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ON SINGULAR FIFTH-ORDER BOUNDARY VALUE PROBLEMS
WITH DEFICIENCY INDICES (5, 5)

Ekin Uğurlu and Kenan Taş

Abstract. This paper is devoted to introduce a way of construction of the well-defined
boundary conditions for the solutions of a singular fifth-order equation with deficiency indices
(5, 5). Imposing suitable separated and coupled boundary conditions some properties of the
eigenvalues of the problems have been investigated.

1. Introduction

Formally symmetric third and fifth-order boundary value problems generated by well-
defined boundary conditions have been studied in [3–6]. In the papers [3–5] the prob-
lems have been studied as regular problems. Then separated and coupled boundary
conditions have been introduced for third and fifth-order equations in these papers. A
singular third-order boundary value problem has been handled in [6] and well-defined
boundary conditions have been imposed for the solutions of this third-order equa-
tions using auxiliary functions. In this paper our aim is to generalize these important
results for the singular fifth-order equations.

Singular differential equations need to be studied in detail as the behaviour of
solutions of the equation near the singular point may change depending on the nature
of the coefficients of the equation. One of the challenges appears when one wants to
describe the number of square-integrable linearly independent solutions with respect
to some weight functions. In the literature, there are some tools to give an answer
to this question. One of them is the deficiency indices theory (see, for example, [2]).
This theory is about finding the dimensions of the following deficiency subspaces

Nλ = H ⊖ (L− λI)D(L), Nλ = H ⊖ (L− λI)D(L),

where H is a Hilbert space, L is a symmetric operator in H, D(L) is the domain of
L and λ is a complex number. The dimensions of Nλ and Nλ can be found with the
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80 Singular fifth-order boundary value problems

aid of the solutions of L∗y = λy and L∗y = λy, respectively. The deficiency indices
(m,n) of L are defined by m = dimNi and n = dimN−i.

In this paper we deal with singular fifth-order boundary value problems related
with some separated and coupled boundary conditions and we introduce some results
of these problems. This work will be the first work on singular fifth-order boundary
value problems.

2. Basic results

The fifth-order equation will be considered on the interval [a, b) as follows

i
(
q0 (q0f

′′)
′
)′′

+(p0f
′′)′′+i [(q2f)

′+q2f
′−(q1f

′)′′−(q1f
′′)′]−(p1f

′)′+p2f = λwf. (1)

All the coefficients qr, ps, w, r = 0, 1, 2, s = 0, 1, are assumed to be real-valued
functions such that q−1

0 , p1, p2, q2, q1/q0, p0/q
2
0 are integrable and the quasi-derivative

f [k] [1] of f is absolutely continuous on each compact interval [c, d] ⊂ [a, b), where
−∞ < a ≤ c < d < b ≤ ∞, k = 0, . . . , 4 and

f [0] = f,

f [1] = f ′, f [3] = iq0(q0f
′′)′ + p0f

′′ − iq1f
′,

f [2] = −1 + i√
2
q0f

′′, f [4] = −(iq0(q0f
′′)′ + p0f

′′ − iq1f
′)′ + iq1f

′′ + p1f
′ − iq2f.

Moreover, we assume that q0 ̸= 0, w > 0 on [a, b) and the only singularity for the
equation (1) occurs at b.

We consider the Hilbert space L2 as the standard Lebesgue space equipped with
the inner product

(f, g) =

∫ b

a

fgw dx.

To impose the well-defined boundary conditions for the solutions of (1) we shall
consider the subspace D of L2 covering the functions f ∈ L2 with τ(f) ∈ L2, where

τ(f) =
1

w

{
i
(
q0 (q0f

′′)
′
)′′

+(p0f
′′)′′+i [(q2f)

′+q2f
′−(q1f

′)′′−(q1f
′′)′]−(p1f

′)′+p2f

}
.

We define the maximal operator T on D as follows Tf = τ(f), where f ∈ D.

