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Abstract. A function f : (X, τ) → (Y, τ∗) between topological spaces is called γ-
continuous if f−1(W ) ⊂ Cl(Int(f−1(W ))) ∪ Int(Cl(f−1(W ))) for each open W ⊂ Y , where
Cl (resp. Int ) denotes the closure (resp. interior) operator on X. When we use the other
possible operators obtained by multiple composing Cl and Int, then this condition boils
down to the definitions of known types of generalized continuity. The case of multifunctions
is quite different. The appropriate condition have two forms: F+(W ) ⊂ Cl(Int(F+(W ))) ∪
Int(Cl(F+(W ))) called u.γ.c. or, F−(W ) ⊂ Cl(Int(F−(W )))∪ Int(Cl(F−(W ))) called l.γ.c.,
where F+(W) = {x ∈ X : F (x) ⊂ W} and F−(W) = {x ∈ X : F (x) ∩W ̸= ∅}. So, one
can consider the simultaneous use of the two different inverse images namely, F+(W ) and
F−(W ). We will show that in this case the usage of all possible multiple compositions of Cl
and Int leads to the new different types of continuity for multifunctions, which together with
the previous defined types of continuity forms a collection which is complete in a certain
topological sense.

1. Introduction and preliminaries

Throughout the present paper, (X, τ) and (Y, τ∗) will denote topological spaces with
no separation properties assumed. Given a nonempty subset A ⊂ X, we denote by
P(A) the family of all subsets of A. The closure and the interior of a subset A of
a topological space (X, τ) are denoted by Cl(A) and Int(A), respectively. We will
regard Cl and Int as operators acting on P(X).

Remark 1.1. If we denote by O1 ∨ O2 the sum of two operators O1, O2 on P(X)
defined by O1 ∨ O2(A) = O1(A) ∪ O2(A) for any A ∈ P(X), then it is easy to check
(see [13]), that by using the sum operation and composing the members of {Cl, Int}
we may construct at most the following new operators: Int ◦Cl ◦ Int, Cl ◦ Int, Int ◦Cl,
Cl ◦ Int∨ Int ◦Cl, Cl ◦ Int ◦Cl. Of course, the set of all such operators including the
operator Int, which will be denoted by I0, is closed with respect to the operation ∨.
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224 γ-continuity for multifunctions

The usage of these operators leads to the following definitions:

A subset A ⊂ X is said to be α-open [24] (resp. semi-open [8], pre-open [18], b-open [2]
(or γ-open [3], or sp-open [9]), β-open [20] (or ps-open [1]) if A ⊂ Int(Cl(Int(A))) (resp.
A ⊂ Cl(Int(A)), A ⊂ Int(Cl(A)), A ⊂ Cl(Int(Cl(A))), A ⊂ Cl(Int(A)) ∪ Int(Cl(A))).
The family of all α-open (resp. semi-open, pre-open, γ-open, β-open) sets in (X, τ)
is denoted by αO(X, τ) (resp. SO(X, τ), PO(X, τ), γO(X, τ), βO(X, τ)). The union
of all α-open (resp. semi-open, pre-open, γ-open, β-open) sets of X contained in A is
called α-interior (resp. semi-interior, pre-interior, γ-interior, β-interior) of A and is
denoted by α Int(A) (resp. s Int(A), p Int(A), γ Int(A), β Int(A)).

By a multifunction F : (X, τ) → (Y, τ∗) we mean a map defined on X with values
being nonempty subsets of Y. We will denote the upper and lower inverse images of a
subset B of Y by F+(B) and F−(B) respectively, that is, F+(B) = {x ∈ X : F (x) ⊂ B}
and F−(B) = {x ∈ X : F (x) ∩B ̸= ∅}, see [4].

Let us recall some classical notions – a multifunction F : (X, τ) → (Y, τ∗) is said
to by upper semi continuous (briefly u.s.c.) (resp. lower semi continuous (briefly
l.s.c.)) at a point x ∈ X, [12, 14, 19, 25], if x ∈ Int(F+(W )) (resp. x ∈ Int(F−(W )))
for each open subset W of Y such that x ∈ F+(W ) (resp. x ∈ F−(W )). We will
say that a multifunction F : (X, τ) → (Y, τ∗) is u.s.c. (resp. l.s.c.) if it has this
property at each point which means that F+(W ) ⊂ Int(F+(W )) (resp. F−(W ) ⊂
Int(F−(W ))) for each W ∈ τ∗. One can also consider the other two possible relations,
namely F+(W ) ⊂ Int(F−(W )) and F−(W ) ⊂ Int(F+(W )). We denote these types
of continuity as u.l.s.c. and l.u.s.c., respectively. It is easy to show that the first one
is equivalent to x ∈ Int(F−(W )) for any open subset W ⊂ Y such that x ∈ F+(W )
for any x ∈ X, which defines the type of continuity introduced in [10]. The second
property means that x ∈ Int(F+(W )) for any open subset W ⊂ Y such that x ∈
F−(W ) or equivalently, F is u.s.c. at x and F (x) is a singleton.

The usage of the operators Int ◦Cl ◦ Int, Cl ◦ Int, Int ◦Cl, Cl ◦ Int∨ Int ◦Cl or
Cl ◦ Int ◦Cl instead of Int leads to the following types of generalized continuity.

Definition 1.2. Amultifunction F : (X, τ) → (Y, τ∗) is called (α) u.α.c. (or l.α.c.) [23]
(resp. (q) u.q.c. (or l.q.c.) [27], (p) u.p.c. (or l.p.c.) [26], (γ) u.γ.c. (or l.γ.c.) [21]), (β)
u.β.c. (or l.β.c.) [28], [7] at a point x ∈ X if,

- x ∈ Int(Cl(Int(F+(W )))) (or x ∈ Int(Cl(Int(F−(W ))))) (resp.

- x ∈ Cl(Int(F+(W ))) (or x ∈ Cl(Int(F−(W )))),

- x ∈ Int(Cl(F+(W ))) (or x ∈ Int(Cl(F−(W )))),

- x ∈ Cl(Int(F+(W )))∪Int(Cl(F+(W ))) (or x ∈ Cl(Int(F−(W )))∪Int(Cl(F−(W ))))),

- x ∈ Cl(Int(Cl(F+(W )))) (or x ∈ Cl(Int(Cl(F−(W ))))) for each W ∈ τ∗ such that
x ∈ F+(W ) (or x ∈ F−(W )).

A multifunction F : (X, τ) → (Y, τ∗) is called u.α.c. (or l.α.c.) (resp. u.q.c. (or
l.q.c.), u.p.c. (or l.p.c.), u.γ.c. (or l.γ.c.), u.β.c. (or l.β.c.)) if it has this property at
each point x ∈ X.
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Remark 1.3. It is evident that a multifunction F : (X, τ) → (Y, τ∗) is u.α.c. (or
l.α.c.) (resp. u.q.c. (or l.q.c.), u.p.c. (or l.p.c.), u.γ.c. (or l.γ.c.), u.β.c. (or l.β.c.)) if
and only if
- F+(W ) ⊂ Int(Cl(Int(F+(W )))) (or F−(W ) ⊂ Int(Cl(Int(F−(W ))))) (resp.

- F+(W ) ⊂ Cl(Int(F+(W ))) (or F−(W ) ⊂ Cl(Int(F−(W )))),

- F+(W ) ⊂ Int(Cl(F+(W ))) (or F−(W ) ⊂ Int(Cl(F−(W )))),

- F+(W ) ⊂ Cl(Int(F+(W ))) ∪ Int(Cl(F+(W ))) (or F−(W ) ⊂ Cl(Int(F−(W ))) ∪
Int(Cl(F−(W )))),

- F+(W ) ⊂ Cl(Int(Cl(F+(W )))) (or F−(W ) ⊂ Cl(Int(Cl(F−(W )))))) for eachW ∈ τ∗.

