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BOUNDS FOR THE Aα-SPECTRAL RADIUS OF A DIGRAPH
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Abstract. Let D be a digraph of order n and let A(D) be the adjacency matrix of D.
Let Deg (D) be the diagonal matrix of vertex out-degrees of D. For any real α ∈ [0, 1],
the generalized adjacency matrix Aα(D) of the D is defined as Aα(D) = αDeg (D) + (1 −
α)A(D). The largest modulus of the eigenvalues of Aα(D) is called the generalized adjacency
spectral radius or the Aα-spectral radius of D. In this paper, we obtain some new upper
and lower bounds for the spectral radius of Aα(D) in terms of the number of vertices n, the
number of arcs, the vertex out-degrees, the average 2-out-degrees of the vertices of D and
the parameter α. We characterize the extremal digraphs attaining these bounds.

1. Introduction

Let D = (V (D), E(D)) be a digraph, where V (D) = {1, 2, . . . , n} and E(D) are the
vertex set and arc set of D, respectively. A digraph D is simple if it has no loops
and multiple arcs. A digraph D is strongly connected if for every pair of vertices
i, j ∈ V (D), there are directed paths from i to j and from j to i. In this paper,
we consider finite, simple connected digraphs. We follow [2] for terminology and
notations.

Two vertices u and v of a digraph D are called adjacent if they are connected by
an arc (u, v) ∈ E(D) or (v, u) ∈ E(D) and doubly adjacent if (u, v), (v, u) ∈ E(D).
For e = (i, j) ∈ E(D), i is the initial vertex of e, j is the terminal vertex of e
and vertex i is a tail of vertex j. Let N−

D (i) = {j ∈ V (D) | (j, i) ∈ E(D)} and
N+

D (i) = {j ∈ V (D) | (i, j) ∈ E(D)} denote the in-neighbors and out-neighbors of i,
respectively. Let d−i = |N−

D (i)| denote the in-degree of the vertex i and d+i = |N+
D (i)|

denote the out-degree of the vertex i in D. The minimum out-degree is denoted by
δ+, the maximum out-degree is denoted by ∆+ and the minimum in-degree by δ−. If
d+1 = d+2 = · · · = d+n , then D is a regular digraph.
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120 Bounds for the Aα-spectral radius of a digraph

A walk π of length l from vertex u to vertex v is a sequence of vertices π : u =
u0, u1, . . . , ul = v, where (uk−1, uk) is an arc of D for any 1 ≤ k ≤ l. If u = v then π is
called a closed walk. Denote the number of closed walks of length 2 associated to the

vertex vi ∈ by c
(i)
2 . The sequence (c

(1)
2 , c

(2)
2 , . . . , c

(n)
2 ) is called closed walk sequence of

length 2 of D. Thus c2 = c
(1)
2 + c

(2)
2 + . . . + c

(n)
2 is the total number of closed walks

of length 2 of D. A digraph D is symmetric if (u, v) ∈ E(D) implies (v, u) ∈ E(D),
where u, v ∈ V (D). There is a one-to-one correspondence between simple graphs and

symmetric digraphs given by G 7→
←→
G , where

←→
G has the same vertex set as the graph

G, and each edge uv of G is replaced by a pair of symmetric arcs (u, v) and (v, u).
Under this correspondence, a graph can be identified with a symmetric digraph.

Let D be a digraph with adjacency matrix A(D) = (aij), where aij = 1 when-
ever vivj ∈ E(D), and aij = 0 otherwise. Let Deg (D) = (d+1 , d

+
2 , . . . , d

+
n ) be the

diagonal matrix of vertex out-degrees of D. Recently, Liu et al. [13] following the
idea of Nikiforov [14] (who proposed the generalized adjacency matrix Aα(G) of the
graph G defined as Aα(G) = αD(G) + (1 − α)A(G), 0 ≤ α ≤ 1), and defined the
generalized adjacency matrix Aα(D) of the digraph D, for any real α ∈ [0, 1] as
Aα(D) = αDeg (D) + (1 − α)A(D). It is clear that Aα(D) = A(D), if α = 0,
2Aα(D) = Q(D), if α = 1