The Lagrange’s formula can now be introduced as the following

(Tf, g)− (f, Tg) = [f ; g], (2)

where [f ; g] = [f, g](b)− [f, g](a), [·, ·](x) : D ×D → C and

[f, g](x) := [f, g] = fg[4] − f [4]g + f [1]g[3] − f [3]g[1] + if [2]g[2]. (3)

The minimal operator T0 is defined as the restriction of T to the subspace D0 ⊂ D
that consists of all f ∈ D satisfying f [r](a) = [f, g](b) = 0, where r = 0, . . . , 4 and
g ∈ D. Operator T0 is a symmetric, densely defined, closed in L2 and T ∗

0 = T [1].
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Constructing the vector F by the rule

F =
[
f f [1] f [2] f [3] f [4]

]T
, (4)

we can introduce another representation of (3) as follows

[f, g] = G∗JF, (5)

where G is constructed by g and the rule (4),

J =


0 0 0 0 −1
0 0 0 −1 0
0 0 i 0 0
0 1 0 0 0
1 0 0 0 0

 ,
where i denotes the 2× 2 identity matrix.

Other representations of (3) can also be introduced as follows

[f, g] = Ĝ∗EF̂ + if [2]g[2], (6)

where F̂ =


f
f [1]

f [3]

f [4]

 , Ĝ =


g
g[1]

g[3]

g[4]

 , E =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,
and [f, g] =

[
g g[4]

]
E0

[
f
f [4]

]
+
[
g[1] g[3]

]
E0

[
f [1]

f [3]

]
+ if [2]g[2], (7)

where E0 =

[
0 −1
1 0

]
.

Using these representations (5)-(7) we will share coupled boundary conditions for
the solutions of (1).

Lemma 2.1. The equation (1) has one and only one solution f(x, λ) satisfying the
initial conditions f [k](ξ, λ) = ζk, where k = 0, . . . , 4, ξ ∈ [a, b), ζk ∈ C. Moreover,
f(·, λ) is an entire function of λ.

Proof. The equation (1) has the following representation

F ′ = [λM +N ]F, x ∈ [a, b), (8)

where F is the vector generated by f and (4), M and N are 5× 5 matrices such that

M =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−w 0 0 0 0

 , N =


0 1 0 0 0
0 0 − 1−i√

2q0
0 0

0 − 1+i√
2

q1
q0

ip0

q20
− 1−i√

2q0
0

−iq2 p1 − 1+i√
2

q1
q0

0 −1

p2 iq2 0 0 0

 .
Since the elements of N and M are locally integrable on [a, b), (8) completes the
proof. □

Now the direct calculation gives the following.
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Lemma 2.2. N∗J + JN = 0.

We denote by W {f1, . . . , f5} the Wronskian of f1, . . . , f5 defined as

W {f1, . . . , f5} := det


f1 f2 f3 f4 f5

f
[1]
1 f

[1]
2 f

[1]
3 f

[1]
4 f

[1]
5

f
[2]
1 f

[2]
2 f

[2]
3 f

[2]
4 f

[2]
5

f
[3]
1 f

[3]
2 f

[3]
3 f

[3]
4 f

[3]
5

f
[4]
1 f

[4]
2 f

[4]
3 f

[4]
4 f

[4]
5

 .
This definition implies that the set of solutions {f1, . . . , f5} of (1) is linearly dependent
provided that W {f1, . . . , f5} (x0) = 0, x0 ∈ [a, b) and W {f1, . . . , f5} ≡ 0 on [a, b)
provided that {f1, . . . , f5} is linearly dependent (see [2, pp. 57-58]).

3. Boundary values at the singular point

In this section we will construct well-defined boundary values at the singular point.
However, for this purpose, we need to know the deficiency indices of T0.

It is known [7] that for Imλ > 0 the deficiency index m of T0 may get the values
m = 2, 3, 4, 5 and for Imλ < 0 the deficiency index n of T0 may get the values
n = 3, 4, 5. We consider the case (m,n) = (5, 5) in this work.

We consider the solutions z1(x), . . . , z5(x) of

τ(f) = 0, x ∈ [a, b) (9)

satisfying the initial conditions z
[s−1]
k (a) = δks, where 1 ≤ k, s ≤ 5 and δks is the

Kronecker delta symbol.
Let us denote by Z1, . . . , Z5 (5 × 1 vectors) generated by z1, . . . , z5, respectively,

by the rule (4). Since W {z1, . . . , z5} (a) = det {Z1(a), . . . , Z5(a)} = 1, the set of
solutions {z1, . . . , z5} is a linearly independent set. Using (9) and (2) we have the
following equations

[z1, z2] =0, [z1, z3] =0, [z1, z4] =0, [z1, z5] =1,

[z2, z3] =0, [z2, z4] =1, [z2, z5] =0, (10)

[z3, z4] =0, [z3, z5] =0,

[z4, z5] =0,

and [z1, z1] =0, [z2, z2] =0, [z3, z3] =i, [z4, z4] =0, [z5, z5] =0, (11)

Now we shall define the following 5×5 matrix Z =
[
Z1 Z2 Z3 Z4 Z5

]
, x ∈ [a, b).