The lemma stated below guarantees, that the property u.α.c. (or l.α.c.) (resp.
u.q.c. (or l.q.c.), u.p.c. (or l.p.c.), u.γ.c. (or l.γ.c.), u.β.c. (or l.β.c.)) is in fact equivalent
to
- F+(W ) = α Int(F+(W )) (or F−(W ) = α Int(F−(W ))) (resp.

- F+(W ) = s Int(F+(W )) (or F−(W ) = s Int(F−(W ))),

- F+(W ) = p Int(F+(W )) (or F−(W ) = p Int(F−(W ))),

- F+(W ) = γ Int(F+(W )) (or F−(W ) = γ Int(F−(W ))),

- F+(W ) = β Int(F+(W )) (or F−(W ) = β Int(F−(W )))) for each W ∈ τ∗.

Lemma 1.4 ([2]). The following hold for any subset A of a space (X, τ):

(a) α Int(A) = A ∩ Int(Cl(Int(A)));

(b) s Int(A) = A ∩ Cl(Int(A));

(c) p Int(A) = A ∩ Int(Cl(A));

(d) γ Int(A) = s Int(A) ∪ p Int(A),

(e) β Int(A) = A ∩ Cl(Int(Cl(A))).

Remark 1.5. For the same reasons as in Remark 1.1, the following set of operators
I = {Int, α Int, s Int, p Int, γ Int, β Int} is closed with respect to the operation ∨.

The requirements stated in the above forms of generalized continuity of a multi-
function F : (X, τ) → (Y, τ∗) apply to only one of the two types of the inverse images
of open subsets W ⊂ Y , namely to upper inverse image F+(W) for the upper types
of generalized continuity, and lower inverse image F−(W) for the lower types. It is
obvious, however, that a multifunction F designates unequivocally the pairs (F+(W),
F−(W)) which are identified by W ∈ τ∗. So, it is justified to establish the require-
ments for the pairs (F+(W), F−(W)), where W ∈ τ∗. The simultaneous use of these
two types of inverse images leads to the following types of generalized continuity.

Definition 1.6. A multifunction F : (X, τ) → (Y, τ∗) is said to be
(α) u.l.α.c. (or l.u.α.c.) [30](resp.

(p) u.l.p.c. (or l.u.p.c.) [30],

(q) u.l.q.c. [30](or l.u.q.c. [5–7,15,22]),



226 γ-continuity for multifunctions

(γ) u.l.γ.c. (or l.u.γ.c.)

(β) u.l.β.c. (or l.u.β.c.) [30])) at a point x ∈ X if,

- x ∈ Int(Cl(Int(F−(W )))) (or x ∈ Int(Cl(Int(F+(W ))))) (resp.

- x ∈ Int(Cl(F−(W ))) (or x ∈ Int(Cl(F+(W )))),

- x ∈ Cl(Int(F−(W ))) (or x ∈ Cl(Int(F+(W )))),

- x ∈ Cl(Int(F−(W ))) ∪ Int(Cl(F−(W )))

(or x ∈ Cl(Int(F+(W ))) ∪ Int(Cl(F+(W )))),

- x ∈ Cl(Int(Cl(F−(W )))) (or x ∈ Cl(Int(Cl(F+(W )))))), for each W ∈ τ∗ such
that x ∈ F+(W ) (or x ∈ F−(W )).

A multifunction F : (X, τ) → (Y, τ∗) is called u.l.α.c. (or l.u.α.c.) (resp. u.l.q.c.
(or l.u.q.c.), u.l.p.c. (or l.u.p.c.), u.l.γ.c. (or l.u.γ.c.), u.l.β.c. (or l.u.β.c.)) if it has
this property at each point x ∈ X.

In [5,7] the property l.u.q.c. was used under the name of the minimality or u.s.c.o.
(u.s.c. with compact values) multifunction. In [7, Theorem 5.2] and [15, 22] this
property was used independently of the u.s.c.

Of course, if a single-valued function f : (X,π) → (Y, τ) is treated as a multifunc-
tion F : (X, τ) → (Y, τ∗) given by F(x) = {f(x)} for all x ∈ X, we have F+(B) =
F−(B) = f−1(B) for any B ⊂ Y and consequently, the properties marked by (α),
(p), (q), (γ) or (β) are equivalent to the α-continuity [17], pre-continuity [18], semi-
continuity (quasi-continuity) [11,16], γ-continuity3 (b-continuity) or β-continuity20).
respectively.

Remark 1.7. It is, of course, clear that a multifunction F : (X, τ) → (Y, τ∗) is u.l.s.c
(or l.u.s.c.) (resp. u.l.α.c. (or l.u.α.c.) u.l.q.c. (or l.u.q.c.), u.l.p.c. (or l.u.p.c.), u.l.γ.c.
(or l.u.γ.c.) u.l.β.c. (or l.u.β.c.)) if and only if
- F+(W ) ⊂ Int(F−(W )) (or F−(W ) ⊂ Int(F+(W ))) (resp.

- F+(W ) ⊂ Int(Cl(Int(F−(W )))) (or F−(W ) ⊂ Int(Cl(Int(F+(W )))))

- F+(W ) ⊂ Cl(Int(F−(W ))) (or F−(W ) ⊂ Cl(Int(F+(W )))),

- F+(W ) ⊂ Int(Cl(F−(W ))) (or F−(W ) ⊂ Int(Cl(F+(W )))),

- F+(W ) ⊂ Cl(Int(F−(W ))) ∪ Int(Cl(F−(W ))) (or F−(W ) ⊂ Cl(Int(F+(W ))) ∪
Int(Cl(F+(W )))),

- F+(W ) ⊂ Cl(Int(Cl(F−(W )))) (or F−(W )⊂Cl(Int(Cl(F+(W )))))) for eachW∈τ∗.

Analogously as in Remark 1.3, these types of continuity can be characterized by
means of equality. For this purpose, we will use the following operators.

Definition 1.8 ([29]). Given a topological space (X,τ) we define the following opera-
tors P(X)×⃗P(X) → P(X), where P(X)×⃗P(X) = {(A,B) ∈ P(X)× P(X) : A ⊂ B}:
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(au) Intu(A,B)=B∩ Int(A),

(al) Intl(A,B)=A∩ Int(B),

(bu) α Intu(A,B)=B∩ Int(Cl(Int(A))),

(bl) α Intl(A,B)=A∩ Int(Cl(Int(B))),

(cu) s Intu(A,B)=B∩Cl(Int(A)),

(cl) s Intl(A,B)=A∩Cl(Int(B)),

(du) p Intu(A,B)=B∩ Int(Cl(A)),

(dl) p Intl(A,B)=A∩ Int(Cl(B)),

(eu) γ Intu(A,B)=s Intu(A,B)∪p Intu(A,B),

(el) γ Intl(A,B)=s. Intl(A,B)∪p. Intl(A,B),

(fu) β Intu(A,B)=B∩Cl(Int(Cl(A))),

(fl) β Intl(A,B)=A∩Cl(Int(Cl(B))).

Directly from this definition we get the following characterizations.

Lemma 1.9. A multifunction F : (X, τ) → (Y, τ∗) is u.l.s.c (or l.u.s.c.) (resp. u.l.α.c.
(or l.u.α.c.) u.l.q.c. (or l.u.q.c.), u.l.p.c. (or l.u.p.c.), u.l.β.c. (or l.u.β.c.), u.l.γ.c. (or
l.u.γ.c.)) if and only if
- F+(W ) = Intl(F

+(W ), F−(W )) (or F−(W ) = Intu(F
+(W ), F−(W ))) (resp.

