ≤ fδ,ϵ, but f1/2,1/2 ⋪ η.

A way out is to replace the well-below relation ◁ by the way-below relation [7],
α ≺ β, if for all directed subsets D ⊆ L, β ≤

∨
D there is δ ∈ D such that α ≤ δ.

This relation can be defined for any complete lattice and has similar properties as the
well-below relation but additionally satisfies ϵ ∨ δ ≺ α whenever ϵ, δ ≺ α. Moreover,
α◁ β implies α ≺ β. Hence, β =

∨
{α ∈ L : α ≺ β} for all β ∈ L. A complete lattice

with the latter property is called continuous [7]. Hence, a completely distributive,
complete lattice is a continuous lattice.

Proposition 6.3. Let the complete lattice L satisfy the property that α, β◁γ implies
α ∨ β ◁ γ for all α, β ∈ L. Then

(i) Lγ = {δ ∈ L : δ ◁ γ} is directed.

(ii) If γ ̸= ⊥, then for all α ∈ L we have α ≺ γ ⇐⇒ α◁ γ.

Proof. For (ii): α ≺ γ =
∨
Lγ implies α ≤ δ for some δ ◁ γ and hence α◁ γ. □

Proposition 6.4. For a complete lattice L, the following are equivalent.

(i) α, β ◁ γ implies α ∨ β ◁ γ for all γ ̸= ⊥.

(ii) α ≺ β ⇐⇒ α◁ β for all α, β ∈ L, β ̸= ⊥.
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Hence, we can define the α-neighbourhood filter of x, Ud,αx , as the filter with the
filter basis {Bd(x, ϵ) : ϵ ≺ α} with the ϵ-balls Bd(x, ϵ) = {y ∈ X : d(x, y) ≻ ϵ}.

Proposition 6.5. Let (X, d) be an L-metric space. Then Ud,αx = Ucd,αx .

Proof. We have
∨
F∈Ud,α

x

∧
y∈F d(x, y) ≥

∨
ϵ≺α

∧
y∈B(X,ϵ) d(x, y) ≥

∨
ϵ≺α ϵ = α. Hence

x ∈ cdα(Ud,αx ) and this implies Ud,αx ≥ Ucd,αx . Conversely, for U ∈ Ud,αx there is ϵ ≺ α
such that Bd(x, ϵ) ⊆ U . Hence d(x, y) ≻ ϵ implies y ∈ U . Let now x ∈ cdα(F). Then∨
F∈F

∧
y∈F d(x, y) ≥ α ≻ ϵ. As the set {

∧
y∈F d(x, y) : F ∈ F} is directed because F

is a filter, there is F ϵ ∈ F such that
∧
y∈F ϵ d(x, y) ≻ ϵ, i.e. F ϵ ⊆ Bd(x, ϵ) ⊆ U . Hence

U ∈
∧
x∈cdα(F) F and we have Ud,αx ≤ Ucd,αx . □

Of particular interest for us are initial constructions. The following result can be
shown in the classical way.

Proposition 6.6. Let
(
fi : X −→ (Xi, ci)

)
i∈I

and let c be the initial structure on X

with respect to this source. We denote the α-neighbourhood filter on (Xi, ci) by Ui,αxi

and Uαx is the α-neighbourhood filter on (X, c). Then Uαx =
∨
i∈I

f−1
i (Ui,αfi(x)).

