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YOUNG TYPE INEQUALITIES AND REVERSES FOR MATRICES

M. H. M. Rashid

Abstract. In this paper, we give some Young type inequalities for scalars. By using
these inequalities we establish corresponding Young type inequalities for matrices. In addi-
tion, we present some reverses of the Young type inequalities and give several refinements
for matrices.

1. Introduction

In what follows, M, (C) denotes the space of n x n complex matrices and M, (C)
denotes the class of positive semi-definite matrices in M, (C). A norm |||-||| on M, (C)
is called unitarily invariant if |J[UAV||| = ||A]|| for all A € M,,(C) and for all unitary
matrices U,V € M, (C). For A = [a;;] € M,,(C), the Hilbert-Schmidt (or Frobenius)

norm and the trace norm of A are defined by
1

2

4l = {23 ) LAl = u(a) = 3 s(4)

respectively, where s1(A) > s2(A) > ... > s,(A) are the singular values of A, that is,
the eigenvalues of the positive matrix |A| = vV A* A, arranged in decreasing order and
repeated according to multiplicity and tr(-) is the usual trace. Moreover, it is well
known that ||-||, and [|-||; are unitarily invariant.

The most common form of Young’s inequality, often used to prove the well-known
inequality for L, functions is as follows:

a’b " < wva+ (1 —v)b, (1)
where a,b > 0 and 0 < v < 1, or equivalently ab < % + %, where p,q > 1 are such
that -+ o = 1.
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164 Young type inequalities and reverses for matrices

A matrix Young’s inequality due to Ando [1] asserts that s;(A*B'™") < s;(vA +
(1—v)B). The above singular value inequality entails the following unitarily invariant
norm inequality ||A”B' ||| < [[vA+ (1 —v)B||.

A determinant version of Young’s inequalities is also known [12, p. 467]: For
positive semidefinite matrices A, B and 0 < v < 1, det(A”B'™") < det(vA+(1—v)B).
Although inequality (1) seems simple, it is very useful in operator theory. We refer
the interested readers to [2-5,9,17-21].

Refinements and generalizations of this inequality has attracted the attention of
many researchers in the field. The first refinement of Young’s inequality is the squared
version proved in [11]:

(b )2 + min{r, 1 — v}*(a — b)* < (va + (1 — v)b)2. (2)

Later, Kittaneh and Manasrah [14], obtained another interesting refinement of Young’s
inequality:

a’b' ™ +min{v, 1 — v}(va — Vb)® <va+ (1 - v)b. (3)

The inequalities (2) and (3) are special cases of a more general refinement stating
that for m =1,2,3,... one has:

m\ 2 m
T
)

(@b )" gt (0% —b%)" < (va” + (1= v)b")

where 19 = min{v,1 — v} (see [16]).

r>1

)

A related refinement has been recently proved in [2], with some interesting appli-
cations in M, (C).

These inequalities are generalized to the space of operators on finite dimensional
Hilbert spaces. In the setting of matrices, the above refinement reads as follows:

m m m 2
4Bl + g (JAXINE ~ IXBI) < WIAX]| + (1= »)IXBI)™, when 4,
B e M,F(C) and m € N (see [16]).
Kai in [13] gave the following Young type inequalities:

1
via® 4+ (1 —v)%* > v%(a — b)? +v*a® b, if0<v < 3 (4)
1
Pa? +(1—=v)20? > (1—v)%(a—b)2+ (1 —v)20g2p>=2  if 3 <v<1. (5)

Based on the refined Young’s inequalities (4) and (5), it has been shown in [13]
that if A, B, X € M, (C) such that A and B are positive semidefinite, then

lvAX + (1= V)X B} >v? | AX — XB||; + v | A" X B3
2

+2u(1 - v) HA%XB% L i0<vs

1
2
[vAX + (1 = )X B2 >(1 - v)?[|AX — XB|2+ (1 - v)> 2 ||A"X B3
2

1
+2y(1—y)HA%XB% if S <v<l.

