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AN INTRODUCTION TO U-METRIC SPACE AND NON-LINEAR
CONTRACTION WITH APPLICATION TO THE STABILITY OF

FIXED POINT EQUATION

Kushal Roy, Mantu Saha and Debashis Dey

Abstract. In this paper, we introduce the notion of U-metric space of n-tuples which
generalizes several known metric type spaces. Also we study the topological properties of
such newly constructed spaces and prove Cantor’s intersection like theorem therein. Banach
contraction principle theorem has been proved in this space and finally we apply the theorem
to obtain the stability of a fixed point equation.

1. Introduction and preliminaries

Generalizations of metric structure are an interesting topic in analysis and are covered
by a vast literature. Recently, Abbas et al. [1] have introduced the notion of A-metric
space by extending S-metric space of three variables to n-tuples (n ≥ 2).

Definition 1.1. Let X be a nonempty set and A : Xn → [0,+∞) be a mapping.
Then the function A is said to be an A-metric, if it satisfies the following conditions:
(A1) A(x1, x2, ... , xn) = 0 if and only if x1 = x2 = ... = xn,

(A2) A(x1, x2, ... , xn) ≤
∑n

i=1 A(xi, xi, ... , (xi)n−1, a) for all x1, x2, ... , xn, a ∈ X.

Example 1.2. Let X = R. Define A : Xn → [0,+∞) by

A(x1, x2, ... , xn) =|
n∑

i=2

xi − (n− 1)x1|+ |
n∑

i=3

xi − (n− 2)x2|+ ...

+ |
n∑

i=n−1

xi − 2xn−2|+ |xn − xn−1|

for all x1, x2, ... , xn ∈ X. Then (X,A) is an A-metric space.
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In 2017, Ughade et al. [9] investigated the concept of Ab-metric space involving
the concepts of A-metric space and b-metric space as follows.

Definition 1.3. Let X be a nonempty set and Ab : Xn → [0,+∞) be a mapping.
The mapping Ab is said to be an Ab-metric with coefficient s ≥ 1, if it satisfies the
following conditions:
(Ab1) Ab(x1, x2, ... , xn) = 0 if and only if x1 = x2 = ... = xn,

(Ab2) Ab(x1, x2, ... , xn) ≤ s
∑n

i=1 Ab(xi, xi, ... , (xi)n−1, a)
for all x1, x2, ... , xn, a ∈ X.

Example 1.4. Let X = [1,+∞). Let us define Ab : X
n → [0,+∞) by

Ab(x1, x2, ... , xn) =

n−1∑
i=1

∑
i<j

|xi − xj |2

for all x1, x2, ... , xn ∈ X. Then (X,Ab) is an Ab-metric space with coefficient s = 2.

In the same year, Kamran et al. [7] generalized the concept of b-metric spaces by
using a function instead of a constant coefficient in the definition.

Definition 1.5. Let X be a nonempty set and θ : X × X → [1,+∞). A function
dθ : X2 → [0,+∞) is called an extended b-metric if for all x, y, z ∈ X it satisfies:
(dθ1) dθ(x, y) = 0 if and only if x = y,

(dθ2) dθ(x, y) = dθ(y, x),

(dθ3) dθ(x, z) ≤ θ(x, z)[dθ(x, y) + dθ(y, z)].
The pair (X, dθ) is called an extended b-metric space.

Example 1.6. [7] Let X = {1, 2, 3}. Define θ : X2 → R+ and dθ : X ×X → R+ as:

θ(x, y) = 1 + x+ y

dθ(1, 1) = dθ(2, 2) = dθ(3, 3) = 0

dθ(1, 2) = dθ(2, 1) = 80, dθ(1, 3) = dθ(3, 1) = 1000, dθ(2, 3) = dθ(3, 2) = 600

Then (X, dθ) is an extended b-metric space.

The above example is also a b-metric space but here we give an example which is
an extended b-metric space without being a b-metric space.

Example 1.7. Let X = N and d : X2 → [0,∞) be given by

d(y, x) = d(x, y) =


0, if x = y;
1
n , if x = 1, y = n > 1;

l(> 0), if x = n > 1, y = m > 1.

Then d is an extended b-metric with

θ(y, x) = θ(x, y) =


1, if x = y;

1 + 1
nl , if x = 1, y = n > 1;

1 + nml
n+m , if x = n > 1, y = m > 1.
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But d is not a b-metric for any s > 1 since l = d(n,m) ≤ s[d(n, 1) + d(1,m)] → 0 as
n(> 1),m(> 1) → ∞.

On the other hand, Hussain et al. [4] defined and studied the properties of a
parametric metric space as follows.

Definition 1.8. Let X be a nonempty set and dP : X2 × (0,+∞) → [0,+∞) be a
mapping. Then dP is said to be a parametric metric if for all x, y, z ∈ X
(dP1) dP(x, y, r) = 0 for all r > 0 if and only if x = y,

(dP2) dP(x, y, r) = dP(y, x, r) for all r > 0,

(dP3) dP(x, z, r) ≤ dP(x, y, r) + dP(y, z, r) for all r > 0.

Example 1.9. Let X be the collection of all functions g : (0,+∞) → R. If one defines
dP : X2 × (0,+∞) → [0,+∞) by dP(g, h, r) = |g(r) − h(r)| for all r > 0 and for all
g, h ∈ X then it can be easily seen that dP is a parametric metric on X.