We are now in the position to discuss the neighbourhoods for the Wijsman L-
convergence tower on CL(X). To this end, we denote the ϵ-balls in (L, dL) by B

L(x, ϵ)
and the generated α-neighborhood filter by UL,α

x . The α-neighbourhood filter of A ∈
CL(X) in (CL(X), cW ) is denoted by UW,αA . From Proposition 6.6 we obtain, that,
for F ⊆ X finite and ϵ ≺ α, the sets B =

⋂
x∈F d(x, ·)−1(BL(d(x,A), ϵ)) are a basis for

UW,αA . In fact, as finite intersection of d(x, ·)−1(U) with U ∈ UL,α
d(x,A) also B ∈ UW,αA and

for U ∈ UW,αA there is a finite set F ⊆ X such that U ⊇
⋂
x∈F d(x, ·)−1(UL,α

d(x,A)) with

UL,α
d(x,A) ∈ UL,α

d(x,A). Hence, for all x ∈ F there is ϵx ≺ α such that BL(d(x,A), ϵx) ⊆
UL,α
d(x,A). With ϵ =

∨
x∈F ϵx ≺ α then also BL(d(x,A), ϵ) ⊆ UL,α

d(x,A) and B is in fact

member of a basis of UW,αA .
Now we note that B ∈ B if and only if for all x ∈ F we have d(x,B) ∈

BL(d(x,A), ϵ), i.e. if and only if for all x ∈ F , dL(d(x,A), d(x,B)) ≻ ϵ. If the way-
below relation is multiplicative [7], i.e. if α, β ≻ γ implies α ∧ β ≻ γ, the latter is
equivalent to dF (A,B) =

∧
x∈F dL(d(x,A), d(x,B)) ≻ ϵ. We collect all this in the

following theorem.

Theorem 6.7. Let (X, d) be an L-metric space. Then a basis for the α-neighbourhood

filter UW,αA of A ∈ CL(X) in (CL(X), cW ) is given by the sets

BF,A,ϵ = {B ∈ CL(X) : dL(d(x,A), d(x,B)) ≻ ϵ for all x ∈ F}, F ⊆ X finite , ϵ ≺ α.

If the way-below relation is multiplicative, then a basis is given by

BF,A,ϵ = {B ∈ CL(X) :
∧
x∈F

dL(d(x,A), d(x,B)) ≻ ϵ}, F ⊆ X finite , ϵ ≺ α.
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For α = ⊤ we obtain a basis of the neighbourhood filter of A ∈ CL(X) of the

topological coreflection of (CL(X), cW ), (CL(X), T W ) as

BF,A,ϵ = {B ∈ CL(X) : dL(d(x,A), d(x,B)) ≻ ϵ for all x ∈ F}, F ⊆ X finite , ϵ ≺ ⊤.
This again shows that for Lawvere’s quantale L = ([0,∞],≥,+), the topological

coreflection of the Wijsman L-convergence tower is the classical Wijsman topology on
CL(X).

For an L-metric space (X, d), we define for a finite set F ⊆ X and ϵ ≺ ⊤ the set

BF,ϵ = {(A,B) ∈ CL(X)× CL(X) : dL(d(x,A), d(x,B)) ≻ ϵ for all x ∈ F}.
It is not difficult to show that for α ∈ L the set Bα = {BF,ϵ : ϵ ≺ α} is a filter basis
on CL(X)×CL(X) and we denote the generated filter by UW,α. The following result
shows that the collection of these filters is an L-uniform tower [13].

Proposition 6.8. Let (X, d) be an L-metric space. Then UW = (UW,α)α∈L is an
L-uniform tower on CL(X), i.e. we have
(LUT1) UW,α ≤ [∆CL(X)] with ∆CL(X) = {(A,A) : A ∈ CL(X)};

(LUT2) UW,α ≤ (UW,α)−1;

(LUT3) UW,α∗β ≤ UW,α ◦ UW,β;

(LUT4) UW,α ≤ UW,β whenever α ≤ β;

(LUT5) UW,⊥ =
∧
F(CL(X)× CL(X));

(LUT6) UW,
∨
A ≤

∨
α∈A UW,α whenever ∅ ≠ A ⊆ L.