2 , and Aα(D) = Deg (D), if α = 1. From this it follows that
the matrix Aα(D) extends the spectral theory of both adjacency matrix A(D) and
the signless Laplacian matrix Q(D) of the digraph. Therefore, it will be interesting
to study the spectral properties of the matrix Aα(D). The eigenvalues of Aα(D) are
called the generalized adjacency eigenvalues or the Aα-eigenvalues of the digraph D
and are denoted by λ1(Aα(D)), λ2(Aα(D)), . . ., λn(Aα(D)). In general, the matrix
Aα(D) is not symmetric and so its eigenvalues can be complex numbers. The eigen-
value of Aα(D) with largest modulus is called generalized adjacency spectral radius
or Aα-spectral radius of the digraph D and is denoted by λ1(Aα(D)) = λ(Aα(D)). If
D is a strongly connected digraph, then it follows from the Perron Frobenius Theo-
rem [8] that λ(Aα(D)) is an eigenvalue of Aα(D) and there is a unique positive unit
eigenvector corresponding to λ(Aα(D)). The positive unit eigenvector corresponding
to λ(Aα(D)) is called the Perron vector of Aα(D). For some works on the spectral
properties of Aα-matrix of a digraph, we refer to [4, 5, 13,15].

The spectral radius, the Laplacian spectral radius and the signless Laplacian spec-
tral radius of digraphs have received a lot of attention of researchers and as such many
papers can be found in this direction. For some recent papers and the related results
we refer to [1, 3, 6, 7, 10,11,16] and the references therein.

The rest of the paper is organized as follows. In Section 2, we obtain lower bounds
for the spectral radius of Aα(D) in terms of the number of vertices, the number of
arcs, the number of closed walks at a vertex, the vertex out-degrees of the D. We also
obtain upper bounds for the spectral radius of Aα(D) in terms of different parameters
associated with the structure of the digraph D. We characterize the extremal graphs
that attain these lower and upper bounds. We conclude this paper with a conclusion
to highlight that our results extend some known results for the adjacency and the
signless Laplacian spectral radius of a digraph D to a general setting.
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2. Bounds for the generalized adjacency spectral radius

For a matrix n× n, the matrix A = (aij), its geometric symmetrization, denoted by
S(A) = (sij), is the n × n matrix with entries sij =

√
aijaji for all i, j = 1, 2, . . . , n.

Let λ(M) denotes the spectral radius of the matrix M . For the spectral radius of the
matrices A and S(A), it is shown in [9] that λ(A) ≥ λ(S(A)) =

√
λ(S(A2)).

Let Aα(D) be the generalized adjacency matrix of the digraph D of order n having
a arcs and let S(Aα(D)) be the geometric symmetrization of Aα(D). It is easy to see

that for any vertex vi ∈ V, we have
∑n

j=1 sij = αd+i + (1− α)c
(i)
2 .

Lemma 2.1 ([8]). Let A and B be nonnegative matrices. If 0 ≤ A ≤ B, then ρ(A) ≤
ρ(B). Furthermore, if B is irreducible and 0 ≤ A < B, then ρ(A) < ρ(B).

A bipartite digraph D with bipartition V (D) = V1 ∪ V2 is said to be bipartite
semi-regular if out-degree of every vertex in each set V1 and V2 is constant. If the
out-degree of every vertex in V1 is r and the out-degree of every vertex in V2 is s, the
D is said to be a (r, s)-semi-regular bipartite digraph.

The average 2-out-degree of the vertex vi is defined as

m+
i =

1

d+i

∑
(vi,vj)∈E(D)

d+j =
t+i
d+i

, where t+i =
∑

(vi,vj)∈E(D)

d+j is the 2-out-degree of the vertex vi.

Let t
(i)
2 be the sum of all closed walks of length 2 at the vertices which are both out

and in-neighbors of vi, that is, t
(i)
2 =

∑
(vi,vj),(vj ,vi)∈E(D) c

(i)
2 .