Using (10) and (11) we obtain that for x ∈ [a, b)

Z∗JZ =


[z1, z1] [z2, z1] [z3, z1] [z4, z1] [z5, z1]
[z1, z2] [z2, z2] [z3, z2] [z4, z2] [z5, z2]
[z1, z3] [z2, z3] [z3, z3] [z4, z3] [z5, z3]
[z1, z4] [z2, z4] [z3, z4] [z4, z4] [z5, z4]
[z1, z5] [z2, z5] [z3, z5] [z4, z5] [z5, z5]

 =


0 0 0 0 −1
0 0 0 −1 0
0 0 i 0 0
0 1 0 0 0
1 0 0 0 0

 = J.
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This shows that (W {z1, . . . , z5})2 = 1 for all x ∈ [a, b). Since W {z1, . . . , z5} (a) = 1
we have W {z1, . . . , z5} ≡ 1 for all x ∈ [a, b).

We set ΨF = Z−1F, x ∈ [a, b), where the 5× 1 vector F is given by (4). Since
ZΨF = F , x ∈ [a, b), we obtain that

ΨF =


W {f, z2, z3, z4, z5}
W {z1, f, z3, z4, z5}
W {z1, z2, f, z4, z5}
W {z1, z2, z3, f, z5}
W {z1, z2, z3, z4, f}

 , x ∈ [a, b). (12)

On the other hand we obtain that
[f, z1] [z2, z1] [z3, z1] [z4, z1] [z5, z1]
[f, z2] [z2, z2] [z3, z2] [z4, z2] [z5, z2]
[f, z3] [z2, z3] [z3, z3] [z4, z3] [z5, z3]
[f, z4] [z2, z4] [z3, z4] [z4, z4] [z5, z4]
[f, z5] [z2, z5] [z3, z5] [z4, z5] [z5, z5]

 =


[f, z1] 0 0 0 −1
[f, z2] 0 0 −1 0
[f, z3] 0 i 0 0
[f, z4] 1 0 0 0
[f, z5] 0 0 0 0

 . (13)

Left-hand side of (13) can also be considered as follows
z1 z

[1]
1 z

[2]
1 z

[3]
1 z

[4]
1

z2 z
[1]
2 z

[2]
2 z

[3]
2 z

[4]
2

z3 z
[1]
3 z

[2]
3 z

[3]
3 z

[4]
3

z4 z
[1]
4 z

[2]
4 z

[3]
4 z

[4]
4

z5 z
[1]
5 z

[2]
5 z

[3]
5 z

[4]
5

 J

f z2 z3 z4 z5

f [1] z
[1]
2 z

[1]
3 z

[1]
4 z

[1]
5

f [2] z
[2]
2 z

[2]
3 z

[2]
4 z

[2]
5

f [3] z
[3]
2 z

[3]
3 z

[3]
4 z

[3]
5

f [4] z
[4]
2 z

[4]
3 z

[4]
4 z

[4]
5

 . (14)

Therefore (13) and (14) imply that the equation

i[f, z5] = iW {f, z2, z3, z4, z5} , x ∈ [a, b) (15)

holds for all x ∈ [a, b). With a similar discussion one obtains for all x ∈ [a, b) that

i[f, z4] =iW {z1, f, z3, z4, z5} ,
[f, z3] =iW {z1, z2, f, z4, z5} ,

−i[f, z2] =iW {z1, z2, z3, f, z5} , (16)

−i[f, z1] =iW {z1, z2, z3, z4, f} .
Using the equations (15) and (16) in (12) we get on [a, b) that

ΨF =


[f, z5]
[f, z4]

−i[f, z3]
−[f, z2]
−[f, z1]

 , x ∈ [a, b). (17)

