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AN INERTIAL BREGMAN HYBRID ALGORITHM FOR
APPROXIMATING SOLUTIONS OF FIXED POINT AND

VARIATIONAL INEQUALITY PROBLEM IN REAL BANACH
SPACES

Bashir Ali, A. M. Hamza and M. H. Harbau

Abstract. In this work, we study an inertial extragradient-like S-iteration process for
approximating a common element of the set of solutions of some variational inequality prob-
lem involving a monotone Lipschitz map and a fixed point of asymptotically nonexpansive
mapping in a reflexive Banach space. The result in this paper is an extension and general-
ization of some recently announced results.

1. Introduction

Let E be a real Banach space and E∗ be its dual space. Let C be a nonempty, closed
and convex subset of E, and A : C → E∗ be a mapping.

The problem of finding a point u ∈ C such that

⟨Au, v − u⟩ ≥ 0, ∀ v ∈ C, (1)

is called a variational inequality problem. We denote the set of solutions of the
variational inequality problem (1) by V I(C,A). The problem of finding common
elements of the set of solutions of variational inequality problems and the set of
fixed points of operators has become an interesting area of contemporary research for
numerous mathematicians working in nonlinear operator theory (see, e.g. [10,17] and
the references theirin).

Let A : C → E∗ be a mapping. Then A is said to be
– k-Lipschitz continuous if there exists a constant k > 0 such that

∥Ax−Ay∥ ≤ k∥x− y∥, ∀x, y ∈ C.

– η-strongly monotone if there exists a constant η > 0 such that:〈
x− y,Ax−Ay

〉
≥ η∥x− y∥2, ∀x, y ∈ C.
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– δ-inverse strongly monotone if there exists a δ > 0, such that〈
x− y,Ax−Ay

〉
≥ δ∥Ax−Ay∥2, ∀x, y ∈ C.

– Monotone if 〈
x− y,Ax−Ay

〉
≥ 0, ∀x, y ∈ C.

It is well-known that if A is k-Lipschitz continuous and η-strongly monotone on C,
then the variational inequality (1) has a unique solution. Recently, Zhou et al. [24]
weakened the Lipschitz continuity condition to the hemicontinuity. However, if A
is just k-Lipschitz continuous and monotone on C, but not η-strongly monotone,
then the variational inequality (1) may fail to have a solution (see, [17] for counter-
examples).

Let J : E → 2E
∗
be a normalized duality mapping defined by

J(x) = {u∗ ∈ E∗ : ⟨x, u∗⟩ = ∥x∥2 = ∥u∗∥2},
where ⟨·, ·⟩ denotes the duality pairing. It is well known that if E is a smooth, strictly
convex and reflexive Banach space then J is single-valued, one-to-one and onto. Let
f : E → (−∞,+∞] be a proper, lower semi-continuous and convex function. We
denote by dom f := {u ∈ E : f(u) < +∞} the domain of f . Let u ∈ intdom f ; the
subdifferential of f at u is the convex set defined by ∂f(u) = {u∗ ∈ E∗ : f(u) +
⟨u∗, y − x⟩ ≤ f(v), ∀v ∈ E}, where the Fenchel conjugate of f is the function
f∗ : E∗ → (−∞,+∞] defined by f∗(u∗) = sup{⟨u∗, u⟩ − f(u) : u ∈ E}. It is known
that the Young-Fenchel inequality holds: ⟨u∗, u⟩ ≤ f(u) + f∗(u∗), ∀u ∈ E.

A function f on E is said to be strongly convex with constant σ > 0, if

f(x)− f(y) ≥ ⟨∇f(x), y − x⟩+ σ

2
∥y − x∥2, ∀x, y ∈ E. (2)

Given a function f : E → R and α ∈ R, we denote by slev(f ;α) (resp. lev(f ;α)) the
sublevel set {x ∈ E : f(x) ≤ α} (resp. the level set {x ∈ E : f(x) = α}) of f at
height α.

A function f on E is coercive if the sublevel set of f is bounded; equivalently,
lim∥u∥→+∞ f(u) = +∞. A function f on E is said to be strongly coercive [23] if

lim∥u∥→+∞
f(u)
∥u∥ = +∞.

For any u ∈ intdom f and y ∈ E, the derivative of f at u in the direction y is

defined by f◦(u, v) := limt→0
f(u+tv)−f(u)

t .

The notions of Gâteaux differentiable and Fréchet differentiable functions and
their properties are well-known (see, e.g., [2, 5]).

Let E be a real Banach space and f : E → (−∞,+∞] be a strictly convex and
Gâteaux differentiable function. The function Df : dom f× int(dom(f)) → [0,+∞),
defined by

Df (x, y) := f(x)− f(y)− ⟨∇f(y), x− y⟩, (3)

is called the Bregman distance with respect to f (see [6]).

Remark 1.1. If E is a smooth Banach space and f(x) = ∥x∥2 for all x ∈ E, then
we have ∇f(x) = 2Jx for all x ∈ E where J : E → E∗ is the normalized duality
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mapping. Hence Df (x, y) = ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2, ∀ x, y ∈ E. Also if E
is a Hilbert space, then Df (x, y) = ∥x− y∥2, ∀x, y ∈ E.