In view of the above considerations, the aim of this paper is to define a proper
generalization of previous structures by a unified approach. For this purpose, we first
introduce a generalized metric type space called U-metric space and then study some
of its topological properties.

2. Introduction of U-metric spaces

Definition 2.1. Let X be a nonempty set and let U : Xn × (0,+∞) → [0,+∞)
be a mapping. Then the function U is called a U-metric if it satisfies the following
conditions:
(U1) U(x1, x2, ... , xn; θ) = 0 if and only if x1 = x2 = ... = xn, for any θ ∈ (0,+∞),

(U2) U(x1, x2, ... , xn; θ) ≤ α(x1, x2, ... , xn; θ)
∑n

i=1 U(xi, xi, ... , (xi)n−1, a; θ) for all
x1, x2, ... , xn, a ∈ X and θ > 0, where α : Xn×(0,+∞) → [1,+∞) is a given function.

The U-metric is called symmetric if, for any x1, x2 ∈ X, U(x1, x1, ... , x1, x2; θ) =
U(x2, x2, ... , x2, x1; θ) for all θ ∈ (0,+∞).

Example 2.2. Let X be the set of all real valued continuous functions with do-
main (0,+∞) and U : Xn × (0,+∞) → [0,+∞) be defined by U(f1, f2, ... , fn; θ) =∑n−1

i=1

∑n
j=i+1 |fi(θ) − fj(θ)|2 for all f1, f2, ... , fn ∈ X and θ > 0. Then U is an

U-metric on X with α(f1, f2, ... , fn; θ) = 2 for all f1, f2, ... , fn ∈ X and θ ∈ (0,+∞).

Example 2.3. Let X = C0(0,+∞), the space of all real valued continuous mappings
with domain (0,+∞) and let us define

U(f1, f2, ... , fn; θ) =

n−1∑
i=1

∑
i<j

|fi(θ)− fj(θ)|2 + (

n−1∑
i=1

∑
i<j

|fi(θ)− fj(θ)|2)2
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for all f1, f2, ... , fn ∈ X and for all θ ∈ (0,∞). Let us choose f1, f2, ... , fn, g ∈ X
arbitrarily. Then

U ∗ (fi, fi, ... , (fi)n−1, g; θ) = (1 + (n− 1)|fi(θ)− g(θ)|2)(n− 1)|fi(θ)− g(θ)|2 (1)

for all i = 1(1)n. Then, from (1) we get
n∑

i=1

U(fi, fi, ... , (fi)n−1, g; θ) =

n∑
i=1

(1 + (n− 1)|fi(θ)− g(θ)|2)(n− 1)|fi(θ)− g(θ)|2

≥(n− 1)

n∑
i=1

|fi(θ)− g(θ)|2. (2)

Thus using (2) we have

U(f1, f2, ... , fn; θ) =

n−1∑
i=1

∑
i<j

|fi(θ)−fj(θ)|2+(

n−1∑
i=1

∑
i<j

|fi(θ)−fj(θ)|2)2

≤ (1+

n−1∑
i=1

∑
i<j

|fi(θ)−fj(θ)|2)
n−1∑
i=1

∑
i<j

|fi(θ)−g(θ)+g(θ)−fj(θ)|2

≤ 2(1+

n−1∑
i=1

∑
i<j

|fi(θ)−fj(θ)|2)
n−1∑
i=1

∑
i<j

[|fi(θ)−g(θ)|2+|g(θ)−fj(θ)|2]

≤ 2
n(n−1)

2
(1+

n−1∑
i=1

∑
i<j

|fi(θ)−fj(θ)|2)
n∑

i=1

|fi(θ)−g(θ)|2

≤ n(1+

n−1∑
i=1

∑
i<j

|fi(θ)−fj(θ)|2)
n∑

i=1

U(fi, fi, ... , (fi)n−1, g; θ).

Hence U is a U-metric space with α(f1, f2, ... , fn; θ) = n(1 +
∑n−1

i=1

∑
i<j |fi(θ) −

fj(θ)|2) for all f1, f2, ... , fn ∈ X and for all θ ∈ (0,+∞).

Example 2.4. Let us consider the space X = C0(0,+∞) and define the mapping

U(f1, ... , fn; θ) =


(1 + 1

n∑
i=1

|fi(θ)|
)
n−1∑
i=1

∑
i<j

|fi(θ)− fj(θ)|2, if any one of fi(θ) is non zero

0, if f1(θ) = ... = fn(θ) = 0

for all f1, f2, ... , fn ∈ X and for all θ ∈ (0,+∞). Then one can verify that U is a
U-metric space with

α(f1, ... , fn; θ) =


n(1 + 1

n∑
i=1

|fi(θ)|
), if any one of fi(θ) is non zero

n, if f1(θ) = ... = fn(θ) = 0

for all f1, f2, ... , fn ∈ X and for all θ ∈ (0,∞).

The notion of U-metric space generalizes several of known metric type spaces, for
example:
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(i) For n = 2 and for each x1, x2 ∈ X if U(x1, x2; θ) is a constant function with
α(x1, x2; θ) = 1 for all x1, x2 ∈ X, θ ∈ (0,∞), then a symmetric U-metric is the usual
metric.