)

2

Recently, Burqan and Khandagji [8] gave the following reverse of the scalar Young
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type inequality:
a+(1-v)%< (1 -0 Va—-Vb)?2+a’[(1-v)%)", for0<v< (6)

v<1. (7)

DN =

via+ (1 —v)%b <v*(Va — \/5)2 +v2a"b 7Y, for %

In this paper, we present refinements of inequalities (4) and (5) and reverses of
inequalities (6) and (7). Based on the spectral theorem for positive matrices, we
use these inequalities to establish corresponding inequalities for matrices. We give
the trace norm, the Hilbert-Schmidt norm, and determinant versions of Young type
inequalities based on the Young type inequalities (8) and (9).

IN

2. Refinements of Young type inequalities

In this section, we give some Young type inequalities for scalars. Then by using these
inequalities we establish corresponding Young type inequalities for matrices.

LEMMA 2.1. Suppose that a,b > 0 and r is any positive real number.
(a) If0<v <1, then

2
[(var) =] 02 (a7 = )2 < v+ (1= w)20, 8)

(b) If% <v <1, then
{a”’ ((1- V)br)lfy] ’ + (1 =v)*(a" —b")? < v?a® + (1 —v)%b”". 9)

Proof. (a) Suppose that 0 < v < 1 and by the classical Young inequality, it holds

2
that
V2?1 (1 — )22 — 2 (a” — )2
202 B2 9P 4 22T 262 4 92aTh — 2B
=5 [(1 = 208" + 2 (va)] 2 b 602 ()| = b0 (uar)”r.
(b) If £ < v <1, then
V2% 4 (1 — )02 — (1 — v)2(a” — b")?2
=20 + (1 -v)%* — (1 — )%a® +2(1 —v)%a"b" — (1 — v)%b*"
=1%a*" — a® 4 2va®" — v*a® +2(1 — v)%a"b" = a" [(2v—1)a" +2(1 - I/)QbT]

Za" [0 D (1= 20| = [am (1= v ] g 0

In this section, we give the trace norm, the Hilbert-Schmidt norm, and determinant
versions of Young type inequalities based on the Young type inequalities (8) and (9).
To do this, we need the following lemma.
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LEMMA 2.2 ([6]). If A, B € M,,(C), then
Zsi(AB) < Zsi(A)s (B)

THEOREM 2.3. Let A, B € M, (C) be positive semi-definite and r be any positive real
number.

(a) If0<v <L then
< \/V2 IAT5 + (1 =) | B7[5 = v2 (| A"l — |Br[l,)%. (10)
(b) If% <v <1, then

(1 - V)lfu AruBr(lfu)

oY AruBr(l—u)
1

1
2 2 2

< \/V2 [AT; + (A = )2 [|B7]l; = (A =) ([[A7]l, = [[B7]ly)" (11)

Proof. () If 0 <v < % and r is any positive real number, then by inequality (8), it

12
holds that [(VS§(A))D (sg(BT))1 } +v7% (s — ) < v?s3(A) + (1 —v)?s3"(B), for
all j =1,...,n. Thus, by the Cauchy-Schwarz inequality, we have

(2 A7 +(1=1)2B*" )= tr(AQT)—i—(l—y)Qtr(BQ’"):é [V252(AT)+(1-v)252(B")]
zi[(vsmr)) (58] +v (Zs Awisi BY)- Z (AT)sj(Br))
22:: (s, (5,870

2 {7+ 1B =2 (g Sw)); (Z s§<BT>);
fZ [5,4)s3 (B0 42 (147, ~ 18], )2 (12)

On the Other hand,
V2 (A7) + (1= )* (B*) = v | A5 + (1= 1) || B3 (13)
Therefore, it follows from (12) and (13) that

n 2
VAT + (1) BTl 2 (A = 1 B711)* 20" ) [81 (A™)s;(B"07) | (14)
Jj=1
By Lemma 2.2 and (14), it holds that

2 2 2
S \/V2 [A][5 4+ (L= v)2 1B [y = v2 ([|A7[l = [ B"]l5)"
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(a) If % < v < 1, then by employing inequality (9) and the same reasoning as
above, we obtain inequality (11). 0

THEOREM 2.4. Let A,B, X € M,(C) such that A and B are positive semi-definite
and r be any positive real number.