Liu, Tain and Cui [12] showed that the adjacency spectral radius of a digraph D

with at least one closed walk of length 2 is greater than or equal to

√∑n
i=1

(
t
(i)
2

)2

∑n
i=1

(
c
(i)
2

)2 , with

equality if and only if D =
←→
G+{possibly some arcs that do not belong to cycles},

where each connected component of G is a r-regular graph or an (r1, r2)-semiregular

bipartite graph, satisfying r2=r1r2=

∑n
i=1

(
t
(i)
2

)2

∑n
i=1

(
c
(i)
2

)2 . In the following theorem, we extend

this result to Aα-spectrum of digraphs.
The following result gives lower bounds for the generalized adjacency spectral

radius of a digraph, in terms of vertex our-degrees, the number of closed walks at vi,
the sum of the all closed walks of length 2 at the vertices which are both out and
in-neighbors of vi of the digraph and the parameter α.

Theorem 2.2. Let D be a digraph of order n with a arcs and let α ∈ [0, 1). Let

(c
(1)
2 , c

(2)
2 , . . . , c

(n)
2 ) be the sequence of closed walks of length 2 and let t

(i)
2 be defined

above. If D has at least one symmetric pair of arcs, then

λ(Aα(D)) ≥

√√√√√√
∑n

i=1

(
αd+i c

(i)
2 + (1− α)t

(i)
2

)2

∑n
i=1

(
c
(i)
2

)2 . (1)
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If α = 0, then equality occurs in (1) if and only if D =
←→
G+{possibly some arcs that

do not belong to cycles}, where each connected component of G is a r-regular graph

or a (r1, r2)-semiregular bipartite graph with r2 = r1r2 =

∑n
i=1

(
t
(i)
2

)2

∑n
i=1

(
c
(i)
2

)2 . If α ̸= 0, then

for a strongly connected digraph D, equality occurs in (1) if and only if D =
←→
G such

that αd+i + (1−α)m+
i is same for all i or D =

←→
G with each connected component of

D has the property that both λ(Aα(D)) and −λ(Aα(D)) are the eigenvalues of Aα(D)

with eigenvector c =
(
c
(1)
2 , c

(2)
2 , . . . , c

(n)
2

)T

.

Proof. Let Aα(D) = (bij) be the generalized adjacency matrix of the digraph D and
let S(Aα(D)) = (sij) be the geometric symmetrization of Aα(D). Then Aα(D) ≥
S(Aα(D)) ≥ 0 and so by Lemma 2.1, it follows that λ(Aα(D)) ≥ λ(S(Aα(D))). Since
the matrix S(Aα(D)) is symmetric, therefore by Rayleigh quotient, we have

λ(Aα(D))≥λ(S(Aα(D)))=
√

λ(S(Aα(D))2)=

√
max
X ̸=0

XTS(Aα(D))2X

XTX

≥
√

cTS(Aα(D))2c

cT c
=

√
(S(Aα(D))c)T (S(Aα(D))c)

cT c
=

n∑
i=1

(
αd+i c

(i)
2 +(1−α)t(i)2

)2

n∑
i=1

(
c
(i)
2

)2 , (2)

where c =
(
c
(1)
2 , c

(2)
2 , . . . , c

(n)
2

)T

is the column vector with i-th entry the number of

closed walks of length 2 at vi. Thus the inequality (1) is proved. If α = 0, then
equality case follows from [12]. For α ̸= 0, suppose that equality holds in (1), then
all the inequalities occur as equalities. From the equality in (2), we get λ(Aα(D)) =

λ(S(Aα(D))) and λ(S(Aα(D))2) = cTS(Aα(D))2c
cT c

. The second equality gives that c is
an eigenvector of S(Aα(D))2 corresponding to the eigenvalues λ(S(Aα(D))2), which
implies that the multiplicity of the eigenvalue λ(S(Aα(D))2) is either one or two. If
D is a strongly connected digraph, then the matrix Aα(D) is an irreducible matrix.
Since Aα(D) ≥ S(Aα(D)) and Aα(D) is an irreducible matrix, so if Aα > S(Aα), then
by Lemma 2.1 we have λ(Aα(D)) > λ(S(Aα(D))), a contradiction to our assumption
of equality. Therefore, we must have Aα(D) = S(Aα(D)), giving that Aα(D) is a

symmetric matrix, which implies that D =
←→
G , where G is the underlying graph of D

and
←→
G is the symmetric digraph corresponding to G.