(ii) For n = 2 and for each x1, x2 ∈ X if U(x1, x2; θ) is a constant function with
α(x1, x2; θ) = s > 1 for all x1, x2 ∈ X, θ ∈ (0,∞), then a symmetric U-metric is a
b-metric [2].

(iii) For n = 2 if α(x1, x2; θ) = 1 for all x1, x2 ∈ X, θ ∈ (0,∞), then a symmetric
U-metric is a parametric metric space [5].

(iv) For n = 2 if α(x1, x2; θ) = s > 1 for all x1, x2 ∈ X, θ ∈ (0,∞), then a symmetric
U-metric is a parametric b-metric.

(v) For n = 2 and for each x1, x2 ∈ X if U(x1, x2; θ) is a constant function with
α(x1, x2; θ) is independent of θ for all x1, x2 ∈ X, then a symmetric U-metric is an
extended b-metric [7].

(vi) For n = 3 and for each x1, x2, x3 ∈ X if U(x1, x2, x3; θ) is a constant function
with α(x1, x2, x3; θ) = 1 for all x1, x2, x3 ∈ X, θ ∈ (0,∞), then an U-metric is an
S-metric [3, 13].

(vii) For n = 3 and for each x1, x2, x3 ∈ X if U(x1, x2, x3; θ) is a constant function
with α(x1, x2, x3; θ) = s > 1 for all x1, x2, x3 ∈ X, θ ∈ (0,∞), then an U-metric is an
Sb-metric [14].

(viii) For n = 3 if α(x1, x2, x3; θ) = 1 for all x1, x2, x3 ∈ X, θ ∈ (0,∞), then an
U-metric is a parametric S-metric [15].

(ix) For n = 3 if α(x1, x2, x3; θ) = s > 1 for all x1, x2, x3 ∈ X, θ ∈ (0,∞), then an
U-metric is a parametric Sb-metric.

(x) For n = 3 and for each x1, x2, x3 ∈ X if U(x1, x2, x3; θ) is a constant function
with α(x1, x2, x3; θ) independent of θ, for all x1, x2, x3 ∈ X, then an U-metric is an
extended Sb-metric [8].

(xi) If for each x1, x2, ... , xn ∈ X, U(x1, x2, ... , xn; θ) is a constant function with
α(x1, x2, ... , xn; θ) = 1 for all x1, x2, ... , xn ∈ X, θ ∈ (0,∞), then an U-metric is an
A-metric [1].

(xii) If for each x1, x2, ... , xn ∈ X, U(x1, x2, ... , xn; θ) is a constant function with
α(x1, x2, ... , xn; θ) = s > 1 for all x1, x2, ... , xn ∈ X and θ ∈ (0,∞), then an U-metric
is an Ab-metric [9].

(xiii) If α(x1, x2, ... , xn; θ) = 1 for all x1, x2, ... , xn ∈ X, θ ∈ (0,∞), then an U-metric
is a parametric A-metric [10].

Definition 2.5. Let (X,U) be a U-metric space. A sequence {xk} ⊂ X is said to be
(i) convergent to an element x ∈ X if for any ϵ > 0 there exists N ∈ N such
that for any k ≥ N we have U(xk, xk, ... , (xk)n−1, x; θ) < ϵ for all θ > 0 that is
U(xk, xk, ... , (xk)n−1, x; θ) → 0 as k → ∞ for all θ ∈ (0,∞).
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(ii) Cauchy sequence if for any ϵ > 0 there exists M ∈ N such that for any k,m ≥ M
we have U(xk, xk, ... , (xk)n−1, xm; θ) < ϵ for all θ > 0 that is U(xk, xk, ... , (xk)n−1,
xm; θ) → 0 as k,m → ∞ for all θ ∈ (0,∞).

(iii) X is called complete if every Cauchy sequence in X is convergent.

Definition 2.6. Let (X,U1) and (Y,U2) be two U-metric spaces and T : X → Y be a
mapping. Then T is said to be continuous at x0 ∈ X if for any ϵ > 0 there exists δ > 0
such that U2(Tx, Tx, ... , (Tx)n−1, Tx0) < ϵ whenever U1(x, x, ... , (x)n−1, x0) < δ for
all θ > 0.

Proposition 2.7. Let (X,U) be a U-metric space. Then

U(x, x, ... , (x)n−1, y; θ) ≤ α(x, x, ... , (x)n−1, y; θ)U(y, y, ... , (y)n−1, x; θ)

for all x, y ∈ X and for all θ > 0.

Proof. Let us choose x, y ∈ X. Then

U(x, x, ... , (x)n−1, y; θ)

[by (U2)]

≤ α(x, x, ... , (x)n−1, y; θ)[
∑

(n-1) times

U(x, x, ... , x; θ) + U(y, y, ... , (y)n−1, x; θ)]

= α(x, x, ... , (x)n−1, y; θ)U(y, y, ... , (y)n−1, x; θ).

Lemma 2.8. Let (X,U) be a U-metric space which is symmetric or there exists some
s > 1 such that α(x1, x2, ... , xn; θ) ≤ s for all x1, ... , xn ∈ X and θ ∈ (0,∞). Then
any convergent sequence in X has a unique limit.