Proof. We only show (LUT3) by proving that for ϵ ≺ α ∗ β there are δ1 ≺ α, δ2 ≺ β
such that BF,δ1 ◦BF,δ2 ⊆ BF,ϵ. First we note that the set D = {δ1∗δ2 : δ1 ≺ α, δ2 ≺ β}
is directed, because (δ1 ∗ δ2) ∗ (ϵ1 ∗ ϵ2) ≤ (δ1 ∨ ϵ1) ∗ (δ2 ∨ ϵ2) for all δ1, δ2, ϵ1, ϵ2 ∈ L
and as δ1 ∨ ϵ1 ≺ α and δ2 ∨ ϵ2 ≺ β if δ1, ϵ1 ≺ α and δ2, ϵ2 ≺ β. Hence for ϵ ≺ α ∗ β =∨
{δ1 ∗δ2 : δ1 ≺ α, δ2 ≺ β}, there are δ1 ≺ α and δ2 ≺ β such that ϵ ≺ δ1 ∗δ2. Let now

(A,C) ∈ BF,δ1 ◦ BF,δ2 . Then there is B ∈ CL(X) such that dL(d(x,A), d(x,B)) ≻ δ1
and dL(d(x,B), d(x,C)) ≻ δ2 for all x ∈ F . Thus dL(d(x,A), d(x,C)) ≻ δ1 ∗ δ2 ≻ ϵ
and (A,C) ∈ BF,ϵ. □

Note that UW,⊤ is a uniformity on CL(X). Furthermore, it is clear that BF,ϵ(A) =
{B ∈ CL(X) : (A,B) ∈ BF,ϵ} = BF,A,ϵ. Hence, for any A ∈ CL(X), UW,α(A) =

UW,αA is the α-neighbourhood filter in (CL(X), cW ). In this sense, the L-Wijsman

convergence tower space (CL(X), cW ) is L-uniformizable, i.e. there is an L-uniform
tower that generates the L-convergence tower. Restricting to α = ⊤ we obtain the
following result for the topological coreflection (CL(X), T W ).

Proposition 6.9. Let (X, d) be an L-metric space. Then the topological coreflection

(CL(X), T W ) of (CL(X), cW ) is uniformizable and, hence, is completely regular.

For Lawvere’s quantale this result specializes to the known result that the classical
Wijsman topology is completely regular, see [3].
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7. Compactness

The results of this section parallel those of [14, Section 8] and [18, Section 10.1],
however we need new methods in the proofs. Let (X, c) be a topological L-convergence
tower space. We define the index of compactness by

χc((X, c)) =
∧

U∈U(X)

∨
x∈X

∨
x∈cα(U)

α.

This definition originates from the corresponding definition for approach spaces [18].
We first motivate the concept.

Proposition 7.1. Let (X, T ) be a topological space. Then (X, T ) is compact if and

only if χc((X, cT )) = ⊤.

Proof. This is trivial, as x ∈ cTα (U) if and only if U converges to x in (X, T ). □

Proposition 7.2. Let (X, c) be a topological L-convergence tower space. If (X, T c)
is compact, then χc(X, c) = ⊤.

Proof. Let U ∈ U(X). By compactness of (X, T c), there is x ∈ X with x ∈ c⊤(U)
and hence

∨
x∈X

∨
x∈cα(U) α = ⊤. We conclude

∧
U∈U(X)

∨
x∈X

∨
x∈cα(U) α = ⊤. □

Proposition 7.3. Let (X, d) be an L-metric space. Then

χc((X, cd)) =
∨

{α ∈ L : ∃F ⊆ X finite s.t. X =
⋃
x∈F

Bd(x, α)}.

Proof. Let first ϵ◁χc((X, cd)). Then for all U ∈ U(X) there is x ∈ X and α ≻ ϵ such
that x ∈ cdα(U). From α▷ϵ we conclude α ≻ ϵ and hence

∨
U∈U

∧
y∈U d(x, y) ≥ α ≻ ϵ.