If the multiplicity of λ(S(Aα(D))2) is one, then since S(Aα(D)) is a symmetric
matrix, it follows that λ(S(Aα(D))2) = λ2(S(Aα(D))). Using that c is an eigenvector
corresponding to the eigenvalue λ(S(Aα(D))2), it follows that λ(S(Aα(D))) is an
eigenvalue of S(Aα(D)) with eigenvector c, that is, S(Aα(D)c = λ(S(Aα(D)))c. From

this it follows that αd+i + (1 − α)
t
(i)
2

c
(i)
2

= αd+i + (1 − α)m+
i is same for all i. The last

equality is due to the fact that for a symmetric digraph D =
←→
G , we have c

(i)
2 = d+i

and t
(i)
2 = t+i . Thus, it follows that equality occurs in (1) in this case if D =

←→
G and
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αd+i + (1− α)m+
i is the same for all i.

On the other hand, if the multiplicity of λ(S(Aα(D))2) is two, then both λ(S(Aα(D)))
and −λ(S(Aα(D))) are eigenvalues of Aα(D) giving that some of the eigenvalues of

Aα(D) are negative in this case. This gives that equality occurs in this case if D =
←→
G

andD has the property that both λ(Aα(D)) and −λ(Aα(D)) are eigenvalues of Aα(D)
with eigenvector c.

Let D be the direct sum of its disjoint strongly connected components D1, D2,
. . ., Ds. Let Aα(Dk) be the generalized adjacency matrix of order nk × nk of the
component Dk with

∑n
k=1 nk = n. In this case, we have

Aα(D)2 =


Aα(D1)

2

Aα(D2)
2

. . .

Aα(Ds)
2

 ,

where the rest of the unspecified entries are 0. Clearly the matrix S(Aα(D)) is also a
block diagonal matrix in this case. Since S(Aα(D)) is a symmetric matrix, therefore
we have λ(S(Aα(D))) = maxk λ(S(Aα(Dk))). Let cnk

be part of the column vector c
of order nk which corresponds to block S(Aα(Dk)) of S(Aα(D)). Since equality holds
in (1), we have

λ(Aα(D))=
√

λ(S(Aα(D))2)=

√
cTS(Aα(D))2c

cT c
=

√√√√ s∑
k=1

cTnk
S(Aα(Dk))2cnk

cTnk
cnk

cTnk
cnk

cT c

≤

√√√√ s∑
k=1

cTnk
cnk

λ(S(Aα(Dk))2)

cT c
≤
√

max
k

λ(S(Aα(Dk))2)=
√
λ(S(Aα(D))2)=λ(Aα(D)),

which implies that, for every k = 1, 2, . . . , s, we have

λ(Aα(D))=
√
λ(Aα(D)2)=

√
λ(Aα(Dk)2)=

√
λ(S(Aα(Dk))2)=

√√√√ s∑
k=1

cTnk
S(Aα(Dk))cnk

cTnk
cnk

.

Then, by the above case, the equality holds in this case for the digraphs mentioned
in the statement. □

We note that the lower bound obtained by Liu, Tain and Cui [12] for the adjacency
spectral radius holds for only those digraphs D which have at least one symmetric

pair of arcs. For if D is a digraph with no symmetric pair of arcs then t
(i)
2 = c

(i)
2 = 0,

for all i, then the quantity

√∑n
i=1

(
t
(i)
2

)2

∑n
i=1

(
c
(i)
2

)2 does not exist. Next, we obtain another

lower bound for λ(Aα(D)) which holds for all digraphs.

Taking X = (d+1 , d
+
2 , . . . , d

+
n )

T in Theorem 2.2 and proceeding similarly, we obtain
the following lower bound for λ(Aα(D)).

Theorem 2.3. Let D be a digraph of order n with a arcs and let α ∈ [0, 1). For each
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vertex vi ∈ V (D), let T+
i =

∑
(vi,vj),(vj ,vi)∈E(D) d

+
i . Then

λ(Aα(D)) ≥

√√√√∑n
i=1

(
α(d+i )

2 + (1− α)T+
i

)2∑n
i=1

(
d+i

)2 . (3)

If α = 0, then equality occurs in (3) if and only if D =
←→
G+{possibly some arcs that

do not belong to cycles}, where each connected component of G is an r-regular graph

or a (r1, r2)-semiregular bipartite graph with r2 = r1r2 =
∑n

i=1(T
+
i )

2∑n
i=1(d

+
i )

2 . If α ̸= 0, then

for a strongly connected digraph D, equality occurs in (3) if and only if D =
←→
G and

αd+i + (1− α)m+
i is the same for all i or D =

←→
G with each connected component of

D has the property that both λ(Aα(D)) and −λ(Aα(D)) are the eigenvalues of Aα(D)
with eigenvector c = (d+1 , d

+
2 , . . . , d

+
n )

T .