Proof. Let a sequence {xk} ⊂ X converges to two elements x, y ∈ X. Then, for all
k ∈ N,
U(x, x, ..., (x)n−1, y; θ)

[by (U2)]

≤ α(x, x, ..., (x)n−1, y; θ)[
∑

(n-1) times

U(x, x, ..., (x)n−1, xk; θ)+U(y, y, ..., (y)n−1, xk; θ)]

=α(x, x, ..., (x)n−1, y; θ)[(n−1)U(x, x, ..., (x)n−1, xk; θ)+U(y, y, ..., (y)n−1, xk; θ)]. (3)

Case I: If X is symmetric then from (3) we get

U(x, x, ..., (x)n−1, y; θ)

≤ α(x, x, ..., (x)n−1, y; θ)[(n−1)U(xk, xk, ..., (xk)n−1, x; θ)+U(xk, xk, ..., (xk)n−1, y; θ)].

for all k ∈ N. By taking k → ∞, we get U(x, x, ..., (x)n−1, y; θ) = 0 for all θ > 0.
Thus x = y.

Case II: If there exists some s>1 such that α(x1, x2, ..., xn; θ)≤s for all x1, ..., xn ∈ X
and θ ∈ (0,∞) then (3) gives

U(x, x, ..., (x)n−1, y; θ)

≤α(x, x, ..., (x)n−1, y; θ)[(n−1)U(x, x, ..., (x)n−1, xk; θ)+U(y, y, ..., (y)n−1, xk; θ)]

≤α(x, x, ..., (x)n−1, y; θ)[(n−1)α(x, x, ..., (x)n−1, xk; θ)U(xk, xk, ..., (xk)n−1, x; θ)
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+α(y, y, ..., (y)n−1, xk; θ)U(xk, xk, ..., (xk)n−1, y; θ)] [From Proposition 2.7]

≤α(x, x, ..., (x)n−1, y; θ)[(n−1)sU(xk, xk, ..., (xk)n−1, x; θ)+sU(xk, xk, ..., (xk)n−1, y; θ)].

for all k ∈ N. If we let k → ∞, we see that U(x, x, ..., (x)n−1, y; θ) = 0 for all θ > 0
and hence x = y. .

Proposition 2.9. Let (X,U) be a U-metric space. Then

U(x, x, ... , (x)n−1, z; θ)

≤(n− 1)α(x, x, ... , (x)n−1, z; θ)U(x, x, ... , (x)n−1, y; θ)

+ α(x, x, ... , (x)n−1, z; θ)α(z, z, ... , (z)n−1, y; θ)U(y, y, ... , (y)n−1, z; θ)

for all x, y, z ∈ X and for all θ > 0.

Proof. For any x, y, z ∈ X and for all θ > 0 we get,

U(x, x, ... , (x)n−1, z; θ)

[by (U2)]

≤ α(x, x, ... , (x)n−1, z; θ)[
∑

(n-1) times

U(x, x, ... , (x)n−1, y; θ) + U(z, z, ... , (z)n−1, y; θ)]

= (n− 1)α(x, x, ... , (x)n−1, z; θ)U(x, x, ... , (x)n−1, y; θ)

+ α(x, x, ... , (x)n−1, z; θ)α(z, z, ... , (z)n−1, y; θ)U(y, y, ... , (y)n−1, z; θ).

Proposition 2.10. In an U-metric space (X,U), for any x1, x2, ... , xn, a ∈ X and
for any θ > 0 we have
(i) U(x1, x2, ... , xn; θ) ≤

α(x1, x2, ... , xn; θ)
∑n

i=2{α(xi, xi, ... , (xi)n−1, x1; θ)U(x1, x1, ... , (x1)n−1, xi; θ)};
(ii) U(x1, x2, ... , xn; θ) ≤ α(x1, x2, ... , x2; θ)U(x1, ... , (x1)n−1, x2; θ);

(iii) U(x1, x2, ... , xn; θ) ≤ (n− 1)α(x1, x2, ... , x2; θ)U(x2, ... , (x2)n−1, x1; θ);

(iv) U(x1, x2, ... , xn; θ) ≤
α(x1, x2, ... , xn; θ)

∑n
i=1{α(xi, xi, ... , (xi)n−1, a; θ)U(a, a, ... , (a)n−1, xi; θ)}.

Proof. Let x1, x2, ..., xn, a ∈ X; then we get

(i) U(x1, x2, ..., xn; θ)

[by (U2)]

≤ α(x1, x2, ..., xn; θ)

n∑
i=1

U(xi, xi, ..., (xi)n−1, x1; θ)

= α(x1, x2, ..., xn; θ)
n∑

i=2

U(xi, xi, ..., (xi)n−1, x1; θ)

[by Prop. 2.7]

≤ α(x1, x2, ..., xn; θ)

n∑
i=2

{α(xi, xi, ..., (xi)n−1, x1; θ)U(x1, x1, ..., (x1)n−1, xi; θ)}

(ii) U(x1, x2, ..., x2; θ)

[by (U2)]

≤ α(x1, x2, ..., x2; θ)[U(x1, ..., (x1)n−1, x2; θ)+
∑

(n-1) times

U(x2, x2, ..., x2; θ)]
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= α(x1, x2, ..., x2; θ)U(x1, ..., (x1)n−1, x2; θ).