- F+(W ) = α Intl(F
+(W ), F−(W )) (or F−(W ) = α Intu(F

+(W ), F−(W ))),

- F+(W ) = q Intl(F
+(W ), F−(W )) (or F−(W ) = q Intu(F

+(W ), F−(W ))),

- F+(W ) = p Intl(F
+(W ), F−(W )) (or F−(W ) = p Intu(F

+(W ), F−(W ))),

- F+(W ) = γ Intl(F
+(W ), F−(W )) (or F−(W ) = γ Intu(F

+(W ), F−(W ))),

- F+(W ) = β Intl(F
+(W ), F−(W )) (or F−(W ) = β Intu(F

+(W ), F−(W )))) for
each W ∈ τ∗.

It is easy to see that the classical topological operators presented in Lemma 1.4
can be expressed as compositions of the above operators and the diagonal operator
∆ : P(X) → P(X) × P(X) given by ∆(A) = (A,A) for any A ∈ P(X). More
precisely:

Remark 1.10. The following hold for a subset A of a topological space (X, τ):

(a) Intu(A,A)= Intl(A,A)= Int(A);

(b) α Intu(A,A)=α Intl(A,A)=α Int(A);

(c) s Intu(A,A)=s Intl(A,A)=s Int(A);

(d) p Intu(A,A)=s Intl(A,A)=s Int(A);

(e) γ Intu(A,A)=γ Intl(A,A)=γ Int(A);

(f) β Intu(A,A)=β Intl(A,A)=β Int(A).

Let us note that the equivalence conditions presented in Remark 1.7 and Lemma 1.9
show that the definitions of considered types of continuity actually determine rela-
tions R ⊂ P(X) × P(X) described in terms of the operators Cl and Int such that
(F+(W), F−(W)) ∈ R for each W ∈ τ∗. So, it is convenient to use the following
general concept.

Definition 1.11 ([29]). LetR be a binary relation on P(X). Then we say that a mul-
tifunction F : (X, τ) → (Y, τ∗) isR-continuous if for anyW∈τ∗, (F+(W ), F−(W ))∈R.

A direct application of Remark 1.7 and Lemma 1.9 shows that the considered
types of continuity can be presented in terms of relations as follows.



228 γ-continuity for multifunctions

Lemma 1.12. The following hold for any multifunction F : (X, τ) → (Y, τ∗):
(i) The property of being u.s.c. (or l.s.c.) (resp. u.α.c. (or l.α.c.), u.q.c. (or l.q.c.),
u.p.c. (or l.p.c.), u.γ.c. (or l.γ.c.), u.β.c. (or l.β.c.)) is equivalent to

- C(πu, Int ◦πu)-continuity (or C(πl, Int ◦πl)-continuity (resp.

- C(πu, α Int ◦πu)-continuity (or C(πl, α Int ◦πl)-continuity,

- C(πu, s Int ◦πu)-continuity (or C(πl, s Int ◦πl)-continuity,

- C(πu, p Int ◦πu)-continuity (or C(πl, p Int ◦πl)-continuity,

- C(πu, γ Int ◦πu)-continuity (or C(πl, γ Int ◦πl)-continuity,

- C(πu, β Int ◦πu)-continuity (or C(πl, β Int ◦πl)-continuity).

(ii) The property of being u.l.s.c. (or l.u.s.c.) (resp. u.l.α.c. (or l.u.α.c.), u.l.q.c. (or
l.u.q.c.), u.l.p.c. (or l.u.p.c.), u.l.γ.c. (or l.u.γ.c.), u.l.β.c. (or l.u.β.c.)) is equivalent to

- C(πu, Intl)-continuity (or. C(πl, Intu)-continuity) (resp.

- C(πu, α Intl)-continuity (or. C(πl, α Intu)-continuity)

- C(πu, s Intl)-continuity (or C(πl, s Intu)-continuity),

- C(πu, p Intl)-continuity (or C(πl, p Intu)-continuity),

- C(πu, γ Intl)-continuity (or C(πl, γ Intu)-continuity),

- C(πu, β Intl)-continuity (or C(πl, β Intu)-continuity)).

It is easy to see that in the case of u.γ.c., l.γ.c., u.l.γ.c. and l.u.γ.c., the corre-
sponding set of coincidence points can be presented as follows:
- C(πu, γ Int ◦πu) = C(πu, s Int ◦πu ⊕ p Int ◦πu),

- C(πl, γ Int ◦πl) = C(πl, s Int ◦πl ⊕ p Int ◦πl),

- C(πu, γ Intl) = C(πu, s Intl ⊕p Intl) and

- C(πl, γ Intu) = C(πl, s Intu ⊕p Intu), where Ψ1 ⊕Ψ2 means the sum of the operators
Ψ1,Ψ2 : P(X)× P(X) → P(X) defined by (Ψ1 ⊕Ψ2)(A,B) = Ψ1(A,B) ∪Ψ2(A,B)
for any (A,B) ∈ P(X)× P(X).
We will determine all possible types of continuity understood as C(πu,Ψ1 ⊕ Ψ2)-
continuity or C(πl,Ψ1 ⊕Ψ2)-continuity, where

Ψ1,Ψ2 ∈{Int ◦πu, α Int ◦πu, s Int ◦πu, p Int ◦πu, γ Int ◦πu, β Int ◦πu}
∪ {Intl, α Intl, s Intl, p Intl, γ Intl, β Intl} , or

Ψ1,Ψ2 ∈{Int ◦πl, α Int ◦πl, s Int ◦πl, p Int ◦πl, γ Int ◦πl, β Int ◦πl}
∪ {Intu, α Intu, s Intu, p Intu, γ Intu, β Intu} , respectively.

2. New types of generalized continuity

The following theorem identifies all possible types of C(πu,Ψ1⊕Ψ2)-continuity, in the
case if Ψ1,Ψ2 ∈ Iπu

∪ Il, where
Iπu

= {Int ◦πu, α Int ◦πu, s Int ◦πu, p Int ◦πu, γ Int ◦πu, β Int ◦πu} , and
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Il = {Intl, α Intl, s Intl, p Intl, γ Intl, β Intl} .
In the parts (1)–(14) we set certain new types of continuity and we introduce their
abbreviations.

Theorem 2.1. Let F : (X, τ) → (Y, τ∗) be a multifunction and suppose that Ψ1

and Ψ2 are operators belonging to Iπu
∪ Il. Then C(πu,Ψ1 ⊕ Ψ2)-continuity of F is

equivalent to one of the following types of continuity:
(1) C(πu, α Int ◦πu ⊕ Intl)-continuity (briefly u.[α, c].c.),

(2) C(πu, s Int ◦πu ⊕ Intl)-continuity (briefly u.[q, c].c.),

(3) C(πu, s Int ◦πu ⊕ α Intl)-continuity (briefly u.[q, α].c.),

(4) C(πu, s Int ◦πu ⊕ p Intl)-continuity (briefly u.[q, p].c.),

(5) C(πu, p Int ◦πu ⊕ Intl)-continuity (briefly u.[p, c].c.),

(6) C(πu, p Int ◦πu ⊕ α Intl)-continuity (briefly u.[p, α].c),

(7) C(πu, p Int ◦πu ⊕ s Intl)-continuity (briefly u.[p, q].c.),

(8) C(πu, γ Int ◦πu ⊕ Intl)-continuity (briefly u.[γ, c].c.),

(9) C(πu, γ Int ◦πu ⊕ α Intl)-continuity (briefly u.[γ, α].c.),

(10) C(πu, β Int ◦πu ⊕ Intl)-continuity (briefly u.[β, c].c.),

(11) C(πu, β Int ◦πu ⊕ α Intl)-continuity (briefly u.[β, α].c.),

(12) C(πu, β Int ◦πu ⊕ s Intl)-continuity (briefly u.[β, q].c.),

(13) C(πu, β Int ◦πu ⊕ p Intl)-continuity (briefly u.[β, p].c.),

(14) C(πu, β Int ◦πu ⊕ γ Intl)-continuity (briefly u.[β, γ].c),

(15) u.s.c., u.α.c., u.q.c., u.p.c., u.γ.c. or u.β.c.,

(16) u.l.s.c., u.l.α.c., u.l.q.c., u.l.p.c., u.l.γ.c. or u.l.β.c.

