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YOUNG TYPE INEQUALITIES AND REVERSES FOR MATRICES

M. H. M. Rashid

Abstract. In this paper, we give some Young type inequalities for scalars. By using
these inequalities we establish corresponding Young type inequalities for matrices. In addi-
tion, we present some reverses of the Young type inequalities and give several refinements
for matrices.

1. Introduction

In what follows, Mn(C) denotes the space of n × n complex matrices and M+
n (C)

denotes the class of positive semi-definite matrices in Mn(C). A norm |||·||| on Mn(C)
is called unitarily invariant if |||UAV ||| = |||A||| for all A ∈ Mn(C) and for all unitary
matrices U, V ∈ Mn(C). For A = [aij ] ∈ Mn(C), the Hilbert-Schmidt (or Frobenius)
norm and the trace norm of A are defined by

∥A∥2 =

 n∑
j=1

s2j (A)

 1
2

, ∥A∥1 = tr(|A|) =
n∑

j=1

sj(A)

respectively, where s1(A) ≥ s2(A) ≥ . . . ≥ sn(A) are the singular values of A, that is,
the eigenvalues of the positive matrix |A| =

√
A∗A, arranged in decreasing order and

repeated according to multiplicity and tr(·) is the usual trace. Moreover, it is well
known that ∥·∥2 and ∥·∥1 are unitarily invariant.

The most common form of Young’s inequality, often used to prove the well-known
inequality for Lp functions is as follows:

aνb1−ν ≤ νa+ (1− ν)b, (1)

where a, b > 0 and 0 ≤ ν ≤ 1, or equivalently ab ≤ ap

p + bq

q , where p, q > 1 are such

that 1
p + 1

q = 1.
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164 Young type inequalities and reverses for matrices

A matrix Young’s inequality due to Ando [1] asserts that sj(A
νB1−ν) ≤ sj(νA+

(1−ν)B). The above singular value inequality entails the following unitarily invariant
norm inequality

∣∣∣∣∣∣AνB1−ν
∣∣∣∣∣∣ ≤ |||νA+ (1− ν)B|||.

A determinant version of Young’s inequalities is also known [12, p. 467]: For
positive semidefinite matrices A,B and 0 ≤ ν ≤ 1, det(AνB1−ν) ≤ det(νA+(1−ν)B).
Although inequality (1) seems simple, it is very useful in operator theory. We refer
the interested readers to [2–5,9, 17–21].

Refinements and generalizations of this inequality has attracted the attention of
many researchers in the field. The first refinement of Young’s inequality is the squared
version proved in [11]:

(aνb1−ν)2 +min{ν, 1− ν}2(a− b)2 ≤ (νa+ (1− ν)b)2. (2)

Later, Kittaneh and Manasrah [14], obtained another interesting refinement of Young’s
inequality:

aνb1−ν +min{ν, 1− ν}(
√
a−

√
b)2 ≤ νa+ (1− ν)b. (3)

The inequalities (2) and (3) are special cases of a more general refinement stating
that for m = 1, 2, 3, . . . one has:(

aνb1−ν
)m

+ rm0
(
a

m
2 − b

m
2

)2 ≤ (νar + (1− ν)br)
m
r , r ≥ 1,

where r0 = min{ν, 1− ν} (see [16]).

A related refinement has been recently proved in [2], with some interesting appli-
cations in Mn(C).

These inequalities are generalized to the space of operators on finite dimensional
Hilbert spaces. In the setting of matrices, the above refinement reads as follows:∣∣∣∣∣∣AνB1−ν

∣∣∣∣∣∣m + rm0

(
|||AX|||

m
2 − |||XB|||

m
2

)2
≤ (ν|||AX|||+ (1− ν)|||XB|||)m, when A,

B ∈ M+
n (C) and m ∈ N (see [16]).