(a) If0 < v < %, then

A’I"VXBT(l—l/)

2 r r
HVATX—l—(l—u)XBTH; >V2 |A"X - XB"||5 +1v* [ F2v(i-v) |45 X BE |

(b) If £ <v <1, then
lvA" X +(1-v)X B"|2 >

2 . .
(1-v)? |A" X=X B"[|? +(1-v)20—) L F2v(1-v) AP X B? 2. (15)

‘ATVXBT‘(l*V)

Proof. Since every positive semi-definite matrix is unitarily diagonalizable, it follows
that there are unitary matrices U,V € M, (C) such that A = UD,U* and B =
VDyV*, where D1 = diag(A1,...,A\n), Do = diag(pa,..., ) and A, u; > 0 (i =
1,...,n). Let Y = U*XV = [y;;]. Then
VA" X+(1-v)XB" = U (vDi+(1-v)YDy) V* = U ((vA]+(1—v)pf) yi;) V*
A"X—XB" =U (A —p5) yi;) V*
AixBE =U (M plyy) v
and AT‘I/XB’I"(l—l/) =U ()\Zjvu;(lfu)yij) v*

(a) TO<v < %, then by inequality (8)) and the unitary invariance of the Hilbert-
Schmidt norm, we have
T T . s s 2
[A"X + (1= )XB"[l5 =Y (WA} + (1= v)pf)” |y
Q=1

Z (A2 4 (1= )22+ 20(1 — )N 35 Jyis 2

n

ZVQ Z ()\g*ug)2|yij|2+l/2u Z (/\ru r(l u)) |yij|2+21/(1*1/) Z (A:N;) |yij|2

i.j=1 i.j=1 i.j=1

>V2HATX XBTH +V2u ATVXBT(l v)

+2y 1-v) HA2XB2H2.

(b) If % < v < 1, then by employing inequality (9) and the the same reasoning as
above, we have inequality (15). O

THEOREM 2.5. Let A,B € M,(C) be positive definite and r be any positive real
number.
(a) If0<v< %, then

2
det [vA" + (1 — V)BT]2 >12" det (Ar”Br(l_”))
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+v¥det (A" — B")? + (2v (1 — v))" det (B2 A"B?) .
(b) If% <v <1, then
T 12 2n(l—v rv pr(l—-v) 2
det [ A"+ (1-v)B']* >(1-v) ) det (A B )
+(1=v)*" det (A"—B")? + (2v (1—v))" det (B2A"B%). (16)
Proof. (a) By inequality (8), we have

v 84 (B 5A"B 3)]" + 12 [s; (B 5A"B75)) —1]" <122 (B 5A"B %) + (1 —v)
for all j =1,...,n. Therefore

det [y (B 5A" B 5) + (L= 0)I)* = [[ [vsy (B~ 5A™B7%)) + (1 - )]’

(2v(1 —v)) Hs] “3A"B~

[Nb]
~—

—12" det (B‘EA’"B‘E)2 V> det (B"3A™B™5 — I)"+ (2v (1 — )" det (B~ 5 A"B~ 5
Thus, it holds that
2
det (VA" + (1 — v)B")? >12™ det (A”’BT(I_”)) + %" det (A" — B")?
+ (2v(1 —v))" det (B2 A"B?).

(b) If 2 < v <1 and r is any positive number, then by utilizing inequality (9) and
following the same method as in the proof of (a), we arrive at (16). U

3. Reverses of Young type inequalities

In this section, we present some reverses of the Young type inequalities and give
several refinements for matrices.

LEMMA 3.1. Let a,b >0 and r be any positive real number.
(a) If0 <v < %, then

2= ”) [(2v — 1)a” + 2(1 — v)b"] + a®" =2 =11 > 9\ /arbr, (17)
(b) If £ <v <1, then
2201 —v)a" + (2v — 1)) + aP I 2A-p2rd=v) > 9, frpr, (18)
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Proof. (a) 0 <v < % and r is any positive real number, then by inequality (1), we
get

VU (20 = 1)a” + 2(1 — v)b"] + o> DT 2 arbr
ZVZ(l—u)a(Zu—l)erT(l—u) + a2r(1—v)y2ub(2u—1)r _ 2V\/ﬁ

= |:V1*”a( 2 1)Tb(1 vr _ a(lfu)rl/ub(%T_l)T ’ > 0.