Observe that from (3), we have for any x ∈ dom f and y, z ∈ int(dom(f)),

Df (x, z) = Df (x, y) +Df (y, z) + ⟨x− y,∇f(y)−∇f(z)⟩, (4)

which is called the three point identity. Recall that a mapping T : C→C is said to be:
– ϕ-asymptotically nonexpansive if there exists {kn} ⊂ [0,∞) such that
ϕ(Tnx, Tny) ≤ (1 + kn)ϕ(x, y), ∀x, y ∈ C, and kn → 0 as n → ∞.

– quasi-ϕ-asymptotically nonexpansive if there exists {kn} ⊂ [0,∞) such that
ϕ(p, Tnx) ≤ (1 + kn)ϕ(p, x), ∀x ∈ C, p ∈ Fix(T ) and kn → 0 as n → ∞.

– Bregman asymptotically nonexpansive if there exists {kn} ⊂ [0,∞) such that
Df (T

nx, Tny) ≤ (1 + kn)Df (x, y), ∀x, y ∈ C and kn → 0 as n → ∞.

– Bregman quasi asymptotically nonexpansive if there exists {kn} ⊂ [0,∞) such that
Df (p, T

nx) ≤ (1 + kn)Df (p, x), ∀x ∈ C, p ∈ Fix(T ) and kn → 0 as n → ∞.

– uniformly L-Lipschitzian if there is exists a constant L > 0 such that ∀x, y ∈ C,
∥Tnx− Tny∥ ≤ L∥x− y∥, ∀ n ≤ 1.

– closed if for any sequence {xn} ⊂ C with xn → x and Txn → y then Tx = y.
Many researchers have proposed and studied various iterative schemes for approxi-
mating solutions of variational inequality problems, fixed points of nonexpansive maps
and their generalizations (see, for example Chidume [13] and the references therein).

In 1976, Korpelevič [16] introduced the following extragradient method in a finite
dimensional Euclidean space Rn:

x1 = x ∈ C; xn+1 = PC(xn − λA[PC(xn − λAxn)]), ∀ n ∈ N, (5)

where A is assumed to be monotone and Lipschitz. The extragradient method has
since then been studied and improved on by many authors in various ways.

Several mathematicians worked on various improvements of extragradient method—
we mention Censor et al. [12], Agarwal et al. [1], Ceng and Yao [9], Ceng et al. [10].
In particular, motivated by the results of [9, 10], Chidume et al. [14] introduced a
hybrid extragradient like algorithm in a uniformly smooth and 2-uniformly convex
real Banach space.

Polyak [19] was the first to propose inertial-type algorithm as an acceleration
process in solving a smooth convex optimization problems. Putting an inertial term
in an algorithm speeds up or accelerates the rate of convergence of the sequence
generated by the algorithm, consequently a lot of research interest is now devoted to
the inertial-type algorithm (see, e.g., [15] and the references therein).

In this paper, motivated by the result of Chidume et al. [14], we introduce an
inertial Bregman extragradient-like S-iteration process for approximating a common
element of the set of solutions of some variational inequality problem involving a
monotone Lipschitz map and a fixed point of Bregman asymptotically nonexpansive
mapping in a reflexive Banach space. Our theorem is an improvement of some recently
announced results in relation to the space and the map used.
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2. Preliminaries

Definition 2.1 ([4]). The function f is said to be:
(i) Essentially smooth, if ∂f is both locally bounded and single-valued on its domain;

(ii) Essentially strictly convex, if (∂f)
−1

is locally bounded on its domain and f is
strictly convex on every subset of dom f ;

(iii) Legendre, if it is both essentially smooth and essentially strictly convex.

Remark 2.2. Let E be a reflexive Banach space. Then we have the following results:
(i) f is essentially smooth iff f∗ is essentially strictly convex (see [4, Theorem 5.4]);

(ii) (∂f)
−1

= ∂f∗ (see [5])

(iii) f is Legendre if and only if f∗ is Legendre (see [4, Corrolary 5.5])

(iv) If f is Legendre, then ▽f is a bijection satifying ▽f = (▽f∗)−1, ran▽f =
dom▽f∗ = intdom f∗ and ran ▽f∗ = dom f = intdom f (see [4, Theorem 5.10]).

Examples of Legendre functions were given in [3, 4].
The Bregman projection (see [11]) with respect to f of x ∈ intdom f onto a

nonempty, closed and convex set C ⊂ intdom f is defined as the necessarily unique
vector ProjfC x ∈ C which satisfies Df (Proj

f
C(x), x) = inf{Df (y, x) : y ∈ C}.

Let f : E → (−∞,+∞] be a Gâteaux differentiable function. The modulus of total
convexity of f at x ∈ intdom f is the function vf (x, ·) : [0,+∞] → [0,+∞] defined by
vf (x, t) := inf{Df (x, y) : y ∈ dom f, ∥y − x∥ = t}.

Note that from (2) and (3) we get σ
2 ∥x− y∥2 ≤ Df (x, y), ∀x, y ∈ E. The function

f is called totally convex at x if vf (x, t) > 0 whenever t > 0. The function f is called
convex if it is totally convex at any point x ∈ intdom f and is said to be totally convex
on bounded set if vf (B, t) > 0 for any nonempty bounded subset B of E and t > 0,
where the modulus of total convexity of the function f on the set B is the function vf :
intdom f × [0,+∞) → [0,+∞) defined by vf (B, t) := inf{vf (x, t) : x ∈ B ∩ dom f}.