As U is a filter, the set {
∧
y∈U d(x, y) : U ∈ U} is directed. Thus, for all U ∈ U(X)

there is x ∈ X and U ∈ U such that U ⊆ Bd(x, ϵ) and we conclude for all U ∈ U(X)
we have Bd(x, ϵ) ∈ U for some x ∈ X. Assume now that for all finite subsets F ⊆ X
we had X ̸=

⋃
x∈F B

d(x, ϵ). For convenience, we denote the complement of an ϵ-ball

around x by C(x, ϵ) = (Bd(x, ϵ))c. Then B = {
⋂
x∈F C(x, ϵ) : F ⊆ X finite } is a filter

basis. Let U be an ultrafilter finer than the filter generated by this filter basis. As seen
above then Bd(x, ϵ) ∈ U for some x ∈ X in contradiction to C(x, ϵ) ∈ U. Therefore
there is a finite set F ⊆ X such that X =

⋃
x∈F B

d(x, ϵ) and we conclude
∨
{α ∈

L : ∃F ⊆ X finite s.t. X =
⋃
x∈F B

d(x, α)} ≥ ϵ. This is true for all ϵ ◁ χc((X, cd))

and by complete distributivity then χc((X, cd)) ≤
∨
{α ∈ L : ∃F ⊆ X finite s.t. X =⋃

x∈F B
d(x, α)}.

Let now ϵ ◁
∨
{α ∈ L : ∃F ⊆ X finite s.t. X =

⋃
x∈F B

d(x, α)}. Then there is

α ∈ L such that ϵ ≤ α and X =
⋃
x∈F B

d(x, α) for some finite set F ⊆ X. Let

U ∈ U(X). As X ∈ U, there is x ∈ F such that Bd(x, α) ∈ U and, as ϵ ≤ α also
Bd(x, ϵ) ∈ U. Also, for ϵ′ ≺ ϵ we have Bd(x, ϵ′) ∈ U, from which we conclude Ud,ϵx ≤ U,
i.e. x ∈ cdϵ (U). As U was an arbitrary ultrafilter on X we obtain χc((X, cd)) ≥ ϵ and

again the complete distributivity of L leads to χc((X, cd)) ≥
∨
{α ∈ L : ∃F ⊆

X finite s.t. X =
⋃
x∈F B

d(x, α)}. □
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For Lawvere’s quantale L = ([0,∞],≥,+) we see that a metric space (X, d) is

totally bounded if and only if χc((X, cd)) = 0. Hence, we will call an L-metric space

(X, d) totally bounded if χc((X, cd)) = ⊤.

Theorem 7.4. Let ≺ be multiplicative and let (X, d) be a separated and symmetric

L-metric space. Then χc((X, d)) = χc((CL(X), Hd)) = χc((CL(X), cW )).

Proof. We first show χc((CL(X), Hd)) ≤ χc((CL(X), cW )). For B ∈ CL(X) and an
ultrafilter U ∈ U(CL(X)) we have∨

{α ∈ L : B ∈ cHd
α (U)} =

∨
U∈U

∧
A∈U

∧
x∈X

dL(d(x,A), d(x,B))

≤
∧
x∈X

∨
U∈U

∧
A∈U

dL(d(x,A), d(x,B)).

Hence, χc((CL(X), Hd)) ≤
∧

U∈U(CL(X))

∨
B∈CL(X)

∧
x∈X

∨
U∈U

∧
A∈U

dL(d(x,A), d(x,B))

=
∧

U∈U(CL(X))

∨
B∈CL(X)

∨
A∈cWα (U)

α = χc((CL(X), cW )).

Next we show χc((CL(X), cW )) ≤ χc((X, d)). As (X, d) is separated, for x ∈ X
the one-point sets {x} are in CL(X). Hence, for any function φ : X −→ L we have∨
B∈CL(X)

∧
x∈B φ(x) =

∨
x∈X φ(x). Let now U ∈ U(X) be an ultrafilter on X. We

define BU = {YU : U ∈ U} with YU = {{x} : x ∈ U}. As the sets YU are non-empty
and YU1 ∩ YU2 = YU1∩U2 , BU is a filter basis on CL(X). Let UU be an ultrafilter on
CL(X) which is finer than the filter generated by BU. We conclude