Since the following equation holdsG∗JF = (ΨG)∗J(ΨF ), we obtain from (17) that (5)
has the following representation

[f, g] = [f, z1][g, z5]− [f, z5][g, z1] + [f, z2][g, z4]− [f, z4][g, z2] + i[f, z3][g, z3]. (18)

Now we can construct other representations of (18) as follows

[f, g] = (ψg)
∗
E (ψf) + i[f, z3][g, z3], (19)
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where ψf =


[f, z1]
[f, z2]
[f, z4]
[f, z5]

 , ψg =


[g, z1]
[g, z2]
[g, z4]
[g, z5]

 ,
and [f, g] =

[
[g, z1] [g, z5]

]
E0

[
[f, z1]
[f, z5]

]
+
[
[g, z2] [g, z4]

]
E0

[
[f, z2]
[f, z4]

]
+ i[f, z3][g, z3]. (20)

These representations (18)-(20) will allow us to impose general well-defined boundary
conditions for the solutions of the (1).

Lemma 3.1. The function [f(·, λ), zk(·)](x), k = 1, . . . , 5, is an entire function of λ
of growth at most 1 at each point x ∈ [a, b].

Proof. With the help of the solutions f(x, λ) and zk(x) of (1) and (9), respectively, we
shall construct the vectors F and Zk by the rule (4). Now consider the representation
[f(·, λ), zk(·)](x) = Z∗

kJF . Taking the derivatives of both sides with respect to x we
obtain that d

dx [f(·, λ), zk(·)] (x) = Z∗′
k JF + Z∗

kJF
′. Since F ′ and Z ′

k satisfy (8) for

λ ∈ C and λ = 0, respectively, we have d
dx [f(·, λ), zk(·)] (x) = Z∗

k (N
∗J + JN)F +

λZ∗
kJMF . Using Lemma 2.2 we obtain that

d

dx
[f(., λ), zk(.)] (x) = λwzkf. (21)

The definition of ΨF implies that

f = [f, z5] z1 + [f, z4] z2 − i [f, z3] z3 − [f, z2] z4 − [f, z1] z5. (22)

The equations (21) and (22) show that

d

dx


[f, z1]
[f, z2]
[f, z3]
[f, z4]
[f, z5]

 =λ


−z1z5w −z1z4w −iz1z3w z1z2w z1z1w
−z2z5w −z2z4w −iz2z3w z2z2w z2z1w
−z3z5w −z3z4w −iz3z3w z3z2w z3z1w
−z4z5w −z4z4w −iz4z3w z4z2w z4z1w
−z5z5w −z5z4w −iz5z3w z5z2w z5z1w

×


[f, z1]
[f, z2]
[f, z3]
[f, z4]
[f, z5]


i.e.

d

dx
F(x, λ) =λA(x)F(x, λ), x ∈ [a, b). (23)

We should note that ∥A(x)∥ is integrable on [a, b). Integrating both sides of (23) on
[a, x) ⊆ [a, b) we get that

F(x, λ) = F(a, λ) + λ

∫ x

a

A(t)F(t, λ)dt. (24)

Gronwall’s inequality and (24) imply that

∥F(x, λ)∥ ≤ ∥F(a, λ)∥ exp
(
|λ|
∫ x

a

∥A(t)∥ dt
)
. (25)

The equation (25) shows that

∥F(b, λ)−F(b′, λ)∥ ≤ |λ| ∥F(a, λ)∥

(∫ b

b′
∥A(t)∥ dt

)
exp

(
|λ|
∫ b

a

∥A(t)∥ dt

)
.
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Therefore with the aid of Lemma 2.1 we get that F(b′, λ) → F(b, λ) (uniformly) as
b′ → b in any compact subset of the complex plane. This proves that [f(·, λ), zk(·)] (b),
k = 1, . . . , 5, is entire in λ.