Proof. The proof follows by taking X = (d+1 , d
+
2 , . . . , d

+
n )

T in (2) and proceeding
similarly as in Theorem 2.2. □

The following lemma gives the generalized adjacency spectral radius of a bipartite
semi-regular digraph.

Lemma 2.4. Let D be a strongly connected bipartite semi-regular digraph with bipar-
tition V (D) = V1 ∪ V2. If d+i = r, for all vi ∈ V1 and d+j = s, for all vj ∈ V2, then

λ(Aα(D)) = 1
2

(
α(r + s) +

√
α2(r + s)2 + 4(1− 2α)rs

)
.

Proof. Let D be a strongly connected bipartite semi-regular digraph with bipartition
V (D) = V1 ∪ V2 such that d+i = r, for all vi ∈ V1 and d+j = s, for all vj ∈ V2.
Let V (D) = {u1, u2, . . . , uk, w1, w2, . . . , wl}, where V1 = {u1, u2, . . . , uk} and V2 =
{w1, w2, . . . , wl}. Under this labelling of vertices of D the generalized adjacency
matrix of D can be written as

Aα(D) =

(
αrIk (1− α)B

(1− α)C αsIl

)
,

where Ip is the identity matrix of order p, B is the part of the matrix Aα(D) which
corresponds to the arcs having initial in V1 and terminal in V2 and C is the part of the
matrix Aα(D) which corresponds to the arcs having initial in V2 and terminal in V1.

The equitable quotient matrix of Aα(D) is M =

(
αr (1− α)r

(1− α)s αs

)
. The spectral

radius of the matrix M is λ(M) =
α(r+s)+

√
α2(r+s)2+4(1−2α)rs

2 . Since the matrix
Aα(D) is nonnegative, therefore it follows from [17, Theorem 2.5] that λ(Aα(D)) =
λ(M). □

The following gives an upper bound for λ(Aα(D)), in terms of the vertex out-
degrees of the digraph and the parameter α.

Theorem 2.5. Let D be a strongly connected digraph of order n and let α ∈ [0, 1).
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Let d+1 ≥ d+2 ≥ · · · ≥ d+n be the out-degree sequence of D. Then

λ(Aα(D)) ≤ max
(vi,vj)∈E(D)

α(d+i + d+j ) +
√
α2(d+i + d+j )

2 + 4(1− 2α)d+i d
+
j

2

 . (4)

Moreover, equality holds if and only if D is a regular digraph or a bipartite semi-regular
digraph

Proof. Let D be a strongly connected digraph of order n and let E(D) be the
arc set of D. Let X=(x1, x2, . . . , xn)

T be an eigenvector of Aα(D) correspond-
ing to the eigenvalue λ(Aα(D)). We assume that xi=max{xk; vk ∈ V (D)} and
xj=max{xk; (vi, vk) ∈ E(D)}. From the i-th equation of Aα(D)X=λ(Aα(D))X,
we have

λ(Aα(D))xi = αd+i xi + (1− α)
∑

(vi,vj)∈E(D)

xj ,

i.e. (λ(Aα(D))− αd+i )xi ≤ (1− α)d+i xj . (5)

Also, from the j-th equation of Aα(D)X = λ(Aα(D))X, we have

λ(Aα(D))xj = αd+j xj + (1− α)
∑

(vj ,vk)∈E(D)

xk,

i.e. (λ(Aα(D))− αd+j )xj ≤ (1− α)d+j xi. (6)

Multiplying the corresponding sides of (5), (6) and using the fact that xk > 0 for all
k, we get