Kai in [13] gave the following Young type inequalities:

ν2a2 + (1− ν)2b2 ≥ ν2(a− b)2 + ν2νa2νb2−2ν , if 0 ≤ ν ≤ 1

2
, (4)

ν2a2 + (1− ν)2b2 ≥ (1− ν)2(a− b)2 + (1− ν)2(1−ν)a2νb2−2ν , if
1

2
≤ ν ≤ 1. (5)

Based on the refined Young’s inequalities (4) and (5), it has been shown in [13]
that if A,B,X ∈ Mn(C) such that A and B are positive semidefinite, then

∥νAX + (1− ν)XB∥22 ≥ν2 ∥AX −XB∥22 + ν2ν
∥∥AνXB1−ν

∥∥2
2

+ 2ν(1− ν)
∥∥∥A 1

2XB
1
2

∥∥∥2
2
, if 0 ≤ ν ≤ 1

2

∥νAX + (1− ν)XB∥22 ≥(1− ν)2 ∥AX −XB∥22 + (1− ν)2−2ν
∥∥AνXB1−ν

∥∥2
2

+ 2ν(1− ν)
∥∥∥A 1

2XB
1
2

∥∥∥2
2
, if

1

2
≤ ν ≤ 1.

Recently, Burqan and Khandaqji [8] gave the following reverse of the scalar Young
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type inequality:

ν2a+ (1− ν)2b ≤ (1− ν)2(
√
a−

√
b)2 + aν [(1− ν)2b]1−ν , for 0 ≤ ν ≤ 1

2
, (6)

ν2a+ (1− ν)2b ≤ ν2(
√
a−

√
b)2 + ν2νaνb1−ν , for

1

2
≤ ν ≤ 1. (7)

In this paper, we present refinements of inequalities (4) and (5) and reverses of
inequalities (6) and (7). Based on the spectral theorem for positive matrices, we
use these inequalities to establish corresponding inequalities for matrices. We give
the trace norm, the Hilbert-Schmidt norm, and determinant versions of Young type
inequalities based on the Young type inequalities (8) and (9).

2. Refinements of Young type inequalities

In this section, we give some Young type inequalities for scalars. Then by using these
inequalities we establish corresponding Young type inequalities for matrices.

Lemma 2.1. Suppose that a, b ≥ 0 and r is any positive real number.

(a) If 0 ≤ ν ≤ 1
2 , then[
(νar)

ν
br(1−ν)

]2
+ ν2(ar − br)2 ≤ ν2a2r + (1− ν)2b2r. (8)

(b) If 1
2 ≤ ν ≤ 1, then[

arν ((1− ν)br)
1−ν
]2

+ (1− ν)2(ar − br)2 ≤ ν2a2r + (1− ν)2b2r. (9)

Proof. (a) Suppose that 0 ≤ ν ≤ 1
2 and by the classical Young inequality, it holds

that

ν2a2r + (1− ν)2b2r − ν2(ar − br)2

=ν2a2r + b2r − 2νb2r + ν2b2r − ν2a2r + 2ν2arbr − ν2b2r

=br [(1− 2ν)br + 2ν (νar)] ≥ br
[
br(1−2ν) (νar)

2ν
]
=
[
br(1−ν) (νar)

ν
]2

.

(b) If 1
2 ≤ ν ≤ 1, then

ν2a2r + (1− ν)2b2r − (1− ν)2(ar − br)2

=ν2a2r + (1− ν)2b2r − (1− ν)2a2r + 2(1− ν)2arbr − (1− ν)2b2r

=ν2a2r − a2r + 2νa2r − ν2a2r + 2(1− ν)2arbr = ar
[
(2ν − 1)ar + 2(1− ν)2br

]
≥ar

[
ar(2ν−1) ((1− ν)br)

2(1−ν)
]
=
[
arν ((1− ν)br)

1−ν
]2

.

In this section, we give the trace norm, the Hilbert-Schmidt norm, and determinant
versions of Young type inequalities based on the Young type inequalities (8) and (9).
To do this, we need the following lemma.
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Lemma 2.2 ([6]). If A,B ∈ Mn(C), then
n∑

i=1

si(AB) ≤
n∑

i=1

si(A)si(B).