Definition 2.3. Let E be a Banach space with the dual E∗ and C be a nonempty
closed convex subset of E. Let A : C → E∗ be a mapping. Then A is said to be
hemicontinuous if for any fixed x, y ∈ C, the function h : [0, 1] → R defined by
h(t) = ⟨A((1− t)x+ ty, x− y⟩ is continuous at 0+.

Lemma 2.4 ([8]). Let C be a nonempty, closed and convex subset of a reflexive Banach
space E. Let f : E → R be a Gâteaux differentiable and totally convex function and
let x ∈ E. Then
(a) z = ProjfC(x) if and only if ⟨y − z,∇f(x)−∇f(z)⟩ ≤ 0, ∀y ∈ C;

(b) Df (y,Proj
f
C(x)) +Df (Proj

f
C(x), x) ≤ Df (y, x), ∀x ∈ E, y ∈ C.

Example 2.5. Let E be a reflexive Banach space, C be a nonempty, closed and convex
subset of E, and if the Legendre function f : E → (−∞,+∞] if uniformly Frechet

differentiable and bounded on bounded subset of E, then the Bregman projection P f
C
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is closed Bregman relatively nonexpansive from E to C, so it is a closed Bregman
quasi asymptotically nonexpansive mapping.

Example 2.6. Let E be a reflexive Banach space, A : E → 2E be a maximal mono-
tone mapping and E, and if the Legendre function f : E → (−∞,+∞] if uniformly
Frechet differentiable and bounded on bounded subset of E, such that A−1(0) ̸= ∅
then the resolvent operator ResfA(x) = (∇f + A)−1 · ∇f(x) is closed Bregman rel-
atively nonexpansive from E to C, so it is a closed Bregman quasi asymptotically
nonexpansive mapping.

Lemma 2.7 ([18]). Let E be a Banach space and f : E → R be a Gâteaux differen-
tiable function which is uniformly convex on bounded subsets of E. Let {xn}n∈N and
{yn}n∈N be bounded sequences in E. Then limn→∞ Df (xn, yn) = 0 iff limn→∞ ∥xn −
yn∥ = 0.

Lemma 2.8 ([20]). Let f : E → R be a Gâteaux differentiable and totally convex func-
tion. If x0 ∈ E and the sequence {Df (xn, x0)} is bounded then the sequence {xn} is
bounded, too.

Recall that the function f is called sequentially consistent if for any two sequences
{xn} and {yn} in E such that {xn} is bounded, limn→+∞ Df (yn, xn) = 0 implies
limn→+∞ ∥yn − xn∥ = 0.

Lemma 2.9 ([18]). Let E be a Banach space and let g : E → R be a convex function
which is uniformly convex on bounded subsets of E. Let r > 0 be a constant, Br :=
{z ∈ E : ∥z∥ ≤ r}, B∗

r := {z∗ ∈ E∗ : ∥z∗∥ ≤ r} let ρr and ρ∗r be the gauges of uniform
convexity of g and g∗ respectively. Then,

(i) for any x, y ∈ Br and α ∈ (0, 1), g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y)− α(1−
α)ρr(∥x− y∥);

(ii) for any x, y ∈ Br, ρr(∥x− y∥) ≤ Dg(x, y);

(iii) if in addition g is bounded on bounded subsets of E and uniformly convex on
bounded subsets of E, then for any x ∈ E, y∗, z∗ ∈ B∗

r and α ∈ (0, 1), Vg(x, αy
∗ +

(1− α)z∗) ≤ αVg(x, y
∗) + (1− α)Vg(x, z

∗)− α(1− α)ρ∗r(∥y∗ − z∗∥);

(iv) if in addition g is bounded on bounded subsets of E, uniformly convex and uni-
formly smooth on bounded subsets of E, then for any x ∈ E, y∗, z∗ ∈ B∗

r , ρ
∗
r(∥x∗ −

y∗∥) ≤ Dg(x
∗, y∗).

Lemma 2.10 ([8]). Let E be a reflexive Banach space, let f : E → R be a strongly
coercive Bregman function and let V be the function defined by Vf (x, x

∗) = f(x) −
⟨x, x∗⟩+ f∗(x∗), x ∈ E, x∗ ∈ E∗. Then the following assertions hold:

(i) Df (x,∇f(x∗)) = Vf (x, x
∗) for all x ∈ E and x∗ ∈ E∗.

(ii) Vf (x, x
∗) + ⟨∇f∗(x∗)− x, y∗⟩ ≤ Vf (x, x

∗ + y∗), for all x ∈ E and x∗, y∗ ∈ E∗.
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Lemma 2.11 ( [22]). Let C be a nonempty closed and convex subset of a reflexive
Banach space E and B : C → E∗ be a monotone, hemicontinuous map. Let T : E →
2E

∗
be an operator defined by:

Tu =

{
Bu+NC(u), u ∈ C,

∅, u /∈ C,

where NC(u) is defined as follows: NC(u) = {w∗ ∈ E∗ : ⟨u − z, w∗⟩ ≥ 0, ∀z ∈ C}.
Then, T is maximal monotone and T−10 = V I(C,B).