(b) If 0 < v < £ and r is any positive real number, then by inequality (1)), we have
v 2(1 = v)a” + (2v — 1)b7] 4 aZv D7 20200 9 farpr
2U2ua2r(1—u)b(21/—1)7' + a(2y—1)7*u2(1—1/)b27‘(1—1/) _ 2V\/W

_ [y"a(l_'/)rb( 2V;1)r _ a( 2u;1)ryl_yb(1—u)r:|2 > 0. O

COROLLARY 3.2. Let a,b > 0 and r be any positive real number.
(a) If0<v < %, then
211 a” +b" N o) a2r(1—v)b(2y—1)r + a(2y—1)rb2r(1—u)
v _ v
2 2

> 2Varbr. (19)
|

(b) If% <wv <1, then
0 |:ar + br:| N V2(17u) |:a(21/1)rb27‘(u1) +a2r(u71)b(2u71)r

> 2Varbr.
5 5 ]_21/ a’b

Now, we obtain a matrix version of inequalities (17) and (18).

THEOREM 3.3. Let A, B, X € M,(C) such that A and B are positive definite, 0 <
v<1andr be any positive Teal number.
(a) If0<v <1 then

2v||A2XBE ||, < vV ||(2v — 1)A"X +2(1 — v)XB"|, + v* (@v—1)r

.
(b) If 3 <v <1, then
2 ||AZX B2 ||, <v” [|2(1-v) A" X +(2v—1) X B"||, +v"

Proof. Since every positive semi-definite matrix is unitarily diagonalizable, it follows
that there are unitary matrices U,V € M, (C) such that A = UDU* and B =
VDyV*, where D1 = diag(A1,...,An), Do = diag(pa, ..., pn) and A, u; > 0 (i =
1,...,n). Let Y = U*XV = [y;;]. Then

(2 — DA"X +2(1 — )XB" = U ((2v — 1)D} 4+ 2(1 — )Y D) V*
=U (((2v = )A] +2(1 —v)uf) yiy) V*
A3 XB? :U()\gu yw)
and A@v=Drx gr(i-v) _ 1y (A(Q” D7 A=y, g) v
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(a) If0 < v < %, then by inequality (17) and the Minkowski inequality and the

unitary invariance of the Hilbert-Schmidt norm, we obtain

r r ~ r 2
l2vaixBE||, = | S [2vAFud] yisl?

4,j=1

n

2
< Z [V2(1—v) ((21/ _ 1))\: +2(1— V)M;) + sz/\?r(lfu)‘u@ufl)r} |yij‘2

J

i,j=1
—v = r r12 —v - 2r(l—v 2v—1)r 2
< ST @ = DA 200 = ) gl 40 | S TP ] 2
irj=1 ij=1

=120 = D)A"X +2(1 — v)XB"||, + ¥ || A2 0 X By

2

(b) If £ < v <1, then by inequality (18) and the Minkowski inequality and the same
method of proof of case (a), we get inequality (20). O

The Heinz mean is defined by H,(a,b) = 3(a”b'™" + a*~"b”). The function
H, is symmetric about the point v = 1, ie., H,(a,b) = Hi_,(a,b). Note that
Hy(a,b) = Hy(a,b) = %H’, H%(a, b) = Vab and H%(a,b) < H,(a,b) < Hy(a,b).

If A,B € M,(C) are positive definite, the geometric mean of A and B, denoted

1
by AtB, is defined by AfB = A3 (A—%BA—%) * A3, For 0 < v < 1, the v-weighted
1 1 1\ 1-v 1

geometric mean, denoted by Af, B, is defined by Af,B = Az (A_fBA_§> Az,
The v-weighted geometric mean was introduced by Kubo and Ando [15], and when
V= % this is just the geometric mean. One can show that Af, B = Bf;_, A for 0 <
v < 1. When A and B commute, A, B = A”B'~". The v-weighted arithmetic mean
is VA + (1 — v) B and the Heinz mean with parameter v is % (A#,B + Af1—,) B. The
v-weighted arithmetic mean of A and B, denoted by AV, B, is defined by AV,B =
(1-v)A+vB.

THEOREM 3.4. Let A, B € M, (C) such that A and B are positive definite and r be
any positive real number.
(a) If 0 < v < L, then v?(=Y) (A"VB") + v* Hy, (A", B") > 20AT4B", where

27
ACr=Drg2r(1-v) | g2r(1-v) g2v—1)r
Hgl,,l(AT, BT) = -5 .

(b) If £ < v <1, then v* (A"VB") + 1?3 Hy(_, (A", B")
r r 2r(1—v) p(2v—1)r v—1)r p2r(1—v)
H2(1—1/)(A B ) =4 £ J2rA £ .