From (25) we have

∥F(b, λ)∥ ≤ ∥F(a, λ)∥ exp

(
|λ|
∫ b

a

∥A(t)∥ dt

)
. (26)

On the other side, equation (8) implies that F(ξ, λ) = O(exp(const. |λ|)), for each
ξ ∈ [a, b), which together with (26) completes the proof. □

4. Construction of the boundary conditions

In this section we shall share a way to impose separated and coupled boundary con-
ditions for the solutions of (1). Firstly we shall consider the following boundary
conditions

sinβ1f(a) + cosβ1f
[4](a) =0,

sinβ2f
[1](a) + cosβ2f

[3](a) =0,

(i+ tanβ3) f
[2](a) + (1 + i tanβ3) [f, z3](b) =0, (27)

sinβ4[f, z1](b) + cosβ4[f, z5](b) =0,

sinβ5[f, z2](b) + cosβ5[f, z4](b) =0,

where βk ∈ R, and k = 1, . . . , 5. For the solutions of (1), the conditions (27) are the
separated boundary conditions.

Now we shall consider the following boundary conditions[
[f, z1](b)
[f, z5](b)

]
=K1

[
f(a)
f [4](a)

]
,

[
[f, z2](b)
[f, z4](b)

]
=K2

[
f [1](a)
f [3](a)

]
, [f, z3](b)=

i+s

1+is
f [2](a), (28)

where K1,K2 are 2× 2 real matrices satisfying

K∗
1E0K1 = K∗

2E0K2 = E0, detK1 = detK2 = 1 (29)

and s is a real number. We can call the boundary conditions (29) as the real-coupled
boundary conditions. However, we can introduce another real-coupled boundary con-
ditions as follows

(ψf) (b) = KF̂ (a), [f, z3](b) =
i+ s

1 + is
f [2](a). (30)

Here K is a 4× 4 real matrix satisfying

K∗EK = E. (31)

Other boundary conditions can be introduced as follows[
[f, z1](b)
[f, z5](b)

]
=eit1K1

[
f(a)
f [4](a)

]
,

[
[f, z2](b)
[f, z4](b)

]
= eit2K2

[
f [1](a)
f [3](a)

]
,

[f, z3](b) =e
it3

i+s

1+is
f [2](a). (32)
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Here K1 and K2 are the matrices satisfying (29) and t1, t2, t3 are some real num-
bers. We call the boundary conditions (32) as complex-coupled boundary conditions.
Moreover we can also introduce the following complex-coupled boundary conditions

(ψf) (b) = eil1KF̂ (a), [f, z3](b) = eil2
i+ s

1 + is
f [2](a). (33)

Here K is the matrix satisfying (31) and l1, l2 are some real numbers.
We should note that all these boundary conditions (27), (28), (30), (32), (33) can

be embedded into the following abstract boundary conditions:

(ΨF ) (b) = Aς, F (a) = Bς. (34)

Here A and B are complex 5×5 matrices such that the rank of the matrix constructed
by A and B is 5 and ς is a 5× 1 vector.

Theorem 4.1. All the eigenvalues of the problems generated by the (1) and (27), (28),
(30), (32), (33) are discrete with infinity as a possible accumulation point. Denoting

them by µ0, µ1, µ2, . . ., we can construct a convergent series as follows
∑

µn ̸=0 |µn|−1−ε
,

where ε is any positive number. Moreover, the order of each eigenvalue is at most 5.

Proof. We will prove the first assertion using a 5 × 5 matrix solution Ω(x, λ) of (8)
that satisfies the initial condition Ω(a, λ) = I, where I is the 5 × 5 identity matrix.
Now we can introduce the following equation on [a, b) for an arbitrary solution F (x, λ)
of (8) F (x, λ) = Ω(x, λ)F (a, λ). Using the conditions (34) we obtain the following
equation

[A− (ΨΩ) (b, λ)B] ς =0 (35)

and hence υ(λ) := det [A− (ΨΩ) (b, λ)B] =0. (36)

From (36) we can infer that the eigenvalues of each boundary value problem generated
by (1) and (27), (28), (30), (32), (33) coincide with the eigenvalues of υ(λ). Using
Lemma 2.1 and Lemma 3.1 we obtain that all eigenvalues are discrete with the possible
point of accumulation at infinity.

From Lemma 3.1 we can infer that the order of (36) is at most 1 and hence the
series is convergent for each ε > 0.

Finally the order of each eigenvalue is at most 5 because the number of linearly
independent solutions ς of (35) is at most 5. This completes the proof. □

Theorem 4.2. The problems generated by the (1) and (27), (28), (30), (32), (33)
have all real eigenvalues.