(iii) U(x1, x2, ..., x2; θ)

[by (U2)]

≤ α(x1, x2, ..., x2; θ)[U(x1, ..., x1, x1; θ)+
∑

(n-1) times

U(x2, x2, ..., (x2)n−1, x1; θ)]

= (n−1)α(x1, x2, ..., x2; θ)U(x2, ..., (x2)n−1, x1; θ).

(iv) U(x1, x2, ..., xn; θ)

[by (U2)]

≤ α(x1, x2, ..., xn; θ)

n∑
i=1

U(xi, xi, ..., (xi)n−1, a; θ)

[by Prop. 2.7]
= α(x1, x2, ..., xn; θ)

n∑
i=1

{α(xi, xi, ..., (xi)n−1, a; θ)U(a, a, ..., (a)n−1, xi; θ)}

for all θ ∈ (0,∞). □

Proposition 2.11. In an U-metric space (X,U), for any x1, x2, ... , xn, y1, y2, ... , yn,
a, b ∈ X and for any θ > 0 one has
(i) |U(x1, x2, ... , xn−1, a; θ)− U(x1, x2, ... , xn−1, b; θ)| ≤ [α(x1, x2, ... , xn−1, a; θ)

+α(x1, x2, ... , xn−1, b; θ)]
∑n−1

i=1 {α(xi, xi, ... , (xi)n−1, a; θ)α(xi, xi, ... , (xi)n−1, b; θ)
×[U(a, a, ... , (a)n−1, xi; θ) + U(b, b, ... , (b)n−1, xi; θ)]};

(ii) |U(x1, x2, ... , xn−1, a; θ)− U(y1, y2, ... , yn−1, a; θ)| ≤ [α(x1, x2, ... , xn−1, a; θ)

+α(y1, y2, ... , yn−1, a; θ)]
∑n−1

i=1 {α(xi, xi, ... , (xi)n−1, a; θ)α(yi, yi, ... , (yi)n−1, a; θ)
[U(a, a, ... , (a)n−1, xi; θ) + U(a, a, ... , (a)n−1, yi; θ)]};

(iii) |U(x1, x2, ... , xn−1, xn; θ)− U(y1, y2, ... , yn−1, yn; θ)| ≤ α(x1, x2, ... , xn−1, xn; θ)
×α(y1, y2, ... , yn−1, yn; θ)

∑n
i=1[U(xi, xi, ... , (xi)n−1, a; θ) + U(yi, yi, ... , (yi)n−1, a; θ)].

Proof. (i) Let x1, x2, ... , xn−1, a, b ∈ X and θ ∈ (0,∞). Then by Proposition 2.10 (iv)
we have

|U(x1, x2, ... , xn−1, a; θ)− U(x1, x2, ... , xn−1, b; θ)|
≤U(x1, x2, ... , xn−1, a; θ) + U(x1, x2, ... , xn−1, b; θ)

≤α(x1, x2, ... , xn−1, a; θ)

n−1∑
i=1

{α(xi, xi, ... , (xi)n−1, a; θ)U(a, a, ... , (a)n−1, xi; θ)}

+ α(x1, x2, ... , xn−1, b; θ)

n−1∑
i=1

{α(xi, xi, ... , (xi)n−1, b; θ)U(b, b, ... , (b)n−1, xi; θ)}

≤ [α(x1, x2, ... , xn−1, a; θ) + α(x1, x2, ... , xn−1, b; θ)]

n−1∑
i=1

{α(xi, xi, ... , (xi)n−1, a; θ)

× α(xi, xi, ... , (xi)n−1, b; θ)[U(a, a, ... , (a)n−1, xi; θ) + U(b, b, ... , (b)n−1, xi; θ)]}.

(ii) Let x1, x2, ... , xn−1, y1, y2, ... , yn−1, a ∈ X and θ ∈ (0,∞). Then by Proposi-



276 An introduction to U-metric space

tion 2.10 (iv) we have

|U(x1, x2, ... , xn−1, a; θ)− U(y1, y2, ... , yn−1, a; θ)|
≤U(x1, x2, ... , xn−1, a; θ) + U(y1, y2, ... , yn−1, a; θ)

≤α(x1, x2, ... , xn−1, a; θ)

n−1∑
i=1

{α(xi, xi, ... , (xi)n−1, a; θ)U(a, a, ... , (a)n−1, xi; θ)}

+ α(y1, y2, ... , yn−1, a; θ)

n−1∑
i=1

{α(yi, yi, ... , (yi)n−1, a; θ)U(a, a, ... , (a)n−1, yi; θ)}

≤[α(x1, x2, ... , xn−1, a; θ) + α(y1, y2, ... , yn−1, a; θ)]

n−1∑
i=1

{α(xi, xi, ... , (xi)n−1, a; θ)

× α(yi, yi, ... , (yi)n−1, a; θ)[U(a, a, ... , (a)n−1, xi; θ) + U(a, a, ... , (a)n−1, yi; θ)]}.