(λ(Aα(D))− αd+i )(λ(Aα(D))− αd+j ) ≤ (1− α)2d+i d
+
j ,

i.e. λ(Aα(D))2 − α(d+i + d+j )λ(Aα(D))− (1− 2α)d+i d
+
j ≤ 0. (7)

From this the inequality (4) follows. Suppose that the equality holds in (4). Then,
all the inequalities in the above argument must be equalities. From equality in (6),
we get xk = xj for all k such that (vi, vk) ∈ E(D) and from the equality in (7), we
get xk = xi for all k such that (vj , vk) ∈ E(D). Consider the sets V1 = {vk : xk = xi}
and V2 = {vk : xk = xj}. Clearly N+(vi) ∈ V2 and N+(vj) ∈ V1. We will show that
V (D) = V1 ∪ V2. Let vz ∈ N+(vi) and vr ∈ N+(vz); then xz = xj and xr = xi.
Further, if s ∈ N+(vr) and vr ∈ N+(vz), then by above xr = xj . Proceeding in
this way and using the fact that D is a strongly connected digraph, we conclude that
xu = xi or xu = xj , for all u ∈ V (D). This proves that V (D) = V1 ∪ V2. We
first suppose that D is non-bipartite strongly connected digraph; then D contains
directed odd cycles and so using above procedure we arrive at xi = xj . This gives
that X = (1, 1, . . . , 1) is an eigenvector for λ(Aα(D)) and so D is a r-regular digraph.
On the other hand, if D is a bipartite digraph, then we have either xi = xj or xi ̸= xj .
If xi = xj , then as above D is an r-regular digraph. Assume that xi ̸= xj . Since,
for vk ∈ V1, we have xk = xi and xz = xj , for all vz ∈ N+(vk), therefore it follows

that λ(Aα(D))xi = αd+k xi + (1 − α)d+k xj . This gives that d+k = λ(Aα(D))xi

αxi+(1−α)xj
, for all

vk ∈ V1. Similarly, for vk ∈ V2, we have xk = xj and xz = xi, for all vz ∈ N+(vk), it

follows that d+k =
λ(Aα(D))xj

αxj+(1−α)xi
, for all vk ∈ V2. This shows that D is a semi-regular
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bipartite digraph in this case.
Conversely, if the strongly connected digraph D is a regular digraph or a bipartite

semi-regular digraph then using Lemma 2.4 (in case of bipartite semi-regular), it can
be seen that equality holds in (4). This completes the proof. □

The following gives a lower bound for λ(Aα(D)), in terms of the vertex out-degrees
of the digraph and the parameter α.

Theorem 2.6. Let D be a strongly connected digraph of order n and let α ∈ [0, 1).
Let d+1 ≥ d+2 ≥ · · · ≥ d+n be the out-degree sequence of D. Then

λ(Aα(D)) ≥ min
(vi,vj)∈E(D)

α(d+i + d+j ) +
√
α2(d+i + d+j )

2 + 4(1− 2α)d+i d
+
j

2

 , (8)

provided that

λ(Aα(D)) > max
(vi,vj)∈E(D)

α(d+i + d+j )−
√
α2(d+i + d+j )

2 + 4(1− 2α)d+i d
+
j

2

 .

Moreover, equality holds if and only if D is a regular digraph or a bipartite semi-regular
digraph

Proof. Let D be a strongly connected digraph of order n and let E(D) be the arc
set of D. Let X = (x1, x2, . . . , xn)

T be an eigenvector of Aα(D) corresponding to
the eigenvalue λ(Aα(D)). We assume that xi = min{xk; vk ∈ V (D)} and xj =
min{xk; (vi, vk) ∈ E(D)}. The rest of the proof is similar to Theorem 2.5 and is
therefore omitted. □

Lemma 2.7 ([8]). Let M = (mij) be an n×n nonnegative matrix and let ri(M) be the
i-th row sum of M . Then min{ri(M), 1 ≤ i ≤ n} ≤ λ(M) ≤ max{ri(M), 1 ≤ i ≤ n}.
If M is irreducible, then each equality holds if and only if r1 = r2 = · · · = rn.

The following result gives an upper bound for λ(Aα(D)) in terms of the maximum
out-degree, the minimum out-degree, the number of arcs, the number of vertices and
the parameter α.