χc((X, cW )) =
∧

U∈U(CL(X))

∨
B∈CL(X)

∧
x∈X

∨
U∈U

∧
A∈U

dL(d(x,B), d(x,A))

≤
∧

U∈U(CL(X))

∨
B∈CL(X)

∧
x∈XB

∨
U∈U

∧
A∈U

d(x,A),

as for x ∈ B we have dL(d(x,B), d(x,A)) = dL(⊤, d(x,A)) = d(x,A). Hence

χc((X, cW )) ≤
∨
x∈X

∨
U∈UU

∧
A∈U

d(x,A)

=
∨
x∈X

∨
YU :U∈U

∧
{y}∈YU

d(x, {y}) =
∨
x∈X

∨
U∈U

∧
y∈U

d(x, y).

This is true for all U ∈ U(X) and hence χc((X, cW )) ≤
∧

U∈U(X)

∨
x∈X

∨
U∈U

∧
y∈U

d(x, y) =

χc((X, d)).
The proof that χc((X, d)) ≤ χc((CL(X), Hd)) follows along the same lines of the

corresponding part of the proof of [14, Theorem 8.5]. □

Corollary 7.5. Let ≺ be multiplicative and let (X, d) be a separated and symmetric
L-metric space. Then (X, d) is totally bounded if and only if (CL(X), Hd) is totally
bounded.
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8. Some results on completeness

Let (X, c) be a topological L-convergence tower space and let F ∈ F(X). We call F a
Cauchy filter if

∨
x∈X

∨
x∈cα(F) α = ⊤. As usual, this generalizes the corresponding

concept in the theory of approach spaces [18]. Furthermore, we call F convergent
to x0 ∈ X if x0 ∈ c⊤(F). The space (X, c) is called complete if every Cauchy filter
converges to some x0 ∈ X.

We first characterize Cauchy filters for an L-metric space, justifying the definition.

Proposition 8.1. Let (X, d) be an L-metric space and let F ∈ F(X). Then F is a

Cauchy filter in (X, cd) if and only if for all ϵ◁⊤ there is x ∈ X such that Bd(x, ϵ) ∈ F.

Proof. Let first F be a Cauchy filter in (X, cd) and let ϵ◁⊤. Then there is x ∈ X and
α ▷ ϵ such that x ∈ cdα(F), i.e.

∨
F∈F

∧
y∈F d(x, y) ≥ α ▷ ϵ. Thus there is x ∈ X and

F ∈ F such that for all y ∈ F we have d(x, y)▷ϵ. The latter implies that F ⊆ Bd(x, ϵ)
and consequently, Bd(x, ϵ) ∈ F.

Conversely, let ϵ ◁ ⊤. Then there is x ∈ X and F ∈ F such that F ⊆ Bd(x, ϵ).
Hence, there is x ∈ X and F ∈ F such that

∧
y∈F d(x, y) ≥ ϵ. We conclude∨

F∈F
∧
y∈F d(x, y) ≥ ϵ, i.e. x ∈ cdϵ (F). It follows

∨
x∈X

∨
x∈cdα(F) α ≥ ϵ and the

complete distributivity then yields that F is a Cauchy filter. □

It is not difficult to show with this result that the definition of Cauchy filter in [5]
and our definition coincides for an L-metric space.

Proposition 8.2. Let (X, d) be an L-metric space and let F ∈ F(X).

If
∨
F∈F

∧
x,y∈F d(x, y) = ⊤, then F is a Cauchy filter in (X, cd). If L is a value

quantale and (X, d) is symmetric, then also the converse is true.