(iii) Let x1, x2, ... , xn−1, xn, y1, y2, ... , yn−1, yn, a, b ∈ X and θ ∈ (0,∞).

|U(x1, x2, ... , xn−1, xn; θ)− U(y1, y2, ... , yn−1, yn; θ)|
≤U(x1, x2, ... , xn−1, xn; θ) + U(y1, y2, ... , yn−1, yn; θ)

≤α(x1, x2, ... , xn−1, xn; θ)

n∑
i=1

U(xi, xi, ... , (xi)n−1, a; θ)

+ α(y1, y2, ... , yn−1, yn; θ)

n∑
i=1

U(yi, yi, ... , (yi)n−1, a; θ)

≤α(x1, x2, ... , xn−1, xn; θ)α(y1, y2, ... , yn−1, yn; θ)

×
n∑

i=1

[U(xi, xi, ... , (xi)n−1, a; θ) + U(yi, yi, ... , (yi)n−1, a; θ)]

3. Topological constructions

Now we are in a state to study some topological properties of U-metric spaces.

Definition 3.1. In an U-metric space (X,U), the open ball and the closed ball with
center at x0 ∈ X and radius r > 0 are defined by

SU
r (x0) ={y ∈ X : sup

θ∈(0,∞)

U(y, y, ... , (y)n−1, x0; θ) < r};

SU
r [x0] ={y ∈ X : sup

θ∈(0,∞)

U(y, y, ... , (y)n−1, x0; θ) ≤ r}.

Proposition 3.2. Let (X,U) be a U-metric space. The collection τU={∅}∪{P (̸=∅)⊂X :
for any x ∈ P there exists r > 0 such that SU

r (x) ⊂ P} forms a topology on X.
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Definition 3.3. Let (X,U) be a U-metric space. The sets that belong to τU are
called U-open sets. A subset B of X is said to be U-closed if there exists V ∈ τ such
that B = V c.

Proposition 3.4. Let V be a U-open set containing x0 in an U-metric space (X,U)
and {xk} ⊂ X be such that xk → x0 as k → ∞. Then xk ∈ V for all k ≥ N .

Proof. Since x0∈V and V is U-open, there exists r>0 such that SU
r (x0)⊂V . Now let us

take some 0<r′<r. Then there exists N∈N such that U(xk, xk, ... , (xk)n−1, x0; θ)<r′

for all k≥N and for all θ∈(0,∞), that is supθ∈(0,∞) U(xk, xk, ... , (xk)n−1, x0; θ)≤r′<r

for all k≥N . Thus, for any k≥N , xk∈SU
r (x0)⊂V . □

Proposition 3.5. Let (X,U) be a U-metric space and F (̸= ∅) ⊂ X be U-closed. If
there exists a sequence {xk} ⊂ F such that xk → z as k → ∞ then z ∈ F .

Proof. If possible, let z /∈ F . Then z ∈ F c. Since F c is U-open and xk → z as k → ∞
then by the previous theorem it follows that there exists N ∈ N such that xk ∈ F c

for all k ≥ N , a contradiction. Therefore z ∈ F . □

Definition 3.6. The diameter diam(F ) of a subset F ⊂ X, X is a U-metric space,
is defined by diam(F ) = supx,y∈X,θ∈(0,∞) U(x, x, ... , (x)n−1, y; θ).

Next we prove a Cantor’s Intersection-like theorem in the context of U-metric
spaces.

Theorem 3.7. Let (X,U) be a complete U-metric space and {Fk} be a decreasing
sequence of nonempty U-closed sets such that diam(Fk) tends to zero as k tends to
infinity. Then the intersection

⋂∞
k=1 Fk contains exactly one point.

Proof. Let xk ∈ Fk for all k ∈ N be arbitrary. Since {Fk} is decreasing, we have
{xk, xk+1, ...} ⊂ Fk for any k ≥ 1. Now for any k,m ∈ N with k,m ≥ p we get

sup
θ>0

U(xk, xk, ... , (xk)n−1, xm; θ) ≤ diam(Fp), p ≥ 1.

Let ϵ > 0 be given. Since diam(Fk) → 0 as k → ∞ then there exists some q ∈ N such
that diam(Fq) < ϵ. From this it follows that

U(xk, xk, ... , (xk)n−1, xm; θ) ≤ diam(Fq) < ϵ, for all k.m ≥ q and θ > 0.

So {xk} is a Cauchy sequence in X and therefore by completeness of X there exists
z ∈ X such that xk → z as n → ∞. Therefore by Proposition 3.5 it follows that
z ∈ Fn for all n ∈ N.

Now let y ∈
⋂∞

k=1 Fk. Then U(y, y, ... , (y)n−1, z; θ) ≤ diam(Fk) for all k ≥ 1 and
for any θ ∈ (0,∞). So by taking k → ∞ we get U(y, y, ... , (y)n−1, z; θ) = 0 for all
θ ∈ (0,∞), which implies that y = z. Hence

⋂∞
k=1 Fk = {z} and this completes the

proof. □
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4. Banach Contraction Principle in U-metric spaces

Now we present the celebrated Banach Contraction Principle in the context of U-metric
space.

Theorem 4.1. Let (X,U) be a complete symmetric U-metric space and T : X → X
be a mapping satisfying

U(Tx, Tx, ... , (Tx)n−1, T y; θ) ≤ rU(x, x, ... , (x)n−1, y; θ),

for all x, y ∈ X and for all θ > 0, where r ∈ (0, 1) is such that

lim
k,m→∞

α(T kx, ... , (T kx)n−1, T
mx; θ) <

1

r

for all x ∈ X. Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be arbitrary. Let us consider the Picard iterating sequence {xm}
where xm = Tmx0 for all m ∈ N. Then for all m ∈ N we have

U(xm, xm, ... , (xm)n−1, xm+1; θ) = U(Txm−1, Txm−1, ... , (Txm−1)n−1, Txm; θ)

≤rU(xm−1, xm−1, ... , (xm−1)n−1, xm; θ) · · · ≤ rmU(x0, x0, ... , (x0)n−1, x1; θ).