Theorem 2.8. Let D be a strongly connected digraph of order n ≥ 3 with a arcs and
let α ∈ [0, 1). Let ∆+ and δ+ be respectively the maximum vertex out-degree and the
minimum vertex out-degree of D. Then

λ(Aα(D)) ≤ max

{
α∆++(1−α)

(
m−δ+(n−1)

∆+
+δ+−1

)
,

2α+(1−α)
(
m−δ+(n−1)

2
+δ+−1

)
, (1−α)∆++α

(
δ+−1+m−δ+(n−1)

∆+

)}
.

Moreover, if D(̸= Cn) is a regular digraph, then the equality holds.

Proof. LetD be a strongly connected digraph and let Deg (D) = Diag (d+1 , d
+
2 , . . . , d

+
n )

be the diagonal matrix of out-degrees of the vertices of the digraph D. Since D is
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strongly connected implies that d+i ≥ 1, it follows that the matrix Deg (D)−1 =
Diag (1/d+1 , 1/d

+
2 , . . . , 1/d

+
n ) exists. For a matrix M , let ri(M) denoted the sum of

the entries in the i-th row. Considering the matrix Deg (D)−1Aα(D)Deg (D), it is
easy to see that

ri(Deg (D)−1Aα(D)Deg (D)) = αd+i + (1− α)
1

d+i

∑
(vi,vj)∈E

d+j = αd+i + (1− α)m+
i .

Since the matrices Aα(D) and Deg (D)−1Aα(D)Deg (D) are similar, it follows that
λ(Aα(D)) = λ(Deg (D)−1Aα(D)Deg (D)). Now, using Lemma 2.7, we obtain

min
{
αd+i +(1−α)m+

i , vi∈V (D)
}
≤λ(Aα(D))≤max{αd+i +(1−α)m+

i , vi∈V (D)}. (9)

Using Lemma 2.7 and the fact D is strongly connected it is easy to see that equality
holds on both sides of (9) if and only if αd+1 +(1−α)m+

1 = αd+2 +(1−α)m+
2 = · · · =

αd+n + (1− α)m+
n .

From the inequality (9) we know that λ(D) ≤ max{αd+i +(1−α)m+
i , vi ∈ V (D)}.

So we only need to prove that max{αd+i + (1 − α)m+
i , vi ∈ V (D)} ≤ max

{
α∆+ +

(1 − α)
(

m−δ+(n−1)
∆+ + δ+ − 1

)
, 2α + (1 − α)

(
m−δ+(n−1)

2 + δ+ − 1
)
, (1 − α)∆+ +

α
(
δ+ − 1 + m−δ+(n−1)

∆+

)}
. Suppose max{αd+i + (1 − α)m+

i , vi ∈ V (D)} occurs at

vertex u. Two cases arise: d+u = 1 or 2 ≤ d+u ≤ ∆+.
(i) d+u = 1. Suppose that N+

u = {w}. Since m+
u = d+w ≤ ∆+, thus αd+u +(1−α)m+

u ≤
α+(1−α)∆+. Since

∑
vi∈V (D) d

+
i = m, let d+j = ∆+, then

∑
i ̸=j d

+
i = m−∆+ ≥ (n−

1)δ+, so m−(n−1)δ+ ≥ ∆+. Therefore δ+−1+ m−δ+(n−1)
∆+ ≥ δ+−1+ ∆+

∆+ = δ+ ≥ 1.

Hence αd+u + (1− α)m+
u ≤ (1− α)∆+ + α

(
δ+ − 1 + m−δ+(n−1)

∆+

)
, the result follows.

(ii) 2 ≤ d+u ≤ ∆+. Note that m− (n− 1)δ+ ≥ d+u ≥ 2, and

m =
∑

(u,v)∈E

d+v +
∑

(u,v)/∈E

d+v ≥
∑

(u,v)∈E

d+v + d+u + (n− d+u − 1)δ+,

thus
∑

(u,v)∈E

d+v ≤ m− d+u − (n− d+u − 1)δ+ = m− (n− 1)δ+ + (δ+ − 1)d+u ,

hence m+
u =

∑
(u,v)∈E d+v

d+u
≤ m− (n− 1)δ+

d+u
+ δ+ − 1.