Theorem 2.3. Let A,B ∈ Mn(C) be positive semi-definite and r be any positive real
number.
(a) If 0 ≤ ν ≤ 1

2 , then

νν
∥∥∥ArνBr(1−ν)

∥∥∥
1
≤
√
ν2 ∥Ar∥22 + (1− ν)2 ∥Br∥22 − ν2 (∥Ar∥2 − ∥Br∥2)

2
. (10)

(b) If 1
2 ≤ ν ≤ 1, then

(1− ν)1−ν
∥∥∥ArνBr(1−ν)

∥∥∥
1

≤
√
ν2 ∥Ar∥22 + (1− ν)2 ∥Br∥22 − (1− ν)2 (∥Ar∥2 − ∥Br∥2)

2
. (11)

Proof. (a) If 0 ≤ ν ≤ 1
2 and r is any positive real number, then by inequality (8), it

holds that
[(
νsrj(A)

)ν (
srj(B

r)
)1−ν

]2
+ν2

(
srj − srj

)2 ≤ ν2s2rj (A)+ (1−ν)2s2rj (B), for

all j = 1, . . . , n. Thus, by the Cauchy-Schwarz inequality, we have

(ν2A2r+(1−ν)2B2r)=ν2 tr(A2r)+(1−ν)2 tr(B2r)=

n∑
j=1

[
ν2s2j (A

r)+(1−ν)2s2j (B
r)
]

≥
n∑

j=1

[
(νsj(A

r))
ν
(sj(B

r))
1−ν
]2

+ν2

 n∑
j=1

s2j (A
r)+

n∑
j=1

s2j (B
r)−2

n∑
j=1

sj(A
r)sj(B

r)


≥

n∑
j=1

[
(νsj(A

r))
ν
(sj(B

r))
1−ν
]2

+ν2

∥Ar∥22 + ∥Br∥22 −2

 n∑
j=1

s2j (A
r)

 1
2
 n∑

j=1

s2j (B
r)

 1
2


=νν

n∑
j=1

[
sj(A

rν)srj(B
r(1−ν))

]2
+ν2 (∥Ar∥2 −∥Br∥2)

2
. (12)

On the other hand,

ν2 tr(A2r) + (1− ν)2 tr(B2r) = ν2 ∥Ar∥22 + (1− ν)2 ∥Br∥22 . (13)

Therefore, it follows from (12) and (13) that

ν2 ∥Ar∥22 +(1−ν)2 ∥Br∥22 −ν2 (∥Ar∥2 −∥Br∥2)
2 ≥νν

n∑
j=1

[
sj(A

rν)sj(B
r(1−ν))

]2
. (14)

By Lemma 2.2 and (14), it holds that

νν
∥∥∥ArνBr(1−ν)

∥∥∥
1
≤
√

ν2 ∥Ar∥22 + (1− ν)2 ∥Br∥22 − ν2 (∥Ar∥2 − ∥Br∥2)
2
.
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(a) If 1
2 ≤ ν ≤ 1, then by employing inequality (9) and the same reasoning as

above, we obtain inequality (11). □

Theorem 2.4. Let A,B,X ∈ Mn(C) such that A and B are positive semi-definite
and r be any positive real number.
(a) If 0 ≤ ν ≤ 1

2 , then

∥νArX+(1−ν)XBr∥22 ≥ν2 ∥ArX−XBr∥22 +ν2ν
∥∥∥ArνXBr(1−ν)

∥∥∥2
2
+2ν(1−ν)

∥∥A r
2XB

r
2

∥∥2
2
.

(b) If 1
2 ≤ ν ≤ 1, then

∥νArX+(1−ν)XBr∥22 ≥

(1−ν)2 ∥ArX−XBr∥22 +(1−ν)2(1−ν)
∥∥∥ArνXBr(1−ν)

∥∥∥2
2
+2ν(1−ν)

∥∥A r
2XB

r
2

∥∥2
2
. (15)

Proof. Since every positive semi-definite matrix is unitarily diagonalizable, it follows
that there are unitary matrices U, V ∈ Mn(C) such that A = UD1U

∗ and B =
V D2V

∗, where D1 = diag(λ1, . . . , λn), D2 = diag(µ1, . . . , µn) and λi, µi ≥ 0 (i =
1, . . . , n). Let Y = U∗XV = [yij ]. Then

νArX+(1−ν)XBr = U (νDr
1+(1−ν)Y Dr

2)V
∗ = U

((
νλr

i+(1−ν)µr
j

)
yij
)
V ∗

ArX−XBr = U
((
λr
i−µr

j

)
yij
)
V ∗

A
r
2XB

r
2 = U

(
λ

r
2
i µ

r
2
j yij

)
V ∗

and ArνXBr(1−ν) = U
(
λrν
i µ

r(1−ν)
j yij

)
V ∗

(a) If 0 ≤ ν ≤ 1
2 , then by inequality (8)) and the unitary invariance of the Hilbert-