Proof. The set Iπu
is closed with respect to the operation ⊕. Indeed, if Ψ1,Ψ2 ∈ Iπu

,
then by definition, there exist operators O1, O1 ∈ I (Remark 1.5), such that Ψ1 =
O1◦πu and Ψ2 = O2◦πu. So, Ψ1⊕Ψ2(A,B) = O1◦πu(A,B)∪O2◦πu(A,B) = O1(A)∪
O2(A) = O1 ∨ O2(A) = O1 ∨ O2 ◦ πu(A,B) for any (A,B) ∈ P(X)×⃗P(X). Since,
according to Remark 1.5, O1∨O2 ∈ I, this proves that Ψ1⊕Ψ2 ∈ Iπu . Consequently,
in the case when Ψ1,Ψ2 ∈ Iπu

, according to Lemma 1.12 (i), C(πu,Ψ1⊕Ψ2)-continuity
means one of the following: u.s.c., u.α.c., u.q.c., u.p.c., u.γ.c. or u.β.c.

Analogously, if Ψ1,Ψ2 ∈ Il then, since for any Ψ ∈ Il there exists O ∈ I0 (see
Remark 1.1), such that Ψ(A,B) = A ∩ O(B) for all (A,B) ∈ P(X)×⃗P(X), we have
Ψ1⊕Ψ2(A,B) = (A∩O1(B))∪(A∩O2(B)) = A∩(O1(B)∪O2(B)) = A∩O1∨O2(B) for
some O1, O1 ∈ I0. According to Remark 1.1, O1∨O2 ∈ I0, this proves that Ψ1⊕Ψ2 ∈
Il, consequently, the set Il is closed with respect to the operation ⊕. Therefore, in
the case when Ψ1,Ψ2 ∈ Il, Lemma 1.12 1.12 - implies that C(πu,Ψ1 ⊕Ψ2)-continuity
means one of the following: u.l.s.c., u.l.α.c., u.l.q.c., u.l.p.c., u.l.γ.c. or u.l.β.c.
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Now we will consider all the cases when Ψ1 ∈ Iπu and Ψ2 ∈ Il.
At first, let us assume that Ψ1 = Int ◦πu. Then, for every Ψ2 ∈ Il we have

Ψ1 ⊕Ψ2 = Ψ2. Indeed, since Ψ2 ∈ Il, then there exists O ∈ I0 such that Ψ2(A,B) =
A∩O(B) for all (A,B) ∈ P(X)×⃗P(X). So, Ψ1 ⊕Ψ2(A,B) = Int(A)∪ (A∩O(B)) =
A ∩O(B) = Ψ2(A,B) because Int(A) ⊂ A ∩O(B).

Now suppose that Ψ1 = α Int ◦πu. Then, in the case when Ψ2 = Intl, the operator
Ψ1⊕Ψ2 determines the relation noted in item (1), while in the case if Ψ2 ∈ Il \{Intl},
for every (A,B) ∈ P(X)×⃗P(X) we have Ψ2(A,B) = A∩O(B), where O ∈ I0 \{Int}.
Consequently, Ψ1 ⊕ Ψ2(A,B) = α Int(A) ∪ (A ∩ O(B)) = A ∩ O(B) = Ψ2(A,B)
because α Int(A) ⊂ A ∩O(B).

Next, we assume that Ψ1 = s Int ◦πu. Then, in the case when Ψ2 is equal to Intl
(resp. α Intl, p Intl), the operator Ψ1 ⊕Ψ2 determines the relation noted in item (2)
(resp. (3), (4)). In the other cases i.e., if Ψ2 ∈ Il \ {Intl, α Intl, p Intl}, we have
Ψ1 ⊕Ψ2 = Ψ2 for the same reason as in the previous parts of the proof.

Analogously to the above, if Ψ1 = p Int ◦πu and Ψ2 ∈ {Intl, α Intl, q Intl}, then
the operator Ψ1 ⊕ Ψ2 determines the relation noted in item (5), (6) or (7). And,
Ψ1 ⊕Ψ2 ∈ Il when Ψ2 ∈ Il \ {Intl, α Intl, q Intl}.

Suppose now that Ψ1 = γ Int ◦πu. If Ψ2 is equal to Intl or α Intl, then the operator
Ψ1 ⊕Ψ2 determines the relation noted in item (8) or (9), respectively.

If Ψ2 = s Intl, then we have

Ψ1 ⊕Ψ2(A,B) = γ Int(A) ∪ (A ∩ Cl(Int(B)))

= (A ∩ (Cl(Int(A)) ∪ Int(Cl(A)))) ∪ (A ∩ Cl(Int(B)))

= A ∩ (Cl(Int(A)) ∪ Int(Cl(A)) ∪ Cl(Int(B)))

= A ∩ (Int(Cl(A)) ∪ Cl(Int(B))) = (A ∩ Int(Cl(A))) ∪ (A ∩ Cl(Int(B)))

= p Int ◦πu(A,B) ∪ s Intl(A,B) = p Int ◦πu ⊕ s Intl(A,B),

for all (A,B) ∈ P(X)×⃗P(X), So, in this case the operator Ψ1 ⊕ Ψ2 determines the
relation noted in item (7).

Analogously, one can prove that γ Int ◦πu ⊕ p Intl = s Int ◦πu ⊕ p Intl. So, in
the case when Ψ2 = p Intl, the operator Ψ1 ⊕ Ψ2 determines the relation noted in
item (4). Finally, if Ψ2 = β Intl, analogously as in the previous parts one can prove
that Ψ1 ⊕Ψ2 = Ψ2.

Finally, if we assume that Ψ1 = β Int ◦πu, then for Ψ2 equal to Intl (resp. α Intl,
q Intl, p Intl, γ Intl), the operators Ψ1⊕Ψ2 determine the relations noted in item (10)
(resp. (11), (12), (13), (14)), while Ψ1 ⊕ β Intl = β Intl, which finishes the proof of
the theorem. □

We can directly express in the following way the new types of continuity listed as
items (1)–(14) in the above theorem, in terms of the inverse images of open subsets.