Proof. To prove this fact we will use the following equation

[f ; g] = [f, z1](b)[g, z5](b)−[f, z5](b)[g, z1](b)+[f, z2](b)[g, z4](b)

−[f, z4](b)[g, z2](b)+i[f, z3](b)[g, z3](b)

−
(
f(a)g[4](a)−f [4](a)g(a)f [1](a)g[3](a)−f [3](a)g[1](a)+if [2](a)g[2](a)

)
. (37)

If f, g satisfy the conditions (27) we get that

[f ; g] =− cotβ4[f, z5](b)[g, z5](b)+ cotβ4[f, z5](b)[g, z5](b)− tanβ5[f, z4](b)[g, z4](b)
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+ tanβ5[f, z4](b)[g, z4](b)+i

(
i+tanβ3
1+i tanβ3

−i+tanβ3
1−i tanβ3

)
f [2](a)g[2](a)

−
(
− cotβ1f

[4](a)g[4](a)+ cotβ1f
[4](a)g[4](a)

− cotβ2f
[3](a)g[3](a)+ cotβ2f

[3](a)g[3](a)+if [2](a)g[2](a)
)
= 0. (38)

From (38) we obtain that (τ(f), g) = (f, τ(g)) and this shows that the eigenvalues
of (1), (27) are all real. If f, g satisfy the conditions (28) we obtain from (37) that

[f ; g] =
[
[g, z1](b) [g, z5](b)

]
E0

[
[f, z1](b)
[f, z5](b)

]
+
[
[g, z2](b) [g, z4](b)

]
E0

[
[f, z2](b)
[f, z4](b)

]
+i[f, z3](b)[g, z3](b)

−
([
g(a) g[4](a)

]
E0

[
f(a)
f [4](a)

]
+
[
g[1](a) g[3](a)

]
E0

[
f [1](a)
f [3](a)

]
+if [2](a)g[2](a)

)
=
[
g(a) g[4](a)

]
K∗

1E0K1

[
f(a)
f [4](a)

] [
g[1](a) g[3](a)

]
K∗

2E0K2

[
f [1](a)
f [3](a)

]
+i

(
i+s

1+is

−i+s
1−is

)
f [2](a)g[2](a)

−
([
g(a) g[4](a)

]
E0

[
f(a)
f [4](a)

]
+
[
g[1](a) g[3](a)

]
E0

[
f [1](a)
f [3](a)

]
+if [2](a)g[2](a)

)
=0.

Therefore, (τ(f), g) = (f, τ(g)) and hence all eigenvalues of (1), (28) are real.

If f, g satisfy the conditions (29) we obtain from (37) that

[f ; g] = (ψg)∗(b)E(ψf)(b)+i[f, z3](b)[g, z3](b)−
(
Ĝ∗(a)EF̂ (a)+if [2](a)g[2](a)

)
=Ĝ∗(a)K∗EKF̂ (a)i

(
i+s

1+is

−i+s
1−is

)
f [2](a)g[2](a)−

(
Ĝ∗(a)EF̂ (a)+if [2](a)g[2](a)

)
=0.

Therefore, we have (τ(f), g) = (f, τ(g)) and hence all eigenvalues of (1), (29) are real.

The other assertions can be proved in a similar way. Therefore the proof is com-
pleted. □

5. Conclusion and remarks

In this paper we have considered a singular fifth-order differential equation in lim-5
case at the singular point together with some suitable well-defined boundary condi-
tions. Then we have investigated some properties of the solutions and eigenvalues of
the corresponding problems. This paper can be regarded as the generalization of the
results of [6] to the fifth-order case. However, this generalization, as can be seen, is
not a straightforward generalization. For instance, the representations of the bilinear
concomitant have different and complicated forms that give rise to different bound-
ary conditions. Now the future step is to generalize the obtained results to arbitrary
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odd-order singular boundary value problems.
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[6] E. Uğurlu, Some singular third-order boundary value problems, Math. Met. Appl. Sci., 43
(2020), 2202–2215.

[7] P.W. Walker, A vector-matrix formulation for formally symmetric ordinary differential equa-
tions with applications to solutions of integrable square, J. London Math. Soc. (2), 9 (1974),
151–159.

(received 06.03.2020; in revised form 28.07.2021; available online 17.02.2022)
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