3. Main results

Theorem 3.1. Let C be a nonempty closed and convex subset of a real reflexive
Banach space E and f : E → R be a strongly coercive Legendre function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of
E. Let A : C → E∗ be a monotone, k-Lipschitz map and let S1, S2 : C → C
be closed Bregman quasi asymptotically nonexpansive maps with sequences {k1n} and

{k2n}, respectively, where S1, S2 are uniformly Lipschitzian, such that
⋂2

i=1 Fix(Si) ̸=
∅ and assume Ω = (

⋂2
i=1 Fix(Si)) ∩ V I(C,A) ̸= ∅. Define iteratively the sequence

{xn} by 

x0, x1 ∈ C0 = C;

wn = xn + αn(xn − xn−1);

zn = ProjfC(∇f∗(∇fwn − λAwn));

yn = ProjfC [∇f∗[(1− βn)∇fwn + βn∇f(Sn
1wn)];

un = ∇f∗[(1− an − γn)∇fwn + an∇f(Sn
1 yn)

+ γn∇fSn
2 ProjfC ∇f∗(∇fwn − λAzn)];

Cn+1 = {u ∈ Cn : Df (u, un) ≤ Df (u,wn) + ηn};
xn+1 = ProjfCn+1

x0, ∀n ≥ 0

(6)

where ηn = ln(kn−1) supp∈Ω Df (p, wn) for all wn ∈ C, with ln = maxn≥1{βn, an+γn}
and λ ∈ (0, b], with b < σ

k , σ > 0 and {an}, {an}, {βn} and {γn} satisfy:
(i)

∑∞
n=1 αn < ∞, {αn} ⊂ [0, α] and 0 ≤ α < 1;

(ii) {βn}, {γn} ⊂ (0, 1). (iii) {an} ⊂ [0, 1] and an → 0 as n → ∞.
Then the sequences {xn}, {yn}, {zn} and {un} are well defined and converge strongly

to q = Projf
(
⋂2

i=1 Fix(Si))∩V I(C,A)
x0.

Proof. Step 1. We show that (
⋂2

i=1 Fix(Si))∩V I(C,A) ⊂ Cn. ∀n ∈ N. Let us start
by setting kn = maxn≥1{k1n, k2n}. Let p ∈ (

⋂2
i=1 Fix(Si)) ∩ V I(C,A) be arbitrary.

Clearly p ∈ C0 = C. Now assume p ∈ Cn for some n ≥ 0. Next we show that
p ∈ Cn+1. Set vn = ProjfC ∇f∗[∇fwn − λAzn]. Then by applying Lemma 2.4,
Lemma 2.10 and using definition of variational inequality,we have

Df (p, vn) = Df (p,Proj
f
C ∇f∗[∇fwn − λAzn])
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≤Df (p,∇f∗(∇fwn − λAzn))−Df (vn,∇f∗(∇fwn − λAzn))

=Vf (p,∇fwn − λAzn)− Vf (vn,∇fwn − λAzn)

=f(p)− ⟨p,∇fwn − λAzn⟩+ f∗(∇fwn − λAzn)− f(vn)

+ ⟨vn,∇fwn − λAzn⟩ − f∗(∇fwn − λAzn)

=f(p)− ⟨p,∇fwn⟩+f∗(∇fwn)− [f(vn)− ⟨vn,∇fwn⟩+f∗(∇fwn)] + λ⟨p− vn, Azn⟩
=Vf (p,∇fwn)− Vf (vn,∇fwn) + λ⟨p− vn, Azn⟩
=Vf (p,∇fwn)− Vf (vn,∇fwn) + λ⟨p− zn, Azn⟩+ λ⟨zn − vn, Azn⟩
≤Vf (p,∇fwn)− Vf (vn,∇fwn) + λ⟨zn − vn, Azn⟩
=Df (p,∇f∗(∇fwn))−Df (vn,∇f∗(∇fwn)) + λ⟨zn − vn, Azn⟩
=Df (p, wn)−Df (vn, wn) + λ⟨zn − vn, Azn⟩
=Df (p, wn)−Df (vn, zn)−Df (zn, wn)−⟨zn − vn,∇fzn −∇fwn⟩+ λ⟨zn − vn, Azn⟩
=Df (p, wn)−Df (vn, zn)−Df (zn, wn) + ⟨vn − zn,∇fzn −∇fwn − λAzn⟩
=Df (p, wn)−Df (vn, zn)−Df (zn, wn) + ⟨vn − zn,∇fzn −∇fwn − λAwn⟩

+ λ⟨vn − zn, Awn −Azn⟩
≤Df (p, wn)−Df (vn, zn)−Df (zn, wn) + λ⟨vn − zn, Awn −Azn⟩
≤Df (p, wn)−Df (vn, zn)−Df (zn, wn) + λ∥vn − zn∥∥Awn −Azn∥

≤Df (p, wn)−Df (vn, zn)−Df (zn, wn) +
λk

2
[∥vn − zn∥2 + ∥zn − wn∥2]

≤Df (p, wn)−Df (vn, zn)−Df (zn, wn) +
λk

σ
[Df (vn, zn) +Df (zn, wn)]

≤Df (p, wn)−
(
1− λk

σ

)
Df (vn, zn)−

(
1− λk

σ

)
Df (zn, wn)