Lemma 2.2. For any multifunction F : (X, τ) → (Y, τ∗), the following pairs of state-
ments are equivalent:
(1) F is u.[α, c].c. and F+(W )⊂ Int(Cl(Int(F+(W ))))∪ Int(F−(W )) for each W∈τ∗,

(2) F is u.[q, c].c. and F+(W )⊂Cl(Int(F+(W )))∪ Int(F−(W )) for each W∈τ∗,
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(3) F is u.[q, α].c. F+(W )⊂Cl(Int(F+(W )))∪ Int(Cl(Int(F−(W )))) for each W∈τ∗,
(4) F is u.[q, p].c. and F+(W )⊂Cl(Int(F+(W )))∪ Int(Cl(F−(W ))) for each W∈τ∗,
(5) F is u.[p, c].c. and F+(W )⊂ Int(Cl(F+(W )))∪ Int(F−(W )) for each W∈τ∗,
(6) F is u.[p, α].c and F+(W )⊂ Int(Cl(F+(W )))∪ Int(Cl(Int(F−(W )))) for each W∈τ∗,
(7) F is u.[p, q].c. and F+(W )⊂ Int(Cl(F+(W )))∪Cl(Int(F−(W ))) for each W∈τ∗,
(8) F is u.[γ, c].c. and F+(W )⊂Cl(Int(F+(W )))∪ Int(Cl(F+(W )))∪ Int(F−(W )) for
each W∈τ∗,
(9) F is u.[γ, α].c. and F+(W ) ⊂ Cl(Int(F+(W ))) ∪ Int(Cl(F+(W )))
∪ Int(Cl(Int(F−(W )))) for each W∈τ∗,
(10) F is u.[β, c].c. and F+(W )⊂Cl(Int(Cl(F+(W ))))∪ Int(F−(W )) for each W∈τ∗,
(11) F is u.[β, α].c. and F+(W )⊂Cl(Int(Cl(F+(W ))))∪Int(Cl(Int(F−(W )))) for each
W∈τ∗,
(12) F is u.[β, q].c. and F+(W )⊂Cl(Int(Cl(F+(W ))))∪Cl(Int(F−(W ))) for each W∈τ∗,
(13) F is u.[β, p].c. and F+(W )⊂Cl(Int(Cl(F+(W ))))∪ Int(Cl(F−(W ))) for each W∈τ∗,
(14) F is u.[β, γ].c and F+(W ) ⊂ Cl(Int(Cl(F+(W )))) ∪ Cl(Int(F−(W )))
∪ Int(Cl(F−(W ))) for each W∈τ∗.

The use of the lower inverse images on the left side of the sign of inclusion in the
above lemma defines new types of continuity as follows.

Definition 2.3. Let F : (X, τ) → (Y, τ∗) be a multifunction. Then
(1) F is said to be l.[α, c].c. if F−(W )⊂ Int(Cl(Int(F+(W ))))∪ Int(F−(W )) for each
W∈τ∗,
(2) F is said to be l.[q, c].c. if F−(W )⊂Cl(Int(F+(W )))∪ Int(F−(W )) for eachW∈τ∗,
(3) F is said to be l.[q, α].c. if F−(W )⊂Cl(Int(F+(W )))∪ Int(Cl(Int(F−(W )))) for
each W∈τ∗,
(4) F is said to be l.[q, p].c. if F−(W )⊂Cl(Int(F+(W )))∪ Int(Cl(F−(W ))) for each
W∈τ∗,
(5) F is said to be l.[p, c].c. if F−(W )⊂ Int(Cl(F+(W )))∪ Int(F−(W )) for eachW∈τ∗,
(6) F is said to be l.[p, α].c if F−(W )⊂ Int(Cl(F+(W )))∪ Int(Cl(Int(F−(W )))) for
each W∈τ∗,
(7) F is said to be l.[p, q].c. if F−(W )⊂ Int(Cl(F+(W )))∪Cl(Int(F−(W ))) for each
W∈τ∗,
(8) F is said to be l.[γ, c].c. if F−(W )⊂Cl(Int(F+(W )))∪ Int(Cl(F+(W )))∪ Int(F−(W ))
for each W∈τ∗,
(9) F is said to be l.[γ, α].c. if F−(W ) ⊂ Cl(Int(F+(W ))) ∪ Int(Cl(F+(W )))
∪ Int(Cl(Int(F−(W )))) for each W ∈ τ∗,
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(10) F is said to be l.[β, c].c. if F−(W )⊂Cl(Int(Cl(F+(W ))))∪ Int(F−(W )) for each
W∈τ∗,
(11) F is said to be l.[β, α].c. if F−(W )⊂Cl(Int(Cl(F+(W ))))∪Int(Cl(Int(F−(W ))))
for each W∈τ∗,
(12) F is said to be l.[β, q].c. if F−(W )⊂Cl(Int(Cl(F+(W ))))∪Cl(Int(F−(W ))) for
each W∈τ∗,
(13) F is said to be l.[β, p].c. if F−(W )⊂Cl(Int(Cl(F+(W ))))∪ Int(Cl(F−(W ))) for
each W∈τ∗,
(14) F is said to be l.[β, γ].c if F−(W ) ⊂ Cl(Int(Cl(F+(W )))) ∪ Cl(Int(F−(W )))
∪ Int(Cl(F−(W ))) for each W∈τ∗.

The above lemma shows that, analogously as in Theorem 2.1, these types of conti-
nuity can be presented in terms of relations i.e., as types of C(πl,Ψ1⊕Ψ2)-continuity,
in the case if Ψ1,Ψ2 ∈ Iπl

∪ Iu, where
Iπl

= {Int ◦πl, α Int ◦πl, s Int ◦πl, p Int ◦πl, γ Int ◦πl, β Int ◦πl} and

Iu = {Intu, α Intu, s Intu, p Intu, γ Intu, β Intu} .

Lemma 2.4. Let F : (X, τ) → (Y, τ∗) be a multifunction and suppose that Ψ1 and Ψ2

are operators belonging to Iπl
∪Iu. Then C(πl,Ψ1⊕Ψ2)-continuity of F is equivalent

to one of the following types of continuity:
(1) C(πl, α Intu ⊕ Int ◦πl)-continuity or, equivalently, l.[α, c].c.,

(2) C(πl, s Intu ⊕ Int ◦πl)-continuity or, equivalently, l.[q, c].c.,

(3) C(πl, s Intu ⊕α Int ◦πl)-continuity or, equivalently, l.[q, α].c.,

(4) C(πl, s Intu ⊕p Int ◦πl)-continuity or, equivalently, l.[q, p].c.,

(5) C(πl, p Intu ⊕ Int ◦πl)-continuity or, equivalently, l.[p, c].c.,

(6) C(πl, p Intu ⊕α Int ◦πl)-continuity or, equivalently, l.[p, α].c,,

(7) C(πl, p Intu ⊕q Int ◦πl)-continuity or, equivalently, l.[p, q].c.

(8) C(πl, γ Intu ⊕ Int ◦πl)-continuity or, equivalently, l.[γ, c].c.,

(9) C(πl, γ Intu ⊕α Int ◦πl)-continuity or, equivalently, l.[γ, α].c.,

(10) C(πl, β Intu ⊕ Int ◦πl)-continuity or, equivalently, l.[β, c].c.,

(11) C(πl, β Intu ⊕α Int ◦πl)-continuity or, equivalently, l.[β, α].c.,

(12) C(πl, β Intu ⊕q Int ◦πl)-continuity or, equivalently, l.[β, q].c.,

(13) C(πl, β Intu ⊕p Int ◦πl)-continuity or, equivalently, l.[β, p].c.,

(14) C(πl, β Intu ⊕γ Int ◦πl)-continuity or, equivalently, l.[β, γ].c,

(15) l.s.c., l.α.c., l.q.c., l.p.c., l.γ.c. or l.β.c.,

(16) l.u.s.c., l.u.α.c., l.u.q.c., l.u.p.c., l.u.γ.c. or l.u.β.c.
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The relationships between the operators that are used in the characterizations
given in Remark 1.3, Lemma 1.9, Lemma 2.2 and Definition 2.3 designate the appro-
priate relationships between types of continuity.

Below we present the relationship between these operators, where we have used
the short notation k and i [31] to represent Cl and Int, respectively. So, the operators
Int, Int ◦Cl ◦ Int, Cl ◦ Int, Int ◦Cl, Cl ◦ Int∨ Int ◦Cl and Cl ◦ Int ◦Cl take the forms i,
iki, ki, ik, ki ∨ ik and kik, respectively.