Now for any 1 ≤ k < m we have,

U(xk, ..., (xk)n−1, xm; θ)

≤α(xk, ..., (xk)n−1, xm; θ)[(n−1)U(xk, ..., (xk)n−1, xk+1; θ)+U(xm, ..., (xm)n−1, xk+1; θ)]

=α(xk, ..., (xk)n−1, xm; θ)[(n−1)U(xk, ..., (xk)n−1, xk+1; θ)+U(xk+1, ..., (xk+1)n−1, xm; θ)]

≤(n−1)α(xk, ..., (xk)n−1, xm; θ)U(xk+1, ..., (xk+1)n−1, xk; θ)+

α(xk, ..., (xk)n−1, xm; θ)α(xk+1, ..., (xk+1)n−1, xm; θ)[(n−1)U(xk+1, ..., (xk+1)n−1, xk+2; θ)

+U(xm, ..., (xm)n−1, xk+2; θ)]

=(n−1)α(xk, ..., (xk)n−1, xm; θ)U(xk+1, ..., (xk+1)n−1, xk; θ)

+(n−1)α(xk, ..., (xk)n−1, xm; θ)α(xk+1, ..., (xk+1)n−1, xm; θ)U(xk+2, ..., (xk+2)n−1, xk+1; θ)

+α(xk, ..., (xk)n−1, xm; θ)α(xk+1, ..., (xk+1)n−1, xm; θ)U(xk+2, ..., (xk+2)n−1, xm; θ)

...

≤(n−1)[α(xk, ..., (xk)n−1, xm; θ)U(xk+1, ..., (xk+1)n−1, xk; θ)

+α(xk, ..., (xk)n−1, xm; θ)α(xk+1, ..., (xk+1)n−1, xm; θ)U(xk+2, ..., (xk+2)n−1, xk+1; θ)

+...+α(xk, ..., (xk)n−1, xm; θ)α(xk+1, ..., (xk+1)n−1, xm; θ)...

α(xm−2, ..., (xm−2)n−1, xm; θ)U(xm−1, ..., (xm−1)n−1, xm−2; θ)]

+α(xk, ..., (xk)n−1, xm; θ)α(xk+1, ..., (xk+1)n−1, xm; θ)...

α(xm−2, ..., (xm−2)n−1, xm; θ)U(xm−1, ..., (xm−1)n−1, xm; θ)

≤(n−1)[α(xk, ..., (xk)n−1, xm; θ)U(xk+1, ..., (xk+1)n−1, xk; θ)

+α(xk, ..., (xk)n−1, xm; θ)α(xk+1, ..., (xk+1)n−1, xm; θ)U(xk+2, ..., (xk+2)n−1, xk+1; θ)

+...+α(xk, ..., (xk)n−1, xm; θ)α(xk+1, ..., (xk+1)n−1, xm; θ)...

α(xm−2, ..., (xm−2)n−1, xm; θ)U(xm−1, ..., (xm−1)n−1, xm−2; θ)+
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α(xk, ..., (xk)n−1, xm; θ)α(xk+1, ..., (xk+1)n−1, xm; θ)...

α(xm−2, ..., (xm−2)n−1, xm; θ)α(xm−1, ..., (xm−1)n−1, xm; θ)U(xm, ..., (xm)n−1, xm−1; θ)]

≤(n−1)[α(xk, ..., (xk)n−1, xm; θ)rk+α(xk, ..., (xk)n−1, xm; θ)α(xk+1, ..., (xk+1)n−1, xm; θ)rk+1

+...+α(xk, ..., (xk)n−1, xm; θ)α(xk+1, ..., (xk+1)n−1, xm; θ)...

α(xm−2, ..., (xm−2)n−1, xm; θ)α(xm−1, ..., (xm−1)n−1, xm; θ)rm−1]U(x1, ..., (x1)n−1, x0; θ).

Let us denote P
(m)
j (x0; θ) = (n− 1)rj

∏j
i=1 α(xi, ... , (xi)n−1, xm; θ) for all j ∈ N and

for all θ > 0. Then from the previous we get

U(xk, ... , (xk)n−1, xm; θ) ≤

m−1∑
j=k

P
(m)
j (x0; θ)

U(x1, ... , (x1)n−1, x0; θ), (4)

where 1 ≤ k < m. Now since limk,m→∞ α(T kx0, ... , (T
kx0)n−1, T

mx0; θ) < 1
r , by

ratio test we see that the series limm→∞
∑∞

t=1 P
(m)
t (x0; θ) is convergent and thus

limk→∞
∑m−1

j=k P
(m)
j (x0; θ) = 0. So (4) implies that xm is a Cauchy sequence in X and

by the completeness of X we get some z ∈ X such that xm → z as m → ∞. Hence, for
any θ > 0, U(xm+1, xm+1, ... , (xm+1)n−1, T z; θ) ≤ rU(xm, xm, ... , (xm)n−1, z; θ) → 0
as m → ∞. Thus by Lemma 2.8 we have Tz = z and T possesses a fixed point in X.