Hence Df (p, vn) ≤ Df (p, wn). (7)

From algorithm (6) and definition of Bregman quasi asymptotically nonexpansivity
of S1 we have

Df (p, yn) = Df (p,Proj
f
C [∇f∗[(1− βn)∇fwn+βn∇f(Sn

1wn)]])

≤ (1− βn)Df (p, wn)+βnDf (p, S
n
1wn) ≤ (1− βn)Df (p, wn)+βnknDf (p, wn)

= Df (p, wn)+βn(kn − 1)Df (p, wn) ≤ Df (p, wn)+ln(kn − 1)Df (p, wn)

≤ Df (p, wn) + ηn. (8)

Also, using Lemma 2.4 and equation (4) we have

Df (p, zn) = Df (p,Proj
f
C ∇f∗[∇fwn−λAwn]) ≤ Df (p,∇f∗[∇fwn−λAwn])

=f(p)−f(∇f∗[∇fwn−λAwn])−⟨p−∇f∗[∇fwn−λAwn],∇fwn−λAwn⟩
=f(p)−f(∇f∗[∇fwn−λAwn])+Df (p, wn)+Df (∇f∗[∇fwn−λAwn],∇f∗[λAwn])

−Df (p,∇f∗[λAwn])−Df (∇f∗[∇fwn−λAwn], wn)

=f(p)−f(∇f∗[∇fwn−λAwn])+Df (p, wn)+Df (∇f∗[∇fwn−λAwn],∇f∗[λAwn])

−f(p)+f(∇f∗(λAwn))+⟨wn−wn, λAwn⟩+⟨wn−∇f∗(λAwn), λAwn⟩
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−Df (∇f∗[∇fwn−λAwn], wn) = Df (p, wn).

Therefore we have

Df (p, zn) ≤ Df (p, wn). (9)

Thus, from the inequalities (7) and (8), we have

Df (p, un) = Df (p,∇f∗[(1− an − γn)∇fwn + an∇f(Sn
1 yn) + γn∇f(Sn

2 vn)])

≤ (1− an − γn)Df (p, wn) + anDf (p, S
n
1 yn) + γnDf (p, S

n
2 vn)

≤ (1− an − γn)Df (p, wn) + anknDf (p, yn) + γnknDf (p, vn)

≤ (1− an − γn)Df (p, wn) + anknDf (p, wn) + γnknDf (p, wn)

= Df (p, wn) + an(kn − 1)Df (p, wn) + γn(kn − 1)Df (p, wn)

= Df (p, wn) + (an + γn)(kn − 1)Df (p, wn)

≤ Df (p, wn) + ln(kn − 1)Df (p, wn) ≤ Df (p, wn) + ηn (10)

Therefore p ∈ Cn+1. So we conclude that (
⋂2

i=1 Fix(Si)) ∩ V I(C,A) ⊂ Cn+1.

Step 2. We show that the sequence {xn} is well defined in Cn,∀n ≥ 0. It is enough
to show that Cn+1 is closed and convex, i.e. for n ≥ 1:

Cn+1=
{
u ∈ Cn : ⟨u,∇fwn−∇fun⟩−⟨∇f(wn), wn⟩+⟨∇f(un), un⟩≤f(un)−f(wn)+ηn

}
.

It is not difficult to see Cn+1 is closed and convex which contain nonempty element.
Therefore the iterative sequence is well defined.

Step 3. We show the following:

(a) {wn} is bounded; (b) ∥wn − xn∥ → 0; (c) ∥Sn
1wn − wn∥ → 0;

(d) ∥Sn
2 vn − vn∥ → 0; (e) lim

n→∞
∥Sn

2wn − wn∥ = 0 = lim
n→∞

∥Sn
1wn − wn∥.

Since xn+1 ∈ Cn+1 ⊂ Cn, then Df (xn, x0) ≤ Df (xn+1, x0). Hence, {Df (xn, x0)} is
nondecreasing:

Df (xn, x0) = Df (Proj
f
Cn

x0, x0) ≤ Df (p, x0)−Df (p, xn) ≤ Df (p, x0),

which implies that {Df (xn, x0)} is bounded. Hence, by Lemma 2.8, {xn} is bounded.
Consequently, {Df (xn, x0)} is convergent. Let m,n ∈ N with m > n; then

Df (xm, xn) = Df (xm,ProjfCn
x0) ≤ Df (xm, x0)−Df (xn, x0) → 0, as n,m → ∞.

Hence, ∥xm − xn∥ → 0 as n,m → ∞. Therefore, {xn} is a Cauchy sequence and

∥xn+1 − xn∥ → 0 as n → ∞. (11)

From the definition of wn and (11), ∥wn − xn∥ = αn∥xn − xn−1∥ → 0 as n → ∞.
Thus,

∥wn − xn∥ → 0 as n → ∞. (12)

Hence {wn} is bounded. By (11) and (12) we have, ∥xn+1 − wn∥ → 0 as n → ∞.
By Lemma 2.7 we have Df (wn+1, xn) → 0 as n → ∞. Also, since xn+1 ⊂ Cn+1

Df (xn+1, un) ≤ Df (xn+1, wn) → 0 as n → ∞, and using Lemma 2.7 again, we have

∥xn+1 − un∥ → 0 as n → ∞. (13)
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Therefore {un} is bounded. Also, Df (xn+1, zn) ≤ Df (xn+1, wn) → 0 as n → ∞ and

∥xn+1 − zn∥ → 0 as n → ∞. (14)

So, {zn} is bounded and {yn}, too. Since
Df (xn+1, yn) ≤ Df (xn+1, wn)−Df (yn, wn) ≤ Df (xn+1, wn)

Df (xn+1, yn) ≤ Df (xn+1, wn) → 0 as n → ∞,

then ∥xn+1 − yn∥ → 0 as n → ∞.