The presented below diagram, where (A,B) ∈ P(X)×⃗P(X), shows the inclusion
relationships between the values of topological operators used to define the types of
generalized continuity of multifunctions F : (X, τ) → (Y, τ∗) by taking all pairs (A,B)
of the form A = F+(W ) and B = F−(W ), where W ∈ τ∗.

kik(B)
6

ki ∨ ik(B) - kik(A) ∪ ki ∨ ik(B)
6 6

ik(B) - ki(A) ∪ ik(B) - kik(A) ∪ ik(B)

����*
����*

��
��*

����*
����*

ik(A) ∪ ki(B) - kik(A) ∪ ki(B)
6 6

ik(A) ∪ iki(B) - ki ∨ ik(A) ∪ iki(B)-

��
��*

��
��*

��
��*

ki(B)
6

iki(B) - ki(A) ∪ iki(B)
6 6

�
���*

�
��*

iki(A) ∪ i(B) - ki(A) ∪ i(B)
6 6

�
���*

�
���*

iki(A) - ki(A)

6 6

ik(A) ∪ i(B) - ki ∨ ik(A) ∪ i(B) -

kik(A) ∪ iki(B)
6

kik(A) ∪ i(B)
6 6 6

kik(A)ik(A) - ki ∨ ik(A) -

����*

i(B)
6

i(A)
����*

Diagram 1

The diagram below presents all types of C(πl,Ψ1⊕Ψ2)-continuity listed in Lemma 2.4.
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l.β.c.
6

l.γ.c. - l.[β, γ].c.
6 6

l.p.c. - l.[q, p].c. - l.[β, p].c.

���*
���*

���*

���*
���*

l.[p, q].c. - l.[β, q].c
6 6

l.[p, α].c. - l.[γ, α].c. -

���*
���*

��
��*

l.q.c.
6

l.α.c. - l.[q, α].c.
6 6

�
��*

�
��*

l.[α, c].c. - l.[q, c].c.

6 6

�
��*

�
��*

l.u.α.c. - l.u.q.c.

6 6

l.[p.c.].c. - l.[γ, c].c. -

l.[β, α].c.
6

l.[β, c].c.

6 6 6

l.u.β.c.l.u.p.c. - l.u.γ.c. -

���*

l.s.c.
6

l.u.s.c.
����*

Diagram 2

The classes of multifunctions presented in the above diagram are strictly different
as the following example shows.

Example 2.5. We consider a multifunctions F : (X, τ) → (X, τ∗), where X is the
set of all real numbers, τ is the natural topology on X and τ∗ is generated by
{(−∞, r) : r ∈ R}. We will denote the set of all rational numbers by Q.
(E1) Let us define F by

F (0) = X, F (x) =

{
(−∞,− ln(−x)) if x < 0,

(−∞,− ln(x)) if x > 0.

If W = (−∞, r) for some r ∈ X, then

F+(W ) = (−∞,− exp(−r)] ∪ [exp(−r),+∞) and F−(W ) = X.
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So, the set F−(W ) is open and F−(W ) ̸⊂ Cl(Int(Cl(F+(W )))) which proves that F
is l.s.c., but not l.u.β.c.

(E2) We define F by

F (0) = X, F (x) =


{− ln(x)} if x ∈

{
1
n : n = 1, 2, . . .

}
,

(−∞,− ln(x)] if x ∈ (0,+∞) \
({

1
n : n = 1, 2, . . .

})
,

{− ln(−x)} if x ∈
{
− 1

n : n = 1, 2, . . .
}
,

(−∞,− ln(−x)] if x ∈ (−∞, 0) \
({

− 1
n : n = 1, 2, . . .

})
.

If W = (−∞, r) for some r ∈ X, then

F+(W ) = (−∞,− exp(−r)) ∪ (exp(−r),+∞) and

F−(W ) = X \ (
{
− 1

n
: − exp(−r) < − 1

n

}
∪
{
1

n
:
1

n
< exp(−r)

}
).

So, Int(F−(W )) = F−(W )\{0}, Int(Cl(IntF−(W ))) = X, and Cl(Int(Cl(F+(W )))) =
(−∞,− exp(−r)]∪ [exp(−r),+∞). Hence F−(W ) ⊂ Int(Cl(Int(F−(W )))) and F−(W )
̸⊂ Cl(Int(Cl(F+(W ))))∪ Int(F−(W )) which proves that F is l.α.c, but not l.[β, c].c.

(E3) If we define F by

F (0) = X, F (x) =

{
{− ln(−x)} if x < 0,

(−∞,− ln(x)] if x > 0,

then for any W = (−∞, r), where r ∈ X, we have

F+(W )= (−∞,− exp(−r))∪ (exp(−r),+∞) and F−(W )= (−∞,− exp(−r))∪ [0,+∞) .

So, Cl(Int(F−(W )))= (−∞,− exp(−r)]∪[0,+∞), Int(Cl(F−(W )))= (−∞,− exp(−r))∪
(0,+∞) and Cl(Int(Cl(F+(W ))))= (−∞,− exp(−r)]∪[exp(−r),+∞). Hence, F−(W ) ⊂
Cl(Int(F−(W ))) and F−(W ) ̸⊂ Cl(Int(Cl(F+(W )))) ∪ Int(Cl(F−(W ))). This proves
that F is l.q.c, but not l.[β, p].c.

(E4) We define F by

F (0) = X, F (x) =


{− ln(x)} if x > 0,

(−∞,− ln(−x)] if x ∈ Q ∩ (−∞, 0),

[− ln(−x),∞) if x ∈ (−∞, 0) \Q.

If W = (−∞, r) for some r ∈ X, then

F+(W ) = ((−∞,− exp(−r)) ∩Q) ∪ (exp(−r),+∞) and

F−(W ) = (−∞,− exp(−r)) ∪ ([− exp(−r), 0] ∩Q) ∪ (exp(−r),∞).

Then Cl(Int(F−(W )))∪Int(Cl(F−(W ))) = (−∞, 0)∪[exp(−r),∞), Cl(Int(Cl(F+(W ))))
= (−∞,− exp(−r))∪[exp(−r),∞) and Cl(Int(Cl(F−(W )))) = (−∞, 0]∪[exp(−r),∞).
So, F−(W ) ⊂ Cl(Int(Cl(F−(W )))) and F−(W ) ̸⊂ Cl(Int(F−(W )))∪Int(Cl(F−(W )))
which proves that F is l.β.c, but not l.[β, γ].c.
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(E5) Let us define F by

F (0) = X, F (x) =


{− ln(−x)} if x ∈

{
− 1

n : n = 1, 2, . . .
}
,

{− ln(x)} if x ∈
{

1
n : n = 1, 2, . . .

}
,

{ln(−x)} if x ∈ (−∞, 0) \
{
− 1

n : n = 1, 2, . . .
}
,

{ln(x)} if x ∈ (0,+∞) \
{

1
n : n = 1, 2, . . .

}
.

If W = (−∞, r) for some r ∈ X, then

F+(W ) = (− exp(r), exp(r)) \ (
{
− 1

n
: − exp(−r) < − 1

n

}
∪ {0} ∪

{
1

n
:
1

n
< exp(−r)

}
),

F−(W ) = F+(W ) ∪ {0} .
So IntF−(W ) = F+(W ) and Int(Cl(Int(F+(W )))) = (− exp(r), exp(r)). Conse-
quently, F−(W ) ̸⊂ Int(F−(W ) and F−(W ) ⊂ Int(Cl(Int(F+(W )))) which proves
that F is l.u.α.c but not l.s.c.

(E6) We define F by

F (0) = X, F (x) =


{ln(−k)} if x ∈ [k−1, k) where k = −1,−2, . . .{
ln(− 1

n+1 )
}

if x ∈
[
− 1

n ,−
1

n+1

)
where n = 1, 2, . . .