Proof. Let first
∨
F∈F

∧
x,y∈F d(x, y) = ⊤ ▷ ϵ. Then there is Fϵ ∈ F such that for all

x, y ∈ Fϵ we have d(x, y) ≥ ϵ, i.e. for all x ∈ Fϵ we have
∧
y∈Fϵ

d(x, y) ≥ ϵ. Hence

for all x ∈ Fϵ we have x ∈ cdϵ (F) and therefore
∨
x∈X

∨
x∈cdα(F) α ≥ ϵ. As ϵ ◁ ⊤ was

arbitrary, the complete distributivity yields that F is a Cauchy filter.
Let now

∨
x∈X

∨
x∈cα(F) α = ⊤ ▷ ϵ. Choose δ ◁ ⊤ such that δ ∗ δ ▷ ϵ. Then

there is xϵ ∈ X and α ▷ δ such that xϵ ∈ cdα(F), i.e.
∨
F∈F

∧
y∈F d(xϵ, y) ≥ α ▷ δ.

Thus there is Fδ ∈ F such that for all y ∈ Fδ we have d(xϵ, y) ≥ δ. Let now
y, z ∈ Fδ. Then d(xϵ, y) ≥ δ and d(z, xϵ) = d(xϵ, z) ≥ δ and hence by (LM2) d(z, y) ≥
δ∗δ▷ϵ. We conclude

∨
F∈F

∧
z,y∈F d(z, y) ≥ ϵ and the complete distributivity implies∨

F∈F
∧
z,y∈F d(z, y) = ⊤. □

This characterization is the definition of a Cauchy filter in [23,24].

Proposition 8.3. Let (X, c) be a topological L-convergence tower space. If F ∈ F(X)
is a Cauchy filter in the L-MET-coreflection (X, dc), then F is a Cauchy filter.

Proof. Let ϵ ◁ ⊤. Then there is x ∈ X such that Bd
c

(x, ϵ) ∈ F. Hence, there is
Fϵ ∈ F such that for all y ∈ Fϵ we have

∨
{α ∈ L : x ∈ cα([y])} ≻ ϵ. As the set
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{α ∈ L : x ∈ cα([y])} is directed by (LC3), we conclude that for each y ∈ Fϵ there
is αy ≻ ϵ such that x ∈ cαy

([y]) ⊆ cϵ([y]). We conclude that there is Fϵ ∈ F such
that for all y ∈ Fϵ we have [y] ≥ Uxϵ and therefore F ≥ [Fϵ] =

∧
y∈Fϵ

[y] ≥ Uxϵ , i.e.
x ∈ cϵ(F). Consequently,

∨
x∈X

∨
x∈cα(F) α ≥ ϵ. Taking the join over all ϵ ◁ ⊤ and

using the complete distributivity, the claim follows. □

In the sequel, we shall often assume that the topological L-convergence tower is
induced by an L-uniform tower U in the sense that for the neighbourhood filters we
have Uαx = Uα(x) = {U(x) : U ∈ Uα} with U(x) = {y ∈ X : (x, y) ∈ U}. We write

(X, c) = (X, cU ) in this case. Note that x ∈ cUα(F) if and only if F× [x] ≥ Uα. From

this we conclude that (X, cU ) is symmetric.

Proposition 8.4. Let L be a value quantale and let (X, cU ) be a topological L-

convergence tower space, where cU is induced by an L-uniform tower U . If F ∈ F(X)

is a Cauchy filter in (X, cU ), then it is a Cauchy filter in the uniform space (X,U⊤).

Proof. If
∨
x∈X

∨
F×[x]≥Uα α = ⊤ ▷ ϵ, we choose δ ◁ ⊤ such that ϵ ◁ δ ∗ δ. Then

there is xδ ∈ X and αδ ≥ δ such that F × [xδ] ≥ Uαδ ≥ Uδ. It follows F × F =
(F× [xδ]) ◦ ([xδ]× F) ≥ Uδ ◦ Uδ ≥ Uδ∗δ ≥ Uϵ. Hence F× F ≥ U

∨
{ϵ:ϵ◁⊤} = U⊤. □

Proposition 8.5. Let (X, c) be a topological L-convergence tower space. If χc(X, c) =
⊤ and (X, c) is complete, then the topological coreflection (X, T c) is compact.