Y

2UAT#B", where

Proof. (a) If v € [0,1], then by inequality (17) for @ > 0 and b = 1 becomes
2= (20 = 1Da” +2(1 — v)] + v*a?> (1Y) > 2u4/a”. Hence
V) [(20 = 1)B72AB™2 4+ 2(1 — v)I] + v (B—%AT'B—%)ZU—”)

> o0 (B-5ATB5)? | (21)
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If we multiply inequality (21) by B2 on the left and right, we get
2O (20 —1)A" +2(1 — v)B"] + v*¥ (A4 _2,B") > 20A"$B". (22)
Now, replacing A" by B" and B" by A", it holds that
V2 (20 — 1) BT 4+ 2(1 — v) A" + v (A9, B") > 2vA$B".  (23)
Adding the inequalities (22) and (23), we obtain
V2= A"V BT| + v* Hy, (A7, B") > 20A"¢B".
The proof of (b) is similar to (a), so we omit it. O

The matrix version of inequality affb < H,(a,b) < aVb was proved by Bhatia and
Davis [7], saying that if 0 < v <1, then
A*XB'7v + A"V X BY < ’AX + XB
2 2
Bakherad and Moslehian [5] improved the Young inequality and obtained the follow-
ing: | AX + XB|[2 +2(v — 1) |AX — XB|} < ||A*XB"" + A" XB"|[2, where A
and B are positive definite matrices, X € M,,(C) and v > 1.

< (24)

HA%XB%

THEOREM 3.5. Let A, B, X € M,(C) such that A and B are positive definite and r
be any positive real number.
(a) If v € [0, 3], then

‘VQ(l—u) (AT‘X _|_XBT‘> N o <A(2V—1)’I"XB2’I”(1—I/) +A2r(l—v)XB(2u—1)r>

2 2 )
>2v||A2XBz||,.
(b) If v € [5,1], then
‘VQV <ATX+XBT) N V2(17V) <A(2V1)7‘XB2T‘(1V) +A2r(11/)XB(2u1)r>
2 2
2

>2v||AZXB%|,.

Proof. Since every positive semi-define is unitarily diagonalizable, it follows that there
are unitary matrices U,V € M,,(C) such that A = UD,U* and B = VDyV*, where
D, = diag(A1,...,A\n), Do = diag(p1,...,pn) and A, p; > 0 (4 = 1,...,n). Let
Y =U*XV = [y;;]. Then

A(2V—1)TXBQT(1—V) + AQT(I—V)XB(2V—1)T

2
B (UDlU*)(QV—l)T X (VD2V*)2T(1—V) + (UD:[U*>2T(1_V) X (VDQV*)(QV—].)T
- 2
B UDEQV—l)TU*XVDgT'(l—I/)V* + UD%T(l—V) U*XVDéQD—l)'r'V*

2
2v—1)r 2r(l—v 2r(l—v 2v—1)r
:U <D§ "xpyr ) 4 Dyt x pPrY )V*.

2
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Therefore,
HA(2V—1)7"XBZT(1—V) +A2r(1—u)XB(2y—1)r 2
2 2
B D§2V71)TYD§7"(171/) +D?r(1fy)YD§2ufl)r
B 2
2
n 2v—1)r 2r(l—v 2u—1)r\ 2r(1—v) 7 2
)\Z( ) W ( )+M§ ) /\j (1-v) ,
i,j=1
Similarly, it holds that
. .2 n P ATX—‘rXBT 2 n )\:_i_/f 2
l4zxBE ;=32 [Mnf] ol H2 =2 {2] sl
i,j=1 2 iy=1
It follows from inequality (19) that
A"X + XB" A(Qu—l)rXBQT(l—V) _|_A2r(1—u)XB(21/—1)r 2
VQ(l—l/) + 2
2 2 9
2
n o )\: +ﬂr ) gQV—l)TugT(l—V) + M§2V_1)T>\2»T(1_y)
_ Z L2 )( . J) + 12 J . J |yij‘2
i,j=1
n r T 2 T T
>3 [ ()] ol = o 4ExBE .
ij=1
The proof of part (b) is similar, so we omit it. O
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