By (4) and the uniform continuity of ∇f on bounded sets, as n → ∞, we have

Df (wn, yn) = Df (wn, xn) +Df (xn, yn) + ⟨xn − wn,∇fyn −∇fxn⟩
≤ Df (wn, xn) +Df (xn, yn) + ∥xn − wn∥∥∇fyn −∇fxn∥ → 0.

Then by Lemma 2.7 we have

∥wn − yn∥ → 0 as n → ∞. (15)

From the definition of {yn} and Lemmas 2.4, 2.9 and 2.10, we have

Df (p, yn) = Df (p,Proj
f
C [∇f∗[(1−βn)∇fwn+βn∇f(Sn

1wn)]])

≤Df (p,∇f∗[(1−βn)∇fwn+βn∇f(Sn
1wn)])

=Vf (p, (1−βn)∇fwn+βn∇f(Sn
1wn))

≤(1−βn)Vf (p,∇fwn)+βnVf (p,∇f(Sn
1wn))−(1−βn)βnρ

∗
r(∥∇fwn−∇f(Sn

1wn))∥
=(1−βn)Df (p, wn)+βnDf (p, S

n
1wn)−(1−βn)βnρ

∗
r(∥∇fwn−∇f(Sn

1wn)∥
≤(1−βn)Df (p, wn)+βnDf (p, wn)−(1−βn)βnp

∗
s

(
∥∇f(wn)−∇f(Sn

1wn)∥
)

=Df (p, wn)−(1−βn)βnp
∗
r

(
∥∇f(wn)−∇f(Sn

1wn)∥
)
.

Thus,

(1− βn)βnp
∗
r

(
∥∇f(wn)−∇f(Sn

1wn)∥
)
≤ Df (p, wn)−Df (p, yn). (16)

Observe that

Df (p, wn)−Df (p, yn) = f(yn)− f(wn)− ⟨∇fwn, wn − p⟩+ ⟨∇fyn, yn − p⟩
=f(yn)− f(wn) + ⟨∇fyn, wn − p⟩+ ⟨∇fyn, yn − wn⟩ − ⟨∇fwn, wn − p⟩
=f(yn)− f(wn) + ⟨∇fyn −∇fwn, wn − p⟩+ ⟨∇fyn, yn − wn⟩.

So, |Df (p, wn)−Df (p, yn)|≤|f(yn)−f(wn)|+|⟨∇fyn−∇fwn, wn−p⟩|+|⟨∇fyn, yn−wn⟩|.
By (15), it follows |Df (p, wn)−Df (p, yn)| → 0 as n → ∞. This and lim inf

n→∞
βn(1−βn)>0,

by using (16), yields lim
n→∞

p∗r
(
∥∇f(wn) −∇f(Sn

1wn)∥
)
= 0. From the property of p∗r

we deduce lim
n→∞

p∗r
(
∥∇f(wn) − ∇f(Sn

1wn)∥
)
= 0. By uniform continuity of ∇f∗ on

bounded subsets of E, we obtain lim
n→∞

∥Sn
1wn − wn∥ = 0. From (11), (12) and (13)

we have

∥un − wn∥ → 0 as n → ∞. (17)

Now from Lemma 2.4 we have

Df (vn, yn) = Df (wn, yn)−Df (wn, vn) ≤ Df (wn, yn) → 0 as n → ∞.



B. Ali, A. M. Hamza, M. H. Harbau 183

By Lemma 2.7 and (15) we have

∥vn − wn∥ → 0 as n → ∞. (18)

From (17) and (18) we have ∥vn −un∥ → 0 as n → ∞. Now from the definition of un

∇fun = (1− an − γn)∇fwn + an∇f(Sn
1 yn) + γn∇f(Sn

2 vn)

= (1− an − γn)∇fwn + an∇f(Sn
1 yn) + γn∇f(Sn

2 vn)− γn∇fvn + γn∇fvn

which gives

∇fun−∇fwn = an(∇f(S1yn)−∇fwn) + γn(∇fvn−∇fwn) + γn(∇f(S2vn)−∇fvn)

Using the uniform continuity of ∇f and ∇f∗ on bounded sets, we have that

∥S2vn − vn∥ → 0 as n → ∞
and ∥Sn

2wn − wn∥ = ∥Sn
2wn − Sn

2 vn + Sn
2 vn − vn + vn − wn∥

≤ ∥Sn
2wn − Sn

2 vn∥+ ∥Sn
2 vn − vn∥+ ∥vn − wn∥

≤ ∥wn − vn∥+ ∥Sn
2 vn − vn∥+ ∥vn − wn∥ → 0 as n → ∞.