Now if u and v are two fixed points of T then we have

U(u, u, ... , (u)n−1, v; θ) = U(Tu, Tu, ... , (Tu)n−1, T v; θ) ≤ r U(u, u, ... , (u)n−1, v; θ).

Since 0 < r < 1 we get U(u, u, ... , (u)n−1, v; θ) = 0 and hence u = v, which shows that
the fixed point of T is unique in X. □

Example 4.2. Let X = C0(0,∞), the space of all real valued continuous mappings
with domain (0,∞) and let us define U : X3 × (0,∞) → [0,∞) by

U(f1, f2, f3; θ) =

2∑
i=1

∑
i<j

|fi(θ)− fj(θ)|2 + (

2∑
i=1

∑
i<j

|fi(θ)− fj(θ)|2)2

for all f1, f2, f3 ∈ X and for all θ ∈ (0,∞). Then U is a U-metric with α(f1, f2, f3; θ) =

3(1 +
∑2

i=1

∑
i<j |fi(θ)− fj(θ)|2) for all f1, f2, f3 ∈ X and for all θ ∈ (0,∞).

Let us take a fixed element f0 ∈ X and define T : X → X by Tf = f
2 + f0 for all

f ∈ X. Then U(Tf, Tf, Tg; θ) ≤ 1
4U(f, f, g; θ) for any f, g ∈ X and for all θ > 0. Also

for any θ ∈ (0,∞), α(T kf, T kf, Tmf ; θ) = 3[1+ 2(f(θ)− 2f0(θ))
2{ 1

2k
− 1

2m }2] → 3 as
k,m → ∞. Therefore all the conditions of Theorem 4.1 are satisfied and therefore T
has a unique fixed point in X which is 2f0.

5. Application of fixed point theorem to the stability of fixed point
equation

In 1940, Ulam has raised an open problem concerning the stability of homomorphisms
in algebra. Hyers was the first who gave an answer to the stability of functional
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equations in the context of Banach spaces (see [6]). Very recently, Roy et al [11, 12]
have studied Ulam-Hyers stability of fixed point problems under different generalized
metric structures. Here we discuss Ulam-Hyers stability of fixed point problems in an
U-metric space.

Let (X,U) be a U-metric space and T : X → X be a mapping. Let us consider
the fixed point equation

Tx = x (5)

and the inequality

U(y, y, ... , (y)n−1, Ty; θ) < ϵ for all θ > 0 and for any ϵ > 0. (6)

Definition 5.1. The fixed point problem (5) is said to be Ulam-Hyers stable if there
exists a mapping ζ : X2 × (0,∞) → [0,∞) such that for each ϵ > 0 and an ϵ-solution
(a solution of (6)) v ∈ X there exists a solution u ∈ X of the fixed point equation (5)
such that for all θ ∈ (0,∞), U(v, v, ... , (v)n−1, u; θ) < ζ(v, u; θ)ϵ.

Theorem 5.2. Let (X,U) be a complete symmetric U-metric space and T : X → X
be a mapping satisfying all the conditions of Theorem 4.1 with the Lipschitz constant
r such that α(x, x, ... , (x)n−1, y; θ) < 1

r for all x, y ∈ X and θ ∈ (0,∞). Then the
fixed point equation of T is Ulam-Hyers stable.

Proof. From Theorem 4.1, we see that T has a unique fixed point u in X, that is the
fixed point equation (6) of T has a unique solution. Let ϵ > 0 be arbitrary and v be
an ϵ-solution of T . Then

U(v, v, ..., (v)n−1, u; θ)

≤α(v, v, ..., (v)n−1, u; θ)[(n−1)U(v, v, ..., (v)n−1, T v; θ)+U(u, u, ..., (u)n−1, T v; θ)]

=α(v, v, ..., (v)n−1, u; θ)[(n−1)U(v, v, ..., (v)n−1, T v; θ)+U(Tv, Tv, ..., (Tv)n−1, u; θ)]

=α(v, v, ..., (v)n−1, u; θ)[(n−1)U(v, v, ..., (v)n−1, T v; θ)+U(Tv, Tv, ..., (Tv)n−1, Tu; θ)]

≤α(v, v, ..., (v)n−1, u; θ)[(n−1)U(v, v, ..., (v)n−1, T v; θ)+r U(v, v, ..., (v)n−1, u; θ)].

This implies U(v, v, ... , (v)n−1, u; θ) ≤ (n−1)α(v,v,...,(v)n−1,u;θ)
1−rα(v,v,...,(v)n−1,u;θ)

U(v, v, ... , (v)n−1, T v; θ)

< ζ(v, u; θ)ϵ, where ζ(v, u; θ) = (n−1)α(v,v,...,(v)n−1,u;θ)
1−rα(v,v,...,(v)n−1,u;θ)

for all θ > 0. Therefore the

fixed point equation of T is Ulam-Hyers stable. □
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[10] N. Priyobarta, Y. Rohen, and S. Radenović, Fixed point theorems on parametric A-metric
space, Amer. J. Appl. Math. Stat., 6(1) (2018), 1–5.

[11] K. Roy, M. Saha, Fixed points of mappings over a locally convex topological vector space and
Ulam-Hyers stability of fixed point problems, Novi Sad J. Math., 50(1) (2020), 99–112.
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