Schmidt norm, we have

∥νArX + (1− ν)XBr∥22 =

n∑
i,j=1

(
νλr

i + (1− ν)µr
j

)2 |yij |2
=

n∑
i,j=1

(
ν2λ2r

i + (1− ν)2µ2r
j + 2ν(1− ν)λr

iµ
r
j

)
|yij |2

≥ν2
n∑

i,j=1

(
λr
i − µr

j

)2 |yij |2 + ν2ν
n∑

i,j=1

(
λrν
i µ

r(1−ν)
j

)2
|yij |2 + 2ν(1− ν)

n∑
i,j=1

(
λr
iµ

r
j

)
|yij |2

≥ν2 ∥ArX −XBr∥22 + ν2ν
∥∥∥ArνXBr(1−ν)

∥∥∥2
2
+ 2ν(1− ν)

∥∥A r
2XB

r
2

∥∥2
2
.

(b) If 1
2 ≤ ν ≤ 1, then by employing inequality (9) and the the same reasoning as

above, we have inequality (15).

Theorem 2.5. Let A,B ∈ Mn(C) be positive definite and r be any positive real
number.
(a) If 0 ≤ ν ≤ 1

2 , then

det [νAr + (1− ν)Br]
2 ≥ν2nν det

(
ArνBr(1−ν)

)2
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+ ν2n det (Ar −Br)
2
+ (2ν (1− ν))

n
det
(
B

r
2ArB

r
2

)
.

(b) If 1
2 ≤ ν ≤ 1, then

det [νAr+(1−ν)Br]
2 ≥(1−ν)2n(1−ν) det

(
ArνBr(1−ν)

)2
+(1−ν)2n det (Ar−Br)

2
+(2ν (1−ν))

n
det
(
B

r
2ArB

r
2

)
. (16)

Proof. (a) By inequality (8), we have

ν2ν
[
sνj
(
B− r

2ArB− r
2

)]2
+ ν2

[
sj
((
B− r

2ArB− r
2

))
− 1
]2 ≤ ν2s2j

(
B− r

2ArB− r
2

)
+ (1− ν)

for all j = 1, . . . , n. Therefore

det
[
ν
(
B− r

2ArB− r
2

)
+ (1− ν)I

]2
=

n∏
j=1

[
νsj

((
B− r

2ArB− r
2

))
+ (1− ν)

]2
≥

n∏
j=1

[
ν2νs2j

(
B− r

2ArB− r
2

)
+ ν2

(
sj
(
B− r

2ArB− r
2

)
− 1
)2

+ 2ν(1− ν)sj
(
B− r

2ArB− r
2

)]
≥ν2nν

n∏
j=1

s2νj
(
B− r

2ArB− r
2

)
+ ν2n

n∏
j=1

[
sj
(
B− r

2ArB− r
2

)
− 1
]2

+ (2ν(1− ν))n
n∏

j=1

sj
(
B− r

2ArB− r
2

)
=ν2nν det

(
B− r

2ArB− r
2

)2ν
+ ν2n det

(
B− r

2ArB− r
2 − I

)2
+ (2ν (1− ν))

n
det
(
B− r

2ArB− r
2

)
.

Thus, it holds that

det (νAr + (1− ν)Br)
2 ≥ν2nν det

(
ArνBr(1−ν)

)2
+ ν2n det (Ar −Br)

2

+ (2ν(1− ν))
n
det
(
B

r
2ArB

r
2

)
.

(b) If 1
2 ≤ ν ≤ 1 and r is any positive number, then by utilizing inequality (9) and

following the same method as in the proof of (a), we arrive at (16). □

3. Reverses of Young type inequalities

In this section, we present some reverses of the Young type inequalities and give
several refinements for matrices.