So we have

lim
n→∞

∥Sn
2wn − wn∥ = 0 = lim

n→∞
∥Sn

1wn − wn∥. (19)

Step 4. Since {xn} is a Cauchy sequence and E is a reflexive Banach space, then
there exists x∗ ∈ C such that xn → x∗. From (12) we obtain

lim
n→∞

∥wn − x∗∥ = 0. (20)

Hence by (20) and (19) we have

∥S1wn − x ∗ ∥ ≤ ∥S1wn − wn∥+ ∥wn − x∗∥ (21)

≤ ∥S1wn − Sn
1wn−1∥+ ∥Sn

1wn−1 − wn∥+ ∥wn − x∗∥ → 0 as n → ∞.

Similarly we have

∥S2wn − x ∗ ∥ ≤ ∥S2wn − wn∥+ ∥wn − x∗∥ (22)

≤ ∥S2wn − Sn
2wn−1∥+ ∥Sn

2wn−1 − wn∥+ ∥wn − x∗∥ → 0 as n → ∞.

By (20), (21) and (22) together with closedness of S1 and S2 we get S2x
∗ = x∗ and

S1x
∗ = x∗. Thus, we have x∗ ∈

⋂2
i=1 Fix(Si).

This implies that from (18) and (20) we have vn → x∗ as n → ∞.

Next we show that x∗ ∈ V I(C,A). Let

Tv =

{
Av +NC(v) if v ∈ C;

∅ if v ̸= C.

Then, by Lemma 2.11, T is maximal monotone and T−1(0) = V I(C,A), i.e. v ∈
T−1(0) iff v ∈ V I(C,A).

Claim: (x∗, 0) ∈ G(T ).

Let (v, x) ∈ G(T ); then it is enough to show that ⟨v − x∗, x⟩ ≥ 0. Now,

(v, x) ∈ G(T ) ⇒ x ∈ Tv = Av +NC(v) ⇒ x−Av ∈ NC(v).
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Therefore ⟨v − y, x − Av⟩ ≥ 0 ∀y ∈ C. Since vn = ProjfC(∇f∗(∇fwn − λAzn)) and
v ∈ C we have by generalised projection properties ⟨vn−v,∇fwn−λAzn−∇fvn⟩ ≥ 0.
Thus, ⟨v − vn,

∇fvn−∇fwn

λ + Azn⟩ ≥ 0, n ≥ 0. Using the fact that vn ∈ C and
x−Av ∈ NC(v), we have

⟨v − vn, x⟩ ≥ ⟨v − vn, Av⟩ ≥ ⟨v − vn, Av⟩ − ⟨v − vn,
∇fvn −∇fwn

λ
+Azn⟩

= ⟨v − vn, Av −Avn⟩+ ⟨v − vn, Avn −Azn⟩ − ⟨v − vn,
∇fvn −∇fwn

λ
⟩

≥ ⟨v − vn, Avn −Azn⟩ − ⟨v − vn,
∇fvn −∇fwn

λ
⟩.

Hence, as n → ∞, we have ⟨v−x∗, x⟩ ≥ 0. Therefore, x∗ ∈
⋂2

i=1 Fix(Si)∩V I(C,A).

Step 5. We show that {xn} converges strongly to q = Projf
(
⋂2

i=1 Fix(Si))∩V I(C,A)
x0.

As xn → x∗ and x∗ ∈
⋂2

i=1 Fix(Si) ∩ V I(C,A), using the lower semi continuity

of Df (·, x0) and the fact that q = Projf
(
⋂2

i=1 Fix(Si))∩V I(C,A)
x0, we have

Df (q, x0) ≤ Df (x
∗, x0) = lim

n→∞
Df (xn, x0) ≤ lim

n→∞

(
Df (q, x0)−Df (q, xn)

)
≤ Df (q, x0).

The last inequality follows from the fact that xn = ProjfCn
x0. This implies that

Df (q, x0) = Df (x
∗, x0). But, since x

∗ ∈
⋂2

i=1 Fix(Si)∩V I(C,A), we haveDf (x
∗, q) ≤

Df (x
∗, x0)−Df (q, x0) = 0. Hence Df (x

∗, q) = 0 ⇒ x∗ = q.
Thus, {xn} converges strongly to x∗. □

Remark 3.2. Our theorem generalises the main theorem of Chideme et al [14] in the
following senses:
– If the function f from our result is f(x)=∥x∥2, then Df coincide with ϕ and Breg-
man quasi asymptotically nonexpansive map reduces to asymptotically quasi ϕ non-
expansive map, thus a relatively nonexpansive map is a special case of Bregman quasi
asymptotically nonexpansive ones. As every relatively nonexpansive map is quasi
ϕ nonexpansive which is in turn asymptotically quasi ϕ nonexpansive, the operator
studied in this paper is a generalization of those studied in [14].

– It is known that every 2-uniformly convex Banach space is reflexive; hence, the
current result extends the result [14] to a more general setting of Banach space.

– Another advantage of this result over some in the literature is the involvement of
the inertial term in the scheme which speed up the convergence rate of the sequences.
This is illustrated and confirmed using a numerical example given below.

4. A numerical example

In order to justify Theorem 3.1, we give the following numerical example.