It follows that αd+u+(1−α)m+
u ≤ αd+u+(1−α)

(
m−(n−1)δ+

d+
u

+δ+−1
)
. Let f(x) =

αx+(1−α)
(

m−(n−1)δ+

x +δ+−1
)
, where x ∈ [2,∆+]. It is easy to see that f ′(x) =

α−(1−α)
(

m−(n−1)δ+

x2

)
. Let a = (1−α)(m−(n−1)δ+)

α , then
√
a is the unique positive

root of f ′(x) = 0. We consider the next three subcases:

(1)
√
a < 2. When x ∈ [2,∆+], since f ′(x) > 0, then f(x) ≤ f(∆+).

(2) 2 ≤
√
a ≤ ∆+. Then f ′(x) < 0 for x ∈ [2,

√
a) and f ′(x) ≥ 0, for x ∈ [

√
a,∆+].

Thus f(x) ≤ max{f(2), f(∆+)}.
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(3) ∆+ <
√
a. When x ∈ [2,∆+], since f ′(x) < 0, then f(x) ≤ f(2). Recall that

2 ≤ d+u ≤ ∆+, thus

αd+u + (1− α)m+
u ≤ max{f(2), f(∆+)}

=max

{
α∆++(1−α)

(
m−δ+(n−1)

∆+
+δ+−1

)
, 2α+(1−α)

(
m−δ+(n−1)

2
+δ+−1

)}
.

If D(̸= Cn) is a regular digraph, then αd+i +(1−α)m+
i = d+i = ∆+ for all vi ∈ V (D).

We can get λ(D) = ∆+. Since D(̸= Cn) is a strongly connected digraph, then we
may assume that ∆+ ≥ 2, this implies that

2α+(1−α)
(
m−δ+(n−1)

2
+δ+−1

)
=2α+(1−α)

(
∆+

2
+∆+−1

)
≤ ∆+

=α∆++(1−α)
(
m−δ+(n−1)

∆+
+δ+−1

)
.

So max

{
α∆++(1−α)

(
m−δ+(n−1)

∆+ +δ+−1
)
, 2α+(1−α)

(
m−δ+(n−1)

2 +δ+−1
)}

= ∆+.

Thus the equality holds. □

The following observation follows from Theorem 2.8.

Corollary 2.9. Let D be a strongly connected digraph of order n ≥ 3 with m arcs

having maximum out-degree ∆+ and the minimum out-degree δ+. If ∆+ ≥ m−(n−1)
2

and δ+ = 1, then λ(D) ≤ max{α(∆+ − 2)− 2,∆+ − α(∆+ − 2)}.

Proof. Since α∆+ + (1− α)
(

m−δ+(n−1)
∆+ + δ+ − 1

)
≤ α(∆+ − 2)− 2, also 2α+ (1−

α)

(
m−δ+(n−1)

2 +δ+−1
)
≤ ∆+−α(∆+−2) and (1−α)∆++α

(
δ+ − 1 + m−δ+(n−1)

∆+

)
≤

∆+ − α(∆+ − 2), hence by Theorem 2.8 the result follows. □

3. Concluding remarks

As mentioned in the introduction, for α = 0, the generalized adjacency matrix Aα(D)
of the digraph D is the same as the adjacency matrix A(D) and for α = 1

2 , twice
the generalized adjacency matrix Aα(D) is the same as the signless Laplacian matrix
Q(D). Therefore, if in particular, we put α = 0 and α = 1

2 , in all the results ob-
tained in Section 2, we obtain the corresponding bounds for the adjacency spectral
radius λ(A(D)) and the signless Laplacian spectral radius λ(Q(D)), respectively. We
note that most of these results we obtained in Section 2 has been already discussed
for the adjacency spectral radius λ(A(D)) or/and for the signless Laplacian spec-
tral radius λ(Q(D)). Therefore, in this setting our results are the generalization of

these known results. Further if in particular D =
←→
G , where

←→
G is the symmetric

digraph corresponding to the underlying graph G of D, then our results obtained
in Section 2 become the corresponding results for the generalized adjacency spectral
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radius λ(Aα(G)) of the graph G. Thus our results are also the generalizations of the
corresponding results for the Aα-matrix of the graph G.

Acknowledgement. We are highly thankful to the communicating editor and
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