Proof. Let U ∈ U(X). As ⊤ = χc(X, c), U is a Cauchy filter and as (X, c) is complete,
x0 ∈ c⊤(U) for some x0 ∈ X, i.e. U converges to x0 in (X, T c). □

We now note that for a filter F, convergence to x in (X, cU ) is equivalent to
x ∈ cU⊤(F), i.e. to F ≥ U⊤(x). But the latter means that F convergens to x in

the topological space (X, T U⊤
) induced by the uniform space (X,U⊤). Hence the

topological coreflection (X, T cU ) is uniformizable by U⊤.

Proposition 8.6. Let L be a value quantale and let (X, cU ) be a topological L-

convergence tower space induced by the uniform tower U . If (X, T cU ) is compact,

then (X, cU ) is complete.

Proof. We have just seen that (X, T cU ) is compact and uniformizable by U⊤ and

hence (X,U⊤) is complete. Let now F be a Cauchy filter in (X, cU ). Then F is a
Cauchy filter in (X,U⊤) and hence there is x ∈ X such that F ≥ U⊤(x). This means

x ∈ cU⊤(F) and (X, cU ) is complete. □

We collect all this in the following theorem.

Theorem 8.7. Let L be a value quantale and (X, cU ) be a topological L-convergence
tower space induced by the uniform tower U . The following are equivalent.

(i) χc(X, cU ) = ⊤ and (X, cU ) is complete. (ii) (X, T cU ) is compact.
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We now apply this theorem to quantale-valued Wijsman convergence.

Corollary 8.8. Let ≺ be multiplicative and let (X, d) be a separated and symmetric
L-metric space. Then (CL(X), T W ) is compact if and only if (X, d) is totally bounded

and (CL(X), cW ) is complete.

Proof. (CL(X), cW ) is L-uniformizable and χc((X, cd)) = χc((CL(X), cW )). □

We finally turn our attention to the completenes of the L-MET-coreflection.

Proposition 8.9. Let L be a value quantale and let (X, cU ) ∈ |L-TCTS| with an

L-uniform tower U . If (X, cU ) is complete then (X, dc
U
) is complete.

Proof. Let F be a Cauchy filter in (X, dc
U
). Then F is a Cauchy filter in (X, cU ) and

hence there is x0 ∈ X such that F × [x0] ≥ U⊤. As F is a Cauchy filter (X, dc
U
) we

have
∨
F∈F

∧
x,y∈F d

cU (x, y) = ⊤. Let ϵ ◁ ⊤. Then there is F ∈ F such that for all
x, y ∈ F we have

∨
x∈cUα([y]) α ▷ ϵ. Hence, there is F ∈ F such that for all x, y ∈ F

there is α ≥ ϵ such that x ∈ cUα([y]) ⊆ cUϵ ([y]). This means [y] × [x] ≥ Uϵ for all
x, y ∈ F and hence F × [x] ≥ [F ] × [x] =

∧
y∈F [y] × [x] ≥ Uϵ for all x ∈ F . We

conclude ([x0]× F) ◦ (F ◦ [x]) = [x0]× [x] ≥ Uϵ∗⊤ = Uϵ, i.e. x0 ∈ cUϵ ([x]) for all x ∈ F .

We conclude
∨
F∈F

∧
x∈F d

cU (x0, x) ≥ ϵ and the complete distributivity again yields∨
F∈F

∧
x∈F d

cU (x0, x) = ⊤. This is the same as x0 ∈ cd
cU

⊤ (F). □

Corollary 8.10. Let L be a value quantale and let (X, d) ∈ |L-MET|. If (CL(X), cW )
is complete then also (CL(X), Hd) is complete.

Remark 8.11. For Lawvere’s quantale, we even have: (X, d) complete⇐⇒(CL(X), Hd)

complete ⇐⇒(CL(X), cW ) complete, see [18]. If these equivalences remain true for
an arbitrary quantale is still an open question.
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