{ln(k)} if x ∈ (k, k+1] where k = 1, 2, . . .{
ln( 1

n+1 )
}

if x ∈
(

1
n+1 ,

1
n

]
where n = 1, 2, . . .

Let W = (−∞, r) for some r ∈ X, then F−(W ) = [− exp(r)−ϵ), exp(r)+ϵ)] and
F+(W ) = F−(W ) \ {0} for some ϵ ∈ [0, 1). So, F−(W ) = Cl(Int(F+(W ))) and
F−(W ) ̸⊂ Int(Cl(F−(W )) which proves that F is l.u.q.c. but not l.p.c.

(E7) Let F be defined by

F (0) = X, F (x) =


{ln(−x)} if x ∈ Q ∩ (−∞, 0) ,

{ln(−x)+1} if x ∈ (−∞, 0) \Q,

{ln(x)} if x ∈ Q ∩ (0,+∞) ,

{ln(x)+1} if x ∈ (0,+∞) \Q.

If W = (−∞, r) for some r ∈ X, then

F+(W ) =((− exp(r),− exp(r−1)] ∩Q) ∪ (− exp(r−1), 0)

∪ (0, exp(r−1)) ∪ ([exp(r−1), exp(r)) ∩Q)

F−(W ) =F+(W ) ∪ {0} .
Hence, Int(Cl(F+(W ))) = (− exp(r), exp(r)) and Cl(Int(F−(W )))
= [− exp(r−1), exp(r−1)]. So, F−(W ) ⊂ Int(Cl(F+(W ))) and F−(W ) ̸⊂ Cl(Int(F−(W )))
which proves that F is l.u.p.c. but not l.q.c.

(E8) We define F by

F (0) = X, F (x) =


{− ln(−x)} if x ∈ (−∞, 0) ,

{− ln(x)} if x ∈ (0,+∞) ∩Q,

{ln(x)} if x ∈ (0,+∞) \Q.
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If W = (−∞, r) for some r ∈ X, then

F+(W ) = (−∞,− exp(−r)) ∪ ((0, exp(−r)] \Q) ∪ (exp(−r), exp(r))

∪ ([exp(r),+∞) ∩Q),

F−(W ) = F+(W ) ∪ {0} ,
Cl(F+(W )) = (−∞,− exp(−r)] ∪ [0,+∞) = Cl(Int(Cl(F+(W )))),

Cl(Int(F−(W ))) = (−∞,− exp(−r)] ∪ [exp(−r), exp(r)]

and Int(Cl(F−(W ))) = (−∞, exp(−r))∪(0,+∞). So, F−(W ) ⊂ Cl(Int(Cl(F+(W ))))
and F−(W ) ̸⊂ Cl(Int(F−(W )))∪Int(Cl(F−(W ))) which proves that F is l.u.β.c., but
not l.γ.c.

(E9) Let us define F by

F (0) = X, F (x) =


(−∞, ln(−x)] if x ∈ (−∞, 0)

(−∞, ln(x)] if x ∈ (0,+∞) ∩Q

[ln(x),+∞, ) if x ∈ (0,+∞) \Q
.

If W = (−∞, r) for some r ∈ X, then

F+(W ) = (− exp(r), 0) ∪ ((0, exp(r)) ∩Q),

F−(W ) = (−∞, exp(r)) ∪ ([exp(r),+∞) ∩Q)

and consequently, Cl(Int(Cl(F+(W )))) = [(− exp(r), exp(r)], Cl(Int(F−(W ))) = (−∞, exp(r)]
and Int(Cl(F−(W ))) = X. So F−(W ) ⊂ Int(Cl(F−(W ))), but F−(W ) ̸⊂ Cl(Int(Cl(F+(W ))))∪
Cl(Int(F−(W ))) which proves that F is l.p.c., but not l.[β, q].c.

Analogously as in Diagram 2, we present below all types of C(πu,Ψ1 ⊕ Ψ2)-
continuity listed in Theorem 2.1.

The following example shows that the classes of multifunctions presented in Dia-
gram 3 are strictly different.

Example 2.6. In the first part we consider the multifunction F : (X, τ) → (X, τ∗),
where X is the set of all real numbers, τ is the natural topology on X and τ∗ is
generated by {(−∞, r) : r ∈ X}. In the other parts we will consider the examples
of multifunctions F : (X, τ) → (Y, τu), where Y = [0,+∞, ) and τu is generated by
{[0, r) : r ∈ X}.
(E1) Let F be defined by

F (0) = X, F (x) =


[ln(−x),+∞, ) if x ∈ (−∞, 0) \

{
− 1

n : n = 1, 2, . . .
}
,

{ln(−x)} if x ∈
{
− 1

n : n = 1, 2, . . .
}
,

[ln(x),+∞, ) if x ∈ (0,+∞) \
{

1
n : n = 1, 2, . . .

}
,

{ln(x)} if x ∈
{

1
n : n = 1, 2, . . .

}
.

If W = (−∞, r) for some r ∈ X, then

F+(W ) =

{
− 1

n
: − 1

n
> − exp(r)

}
∪
{
1

n
:
1

n
< exp(r)

}
, and

F−(W ) = (− exp(r), exp(r)) .



238 γ-continuity for multifunctions

So, Cl(Int(Cl(F+(W )))) = ∅ and F−(W ) = Int(F−(W )). Consequently, F+(W ) ⊂
Int(F−(W )) and F−(W ) ̸⊂ Cl(Int(Cl(F+(W )))) which proves that F is u.l.s.c. but
but not u.β.c.

(E2) Let F be defined as follows:

F (0) = {0} ,

F (
1

n
) =

{
1

n

}
, for n = 1, 2, . . . ,

F (x) =

{
[x,+∞) if x ∈ (0,+∞) \

{
1
n : n = 1, 2, . . .

}
,

[−x,+∞, ) if x ∈ (−∞, 0) \
{
− 1

n : n = 1, 2, . . .
}
,

F (− 1

n
) = {n} , for n = 1, 2, . . .

If W = [0, r) for some r ∈ X, then

F+(W ) =

{
− 1

n
: − 1

n
< −1

r

}
∪ {0} ∪

{
1

n
:
1

n
< r

}
, and

F−(W ) = (−r, r) \
{
− 1

n
: − 1

n
> −1

r

}
.

So, Int(F−(W )) = F−(W )\{0}, Int(Cl(Int(F−(W )))) = (−r, r) and Cl(Int(Cl(F+(W ))))
= ∅. Consequently, F+(W ) ⊂ Int(Cl(Int(F−(W )))) but F+(W ) ̸⊂ Cl(Int(Cl(F+(W ))))
∪ Int(F−(W )). So, F is u.l.α.c. but not u.[β.c].c.

(E3) Define F by

F (0) = {0} ,

F (
1

n
) =

{
1

n

}
, for n = 1, 2, . . . ,

F (x) = [x,+∞) , if x ∈ (0,+∞) \
{
1

n
: n = 1, 2, . . .

}
,

F (k) =

{
−1

k

}
, for k = −1,−2, . . . , and

F (x) =

[
− 1

x
,+∞,

)
, if x ∈ (−∞, 0) \ {k = −1,−2, . . .} .

If W = [0, r), where r ∈ X, then F+(W ) =
{
−k : −k < − 1

r

}
∪{0}∪

{
1
n : 1

n < r
}
and

F−(W ) =
(
∞,− 1

r

)
∪ [0, r). So, Cl(Int(Cl(F+(W )))) = ∅ and Cl(Int(F−(W )))) =

Cl(F−(W )).

Consequently, F+(W ) ⊂ Cl(Int(F−(W ))) but F+(W ) ̸⊂ Cl(Int(Cl(F+(W )))) ∪
Int(Cl(F−(W ))). Therefore, F is u.l.q.c. but not u.[β.p].c

(E4) We define F by

F (0) = {0}

F (
1

n
) =

{
1

n

}
, for n = 1, 2, . . . ,
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F (x) = [x,+∞) , if x ∈ (Q ∩ (0, 1)) \
{
1

n
: n = 1, 2, . . .