Example 4.1. Let E = R, C = [−1, 1] and let Sn
i : R → R, i = 1, 2 be defined by

Sn
1 x = Sn

2 x = x
2 , ∀x ∈ R. Let the mapping A : C → R be defined by Ax = 3x,



B. Ali, A. M. Hamza, M. H. Harbau 185

∀x ∈ C. Let f(x) = 2
3x

2, ∇f(x) = 4
3x; since f∗(x∗) = sup{⟨x∗, x⟩ − f(x) : x ∈ R},

then f∗(z) = 3
8z

2 and ∇f∗(z) = 3
4z. Clearly A, Sn

i and f(x) satisfy the conditions of
Theorem 3.1. So from the scheme we obtain the following

wn = xn + αn(xn − xn−1)

zn = Projf[−1,1](
wn

4 ) :=


−1, if wn < −1
wn

4 , if wn ∈ [−1, 1]

1, if wn > 1

yn = Projf[−1,1](
3wn

4 ) :=


−1, if wn < −1
3wn

4 if wn ∈ [−1, 1]

1, if wn > 1

tn = Projf[−1,1](wn − 3zn
4 ) :=


−1, if wn < −1

wn − 3zn
4 , if wn ∈ [−1, 1]

1, if wn > 1

un = 2(n−1)wn+2yn+ntn
4n

Cn+1 := [−1,
3w2

n−u2
n

2(wn+un)
]

xn+1 = ProjfCn+1
(x0)

where βn=γn=
1
2 , αn=0.6, an=

1
n and λ= 1

2 . Then {xn} converges to 0 ∈ Ω={0}.

Figure 1: The inertial term speed the convergence rate of the iterative algorithm (6)

Figure 2: The iterative algorithm (6) without inertial term
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The previous two figures were generated by Matlab software and they illustrate
the convergence of the sequence {xn}.

5. Corollaries

We present some corollaries of our theorem.

Corollary 5.1. Let C be a nonempty, closed and convex subset of Lp (or lp), 1 <
p ≤ 2 such that J(C) is convex. Let A : C → L∗

p (or lq) be a monotone, k-Lipschitz
map and let S1, S2 : C → C be asymptotically nonexpansive maps with sequences
{k1n} and {k2n}, respectively, such that

⋂2
i=1 Fix(Si) ̸= ∅ and assume (

⋂2
i=1 Fix(Si))∩

V I(C,A) ̸= ∅. Define inductively the sequence {xn} by

x0 ∈ C0 = C;

wn = xn − αn(xn − xn−1);

zn = ΠCJ
−1(Jwn − λAwn);

yn = J−1[(1− βn)Jwn + βnJS
n
1wn];

un = J−1[(1− an − γn)Jwn + anJS
n
1 yn + γnJS

n
2ΠCJ

−1(Jwn − λAzn)];

Cn+1 = {u ∈ Cn : ϕ(u, un) ≤ ϕ(u,wn) + ηn};
xn+1 = ΠCn+1

x0, ∀n ≥ 0,

where ηn = β0(kn−1) supp∈Ω ϕ(p, wn) for all wn ∈ C, with ln = maxn≥1{βn, an+γn}
and λ ∈ (0, b], with b < α

2k and {an}, {an}, {βn} and {γn} satisfy:
(i)

∑∞
n=1 αn < ∞, {αn} ⊂ [0, α] and 0 ≤ α < 1.

(ii) {βn}, {γn} ⊂ (0, 1). (iii) {an} ⊂ [0, 1] and an → 0 as n → ∞.
Then the sequences {xn}, {yn}, {zn} and {un} are well defined and converge strongly
to some point q = Π(

⋂2
i=1 Fix(Si))∩V I(C,A)x0.

Proof. Lp (and lp), 1 < p ≤ 2, are uniformly smooth and 2-uniformly convex Banach
spaces. Hence the conclusion follows from Theorem 3.1. □

Corollary 5.2. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let A : C → H be a monotone, k-Lipschitz map and let S1, S2 : C → C be
asymptotically nonexpansive maps with sequences {k1n} and {k2n}, respectively, such
that

⋂2
i=1 Fix(Si) ̸= ∅, and assume (

⋂2
i=1 Fix(Si))∩V I(C,A) ̸= ∅. Define inductively

the sequence {xn} by

x0 ∈ C0 = C;

wn = xn − αn(xn − xn−1);

zn = PC(wn − λAwn);

yn = (1− βn)wn + βnS
n
1wn;

un = (1− an − γn)wn + anS
n
1 yn + γnS

n
2 PC(wn − λAzn);

Cn+1 = {u ∈ Cn : ∥u− un∥ ≤ ∥u− wn∥+ ηn};
xn+1 = PCn+1

x0, ∀n ≥ 0,
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where ηn = β0(kn−1) supp∈Ω ∥p−wn∥ for all wn ∈ C, with ln = maxn≥1{βn, an+γn}
and λ ∈ (0, b], with b < α

2k and {an}, {αn}, {βn} and {γn} satisfy:
(i)

∑∞
n=1 αn < ∞, {αn} ⊂ [0, α] and 0 ≤ α < 1.

(ii) {βn}, {γn} ⊂ (0, 1). (iii) {an} ⊂ [0, 1] and an → 0 as n → ∞
Then the sequence {xn}, {yn}, {zn} and {un} are well defined and converge strongly
to some point q = P(

⋂2
i=1 Fix(Si))∩V I(C,A)x0.
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