Lemma 3.1. Let a, b ≥ 0 and r be any positive real number.
(a) If 0 ≤ ν ≤ 1

2 , then

ν2(1−ν) [(2ν − 1)ar + 2(1− ν)br] + a2r(1−ν)ν2νb(2ν−1)r ≥ 2ν
√
arbr. (17)

(b) If 1
2 ≤ ν ≤ 1, then

ν2ν [2(1− ν)ar + (2ν − 1)br] + a(2ν−1)rν2(1−ν)b2r(1−ν) ≥ 2ν
√
arbr. (18)
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Proof. (a) If 0 ≤ ν ≤ 1
2 and r is any positive real number, then by inequality (1), we

get

ν2(1−ν) [(2ν − 1)ar + 2(1− ν)br] + a2r(1−ν)ν2νb(2ν−1)r − 2ν
√
arbr

≥ν2(1−ν)a(2ν−1)rb2r(1−ν) + a2r(1−ν)ν2νb(2ν−1)r − 2ν
√
arbr

=
[
ν1−νa(

2ν−1
2 )rb(1−ν)r − a(1−ν)rννb(

2ν−1
2 )r

]2
≥ 0.

(b) If 0 ≤ ν ≤ 1
2 and r is any positive real number, then by inequality (1)), we have

ν2ν [2(1− ν)ar + (2ν − 1)br] + a(2ν−1)rν2(1−ν)b2(1−ν)r − 2ν
√
arbr

≥ν2νa2r(1−ν)b(2ν−1)r + a(2ν−1)rν2(1−ν)b2r(1−ν) − 2ν
√
arbr

=
[
ννa(1−ν)rb(

2ν−1
2 )r − a(

2ν−1
2 )rν1−νb(1−ν)r

]2
≥ 0.

Corollary 3.2. Let a, b ≥ 0 and r be any positive real number.
(a) If 0 ≤ ν ≤ 1

2 , then

ν2(1−ν)

[
ar + br

2

]
+ ν2ν

[
a2r(1−ν)b(2ν−1)r + a(2ν−1)rb2r(1−ν)

2

]
≥ 2ν

√
arbr. (19)

(b) If 1
2 ≤ ν ≤ 1, then

ν2ν
[
ar + br

2

]
+ ν2(1−ν)

[
a(2ν−1)rb2r(ν−1) + a2r(ν−1)b(2ν−1)r

2

]
≥ 2ν

√
arbr.

Now, we obtain a matrix version of inequalities (17) and (18).

Theorem 3.3. Let A,B,X ∈ Mn(C) such that A and B are positive definite, 0 ≤
ν ≤ 1 and r be any positive real number.
(a) If 0 ≤ ν ≤ 1

2 , then

2ν
∥∥A r

2XB
r
2

∥∥
2
≤ ν1−ν ∥(2ν − 1)ArX + 2(1− ν)XBr∥2 + νν

∥∥∥A2(1−ν)rXB(2ν−1)r
∥∥∥
2
.

(b) If 1
2 ≤ ν ≤ 1, then

2ν
∥∥A r

2XB
r
2

∥∥
2
≤νν ∥2(1−ν)ArX+(2ν−1)XBr∥2 +νν

∥∥∥A(2ν−1)rXB2r(ν−1)
∥∥∥
2
. (20)

Proof. Since every positive semi-definite matrix is unitarily diagonalizable, it follows
that there are unitary matrices U, V ∈ Mn(C) such that A = UD1U

∗ and B =
V D2V

∗, where D1 = diag(λ1, . . . , λn), D2 = diag(µ1, . . . , µn) and λi, µi ≥ 0 (i =
1, . . . , n). Let Y = U∗XV = [yij ]. Then

(2ν − 1)ArX + 2(1− ν)XBr = U ((2ν − 1)Dr
1 + 2(1− ν)Y Dr

2)V
∗

= U
((
(2ν − 1)λr

i + 2(1− ν)µr
j

)
yij
)
V ∗

A
r
2XB

r
2 = U

(
λ

r
2
i µ

r
2
j yij

)
V ∗

and A(2ν−1)rXB2r(1−ν) = U
(
λ
(2ν−1)r
i µ

2r(1−ν)
j yij

)
V ∗
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(a) If 0 ≤ ν ≤ 1
2 , then by inequality (17) and the Minkowski inequality and the

unitary invariance of the Hilbert-Schmidt norm, we obtain∥∥2νA r
2XB

r
2

∥∥
2
=

√√√√ n∑
i,j=1

[
2νλ

r
2
i µ

r
2
j

]2
|yij |2

≤

√√√√ n∑
i,j=1

[
ν2(1−ν)

(
(2ν − 1)λr

i + 2(1− ν)µr
j

)
+ ν2νλ

2r(1−ν)
i µ

(2ν−1)r
j

]2
|yij |2

≤ν1−ν

√√√√ n∑
i,j=1

[
(2ν − 1)λr

i + 2(1− ν)µr
j

]2 |yij |2 + ν1−ν

√√√√ n∑
i,j=1

[
λ
2r(1−ν)
i µ

(2ν−1)r
j

]2
|yij |2

=ν1−ν ∥(2ν − 1)ArX + 2(1− ν)XBr∥2 + νν
∥∥∥A2r(1−ν)XB(2ν−1)r

∥∥∥
2
.