}
,

F (x) =

[
1

x
,+∞

)
, if x ∈ ((0, 1) \Q) ∪ (1,+∞) ,

F (x) =

{
− 1

x

}
, if x ∈ (−∞, 0) .

If W = [0, r), where r ∈ X, then

F+(W )=

(
−∞,−1

r

)
∪ {0} ∪

{
1

n
:
1

n
< r

}
F−(W )=F+(W ) ∪ ([0, r) ∩Q) ∪

(
1

r
,+∞

)
Int(F−(W ))=

(
−∞,−1

r

)
∪
(
1

r
,+∞

)
Cl(F−(W ))=Cl(Int(Cl(F−(W ))))=

(
∞,−1

r

]
∪ [0, r] ∪

[
1

r
,+∞

)
Int(Cl(F−(W )))=

(
∞,−1

r

)
∪ (0, r) ∪

(
1

r
,+∞

)
, and Cl(Int(Cl(F+(W )))=

(
∞,−1

r

]
.

So, F+(W ) ⊂ Cl(Int(Cl(F−(W )))) and F+(W ) ̸⊂ Cl(Int(Cl(F+(W )))∪Cl(Int(F−(W )))
∪ Int(Cl(F−(W ))) which proves that F is u.l.β.c. but not u.[β.γ].c.

(E5) Let us define F as follows:

F (0) = {0}

F (
1

n
) = F (− 1

n
) = [n,+∞) , for n = 1, 2, . . . ,

F (x) = {x} , if x ∈ (0, 1) \
{
1

n
: n = 1, 2, . . .

}
F (x) = {−x} , if x ∈ (−1, 0) \

{
− 1

n
: n = 1, 2, . . .

}
F (x) =

[
1

x
,+∞

)
, if x ∈ (1,+∞) and

F (x) =

[
− 1

x
,+∞

)
, if x ∈ (−∞,−1) .

If W = [0, r), where r ∈ X, then F+(W ) = (−1, 1)\(
{
− 1

n : −r < − 1
n

}
∪
{

1
n : 1

n < r
}
)

and F−(W ) = F+(W ) ∪
(
−∞,− 1

r

)
∪
(
1
r ,∞

)
.

So, Int(Cl(Int(F+(W )))) = (−1, 1) and 0 /∈ Int(F−(W )), and consequently, F+(W ) ⊂
Int(Cl(Int(F+))) but F+(W ) ̸⊂ Int(F−(W )). This proves that F is u.α.c. but not
u.l.s.c.

(E6) Let F be defined by

F (0) = {0} ,
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F (x) = {x} , if x ∈ Q ∩ (0, 1) \
{
1

n
: n = 1, 2, . . .

}
,

F (x) =

[
1

x
,+∞

)
, if x ∈ ((0, 1) \Q) ∪

{
1

n
: n = 1, 2, . . .

}
,

F (x) = [0,+∞) , if x ∈ [1,+∞) and

F (x) =

{
− 1

x

}
, if x < 0.

If W = [0, r), where r ∈ X, then

F+(W ) =

(
−∞,−1

r

)
∪ ((Q ∩ [0, r)) \

{
1

n
:
1

n
< r, n = 1, 2, . . .

}
), if r ≤ 1, or

F+(W ) =

(
−∞,−1

r

)
∪ ((Q ∩ [0, 1)) \

{
1

n
: n = 1, 2 . . .

}
), if r > 1, or

F−(W ) = F+(W ) ∪ [1,+∞) , if r ≤ 1, or

F−(W ) = F+(W ) ∪
(
1

r
,+∞

)
, if r > 1.

So, Cl(F+(W )) = Cl(Int(Cl(F+(W )))) =
(
−∞,− 1

r

]
∪ [0, r] if r ≤ 1, or Cl(F+(W )) =

Cl(Int(Cl(F+(W )))) =
(
−∞,− 1

r

]
∪[0, 1] if r > 1 and, Cl(Int(F−(W ))) =

(
−∞,− 1

r

]
∪

[1,+∞) if r ≤ 1, or Cl(Int(F−(W ))) =
(
−∞,− 1

r

]
∪
[
1
r ,+∞

)
if r > 1. Consequently,

F+(W ) ⊂ Cl(In(Cl(F+(W )))) but, since 0 /∈ Int(Cl(F−(W )))∪Cl(Int(F−(W ))), we
have F+(W ) ̸⊂ Int(Cl(F−(W )))∪Cl(Int(F−(W ))) which proves that F is u.β.c. but
not u.l.γ.c.

(E7) Let F be defined as follows:

F (0) = {0} ,

F (
1

n
) = F (− 1

n
) =

{
1

n

}
, for n = 1, 2, . . . ,

F (x) = [x,+∞) , if x ∈ (Q ∩ ((0, 1)) \
{
1

n
: n = 1, 2, . . .

}
,

F (x) =

[
1

x
,+∞

)
, if x ∈ (((0, 1) \Q) ∪ (1,+∞)) \

{
1

n
: n = 1, 2, . . .

}
,

F (x) = [−x,+∞) , if x ∈ (Q ∩ ((−1, 0)) \
{
− 1

n
: n = 1, 2, . . .

}
and

F (x) =

[
− 1

x
,+∞

)
, if x ∈ (((−1, 0)−Q) ∪ (−∞,−1)) \

{
− 1

n
: n = 1, 2, . . .

}
.

Let W = [0, r), where r ∈ X, then we have F+(W ) =
{
− 1

n : − 1
n > −r

}
∪ {0} ∪{

1
n : 1

n < r
}
and, F−(W )

(
−∞,− 1

r

)
∪((−r, r)∩Q)∪

(
1
r ,+∞

)
if r ≤ 1, or F+(W )

(
−∞,− 1

r

)
∪ (

(
− 1

r ,
1
r

)
∩ Q) ∪

(
1
r ,+∞

)
if r > 1. Consequently, In(Cl(BW )) =

(
−∞,− 1

r

)
∪

(−r, r) ∪
(
1
r ,+∞

)
if r ≤ 1, or Int(Cl(F+(W ))) = X if r > 1 and, Cl(Int(F+(W ))) =(

−∞,− 1
r

]
∪
[
1
r ,+∞

)
. So, F+(W ) ⊂ Int(Cl(F−(W ))) but F−(W ) ̸⊂ Cl(Int(Cl(F+(W ))))
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∪ Cl(Int(F−(W ))) which proves that F is u.l.p.c. but not u.[β, q].c.

(E8) The multifunction from Example 2.5 (E6) is u.q.c. but not u.l.p.c.

(E9) The multifunction from Example 2.5 (E8) is u.p.c. but not ul.q.c.

u.l.β.c.
6

u.l.γ.c. - u.[β, γ].c.
6 6

u.l.p.c. - u.[q, p].c. - u.[β, p].c.

���*
���*

���*

���*
���*

u.[p, q].c. - u.[β, q].c
6 6

u.[p, α].c. - u.[γ, α].c. -

�
��*

�
��*

�
���*

u.l.q.c.
6

u.l.α.c. - u.[q, α].c.
6 6

�
��*

�
��*

u.[α, c].c. - u.[q, c].c.

6 6

���*
���*

u.α.c. - u.q.c.

6 6

u.[p.c.].c. - u.[γ, c].c. -

u.[β, α].c.
6

u.[β, c].c.

6 6 6

u.β.c.u.p.c. - u.γ.c. -

���*

u.l.s.c.
6

u.s.c.
��

��*

Diagram 3
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