(b) If 1
2 ≤ ν ≤ 1, then by inequality (18) and the Minkowski inequality and the same

method of proof of case (a), we get inequality (20).

The Heinz mean is defined by Hν(a, b) = 1
2 (a

νb1−ν + a1−νbν). The function
Hν is symmetric about the point ν = 1

2 , i.e., Hν(a, b) = H1−ν(a, b). Note that

H0(a, b) = H1(a, b) =
a+b
2 , H 1

2
(a, b) =

√
ab and H 1

2
(a, b) ≤ Hν(a, b) ≤ H0(a, b).

If A,B ∈ Mn(C) are positive definite, the geometric mean of A and B, denoted

by A♯B, is defined by A♯B = A
1
2

(
A− 1

2BA− 1
2

) 1
2

A
1
2 . For 0 ≤ ν ≤ 1, the ν-weighted

geometric mean, denoted by A♯νB, is defined by A♯νB = A
1
2

(
A− 1

2BA− 1
2

)1−ν

A
1
2 .

The ν-weighted geometric mean was introduced by Kubo and Ando [15], and when
ν = 1

2 this is just the geometric mean. One can show that A♯νB = B♯1−νA for 0 ≤
ν ≤ 1. When A and B commute, A♯νB = AνB1−ν . The ν-weighted arithmetic mean
is νA+ (1− ν)B and the Heinz mean with parameter ν is 1

2 (A♯νB +A♯1−ν)B. The
ν-weighted arithmetic mean of A and B, denoted by A∇νB, is defined by A∇νB =
(1− ν)A+ νB.

Theorem 3.4. Let A,B ∈ Mn(C) such that A and B are positive definite and r be
any positive real number.
(a) If 0 ≤ ν ≤ 1

2 , then ν2(1−ν) (Ar∇Br) + ν2νH2ν−1(A
r, Br) ≥ 2νAr♯Br, where

H2ν−1(A
r, Br) = A(2ν−1)rB2r(1−ν)+A2r(1−ν)B(2ν−1)r

2 .

(b) If 1
2 ≤ ν ≤ 1, then ν2ν (Ar∇Br) + ν2(1−ν)H2(1−ν)(A

r, Br) ≥ 2νAr♯Br, where

H2(1−ν)(A
r, Br) = A2r(1−ν)B(2ν−1)r+A(2ν−1)rB2r(1−ν)

2 .

Proof. (a) If ν ∈ [0, 1
2 ], then by inequality (17) for a > 0 and b = 1 becomes

ν2(1−ν) [(2ν − 1)ar + 2(1− ν)] + ν2νa2r(1−ν) ≥ 2ν
√
ar. Hence

ν2(1−ν)
[
(2ν − 1)B− r

2AB− r
2 + 2(1− ν)I

]
+ ν2ν

(
B− r

2ArB− r
2

)2(1−ν)

≥ 2ν
(
B− r

2ArB− r
2

) 1
2 . (21)
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If we multiply inequality (21) by B
r
2 on the left and right, we get

ν2(1−ν) [(2ν − 1)Ar + 2(1− ν)Br] + ν2ν (Ar♯1−2νB
r) ≥ 2νAr♯Br. (22)

Now, replacing Ar by Br and Br by Ar, it holds that

ν2(1−ν) [(2ν − 1)Br + 2(1− ν)Ar] + ν2ν
(
Ar♯2(1−ν)B

r
)
≥ 2νAr♯Br. (23)

Adding the inequalities (22) and (23), we obtain

ν2(1−ν) [Ar∇Br] + ν2νH2ν−1(A
r, Br) ≥ 2νAr♯Br.

The proof of (b) is similar to (a), so we omit it. □

The matrix version of inequality a♯b ≤ Hν(a, b) ≤ a∇b was proved by Bhatia and
Davis [7], saying that if 0 ≤ ν ≤ 1, then∥∥∥A 1

2XB
1
2

∥∥∥ ≤
∥∥∥∥AνXB1−ν +A1−νXBν

2

∥∥∥∥ ≤
∥∥∥∥AX +XB

2

∥∥∥∥ . (24)

Bakherad and Moslehian [5] improved the Young inequality and obtained the follow-

ing: ∥AX +XB∥22 + 2(ν − 1) ∥AX −XB∥22 ≤
∥∥AνXB1−ν +A1−νXBν

∥∥2
2
, where A

and B are positive definite matrices, X ∈ Mn(C) and ν > 1.

Theorem 3.5. Let A,B,X ∈ Mn(C) such that A and B are positive definite and r
be any positive real number.
(a) If ν ∈ [0, 1

2 ], then∥∥∥∥ν2(1−ν)

(
ArX +XBr

2

)
+ ν2ν

(
A(2ν−1)rXB2r(1−ν) +A2r(1−ν)XB(2ν−1)r

2

)∥∥∥∥
2

≥ 2ν
∥∥A r

2XB
r
2

∥∥
2
.

(b) If ν ∈ [ 12 , 1], then∥∥∥∥ν2ν (ArX +XBr

2

)
+ ν2(1−ν)

(
A(2ν−1)rXB2r(1−ν) +A2r(1−ν)XB(2ν−1)r

2

)∥∥∥∥
2

≥ 2ν
∥∥A r

2XB
r
2

∥∥
2
.

Proof. Since every positive semi-define is unitarily diagonalizable, it follows that there
are unitary matrices U, V ∈ Mn(C) such that A = UD1U

∗ and B = V D2V
∗, where

D1 = diag(λ1, . . . , λn), D2 = diag(µ1, . . . , µn) and λi, µi ≥ 0 (i = 1, . . . , n). Let
Y = U∗XV = [yij ]. Then

A(2ν−1)rXB2r(1−ν) +A2r(1−ν)XB(2ν−1)r

2

=
(UD1U

∗)
(2ν−1)r

X (V D2V
∗)

2r(1−ν)
+ (UD1U

∗)
2r(1−ν)

X (V D2V
∗)

(2ν−1)r

2

=
UD

(2ν−1)r
1 U∗XVD

2r(1−ν)
2 V ∗ + UD

2r(1−ν)
1 U∗XVD

(2ν−1)r
2 V ∗

2

=U

(
D

(2ν−1)r
1 XD

2r(1−ν)
2 +D

2r(1−ν)
1 XD

(2ν−1)r
2

2

)
V ∗.
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Therefore,∥∥∥∥A(2ν−1)rXB2r(1−ν) +A2r(1−ν)XB(2ν−1)r

2

∥∥∥∥2
2

=

∥∥∥∥∥D(2ν−1)r
1 Y D

2r(1−ν)
2 +D

2r(1−ν)
1 Y D

(2ν−1)r
2

2

∥∥∥∥∥
2

2

=

n∑
i,j=1

[
λ
(2ν−1)r
i µ

2r(1−ν)
j + µ

(2ν−1)r
i λ

2r(1−ν)
j

2

]2
|yij |2.

Similarly, it holds that∥∥A r
2XB

r
2

∥∥2
2
=

n∑
i,j=1

[
λ

r
2
i µ

r
2
j

]2
|yij |2,

∥∥∥∥ArX +XBr

2

∥∥∥∥2
2

=

n∑
i,j=1

[
λr
i + µr

j

2

]2
|yij |2.

It follows from inequality (19) that∥∥∥∥ν2(1−ν)

(
ArX +XBr

2

)
+ ν2ν

(
A(2ν−1)rXB2r(1−ν) +A2r(1−ν)XB(2ν−1)r

2

)∥∥∥∥2
2

=

n∑
i,j=1

[
ν2(1−ν)

(
λr
i + µr

j

2

)
+ ν2ν

(
λ
(2ν−1)r
i µ

2r(1−ν)
j + µ

(2ν−1)r
i λ

2r(1−ν)
j

2

)]2
|yij |2

≥
n∑

i,j=1

[
2ν
(
λ

r
2
i µ

r
2
j

)]2
|yij |2 = (2ν)2

∥∥A r
2XB

r
2

∥∥2
2
.

The proof of part (b) is similar, so we omit it. □
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