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Abstract. Let P (z) =
∑n

ν=0 aνz
ν be a polynomial of degree n having all its zeros in

|z| ≤ k, k ≥ 1. It was shown by Govil that max
|z|=1

|P ′(z)| ≥ n
1+kn max

|z|=1
|P (z)|.

In this paper, we shall obtain some sharp estimates by involving the coefficients which
not only refine the above result but also generalise some well-known results of this type.

1. Introduction

The classical Markov [12] and Bernstein [5] inequalities and corresponding extremal
problems were generalised for various domains, various norms and for various sub-
classes for polynomials, both algebraic and trigonometric. These inequalities play a
significant role in approximation theory. Inequalities of Markov and Bernstein are
fundamental for the proofs of many inverse theorems in the approximation theory
(see [11, 13, 18]). For instance, Telyakovskii [18] writes: Among those that are fun-
damental in approximation theory are extremal problems connected with inequalities
for the derivatives of polynomials. The use of inequalities of this kind is a fundamen-
tal method in proofs of inverse problems of approximation theory (as can be seen in
[6] ). Further progress in inverse theorems depended on first obtained corresponding
analogue or generalization of Markov’s and Bernstein’s inequalities and therefore it is
of interest to obtain refinements and generalizations of polynomial inequalities.

If P (z) is a polynomial of degree n and P ′(z) be its derivative, then it was shown
by Turàn [19] that if P (z) has all its zeros in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥ n

2
max
|z|=1

|P (z)|. (1)

Equality in (1) holds for P (z) = zn + 1.
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As an extension of inequality (1), Govil [9] showed that if P (z) is a polynomial of
degree n having all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥ n

1 + kn
max
|z|=1

|P (z)|. (2)

The result is sharp and equality in (2) holds for P (z) = zn + kn.

In the literature there exists several extensions and generalizations of inequali-
ties (1) and (2) (for reference see [1–3,14,15,17]). Dubinin [7] obtained the fascinating
refinement of inequality (1) by introducing some of the coefficients of P (z). In fact,
he proved that if P (z) =

∑n
ν=0 aνz

ν is a polynomial of degree n having all its zeros
in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥ 1

2

(
n+

|an| − |a0|
|an|+ |a0|

)
max
|z|=1

|P ′(z)|. (3)

Recently Rather et al. [16] have established the refinements and generalizations of the
above inequalities by proving the following intriguing results.

Theorem 1.1. If P (z) =
∑n

ν=0 aνz
ν is a polynomial of degree n ≥ 2 having all its

zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥ 1

1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=1

|P (z)|+ ψ(k)|a1|

+
|an−1|

k(1 + kn)

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
ϕ(k), (4)

where ϕ(k) =
(

kn−1
n − kn−2−1

n−2

)
or (k−1)2

2 and ψ(k) = (1− 1
k2 ) or (1− 1

k ), for n > 2

and n = 2 respectively.

The result is sharp and equality in (4) holds for P (z) = zn + kn.

Theorem 1.2. If P (z) =
∑n

ν=0 aνz
ν is a polynomial of degree n ≥ 2, having all its

zeros in |z| ≤ k, k ≥ 1 and m = min
|z|=k

|P (z)|, then for 0 ≤ l < 1,

max
|z|=1

|P ′(z)| ≥ n

1 + kn

(
max
|z|=1

|P (z)|+ lm

)
+ ψ(k)|a1|

+
1

kn(1 + kn)

{(
kn|an| − lm− |a0|
kn|an| − lm+ |a0|

)(
knmax

|z|=1
|P (z)| − lm

)
+kn−1|an−1|ϕ(k)

(
n+

kn|an| − lm− |a0|
kn|an| − lm+ |a0|

)}
. (5)

where ϕ(k) and ψ(k) are defined in Theorem 1.1.

The result is sharp and equality in (5) holds for the polynomial P (z) = zn + kn.
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2. Main results

In this paper, we first present the following result which provides a refinement as well
as a generalization of Theorem 1.1 by taking s-fold zeros at origin.

Theorem 2.1. If P (z) = zs(a0 + a1z + . . . + an−sz
n−s) is a polynomial of degree

n ≥ 2 having all its zeros in |z| ≤ k, k ≥ 1 with s-fold zeros at origin, then

max
|z|=1

|P ′(z)| ≥ 1

1 + kn−s

(
n+ s+

kn−s|an−s| − |a0|
kn−s|an−s|+ |a0|

)
max
|z|=1

|P (z)|+ ψ(k)|a1|

+
|an−s−1|

k(1 + kn−s)

(
n+ s+

kn−s|an−s| − |a0|
kn−s|an−s|+ |a0|

)
ϕ(k), (6)

where ϕ(k) =
(

kn−s−1
n−s − kn−s−2−1

n−s−2

)
or (k−1)2

2 and ψ(k) = (1 − 1
k2 ) or (1 − 1

k ), for

n > 2 and n = 2 respectively.

The result is sharp and equality in (6) holds for P (z) = zn + kn.

Remark 2.2. By taking s = 0 in Theorem 2.1, it reduces to Theorem 1.1.

Remark 2.3. Since all the zeros of P (z) lie in |z| ≤ k, k ≥ 1, therefore, |a0| ≤
kn−s|an−s|. Hence it follows that inequality (6) gives a refinement of inequality (2).

By setting k = 1 in Theorem 2.1, we get the following result which provides a
refinement as well as a generalization of inequality (3).

Corollary 2.4. If P (z) = zs(a0 + a1z + . . . + an−sz
n−s) is a polynomial of degree

n ≥ 2 having all its zeros in |z| ≤ 1, with s-fold zeros at origin, then

max
|z|=1

|P ′(z)| ≥ 1

2

(
n+ s+

|an−s| − |a0|
|an−s|+ |a0|

)
max
|z|=1

|P (z)|. (7)

The result is sharp and equality in (7) holds for P (z) = zn + 1.
Next we prove the following result which produces a refinement as well as a gen-

eralization of Theorem 1.2.

Theorem 2.5. If P (z) = zs(a0+a1z+. . .+an−sz
n−s) is a polynomial of degree n ≥ 2,

having all its zeros in |z| ≤ k, k ≥ 1 with s-fold zeros at origin and m = min
|z|=k

|P (z)|,

then for 0 ≤ l < 1,

max
|z|=1

|P ′(z)| ≥ (n+ s)

1 + kn−s

(
max
|z|=1

|P (z)|+ 1

ks
lm

)
+ ψ(k)|a1|

+
1

kn(1 + kn−s)

{(
kn−s|an−s| − lm− |a0|
kn−s|an−s| − lm+ |a0|

)(
knmax

|z|=1
|P (z)| − lm

)
+kn−1|an−s−1|ϕ(k)

(
n+ s+

kn−s|an−s| − lm− |a0|
kn−s|an−s| − lm+ |a0|

)}
, (8)

where ϕ(k) and ψ(k) are defined in Theorem 2.1.
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The result is sharp and equality in (8) holds for polynomial P (z) = zn + kn.

Remark 2.6. By taking s = 0 in Theorem 2.5, it reduces to Theorem 1.2.

Remark 2.7. Since under the hypothesis of Theorem 2.5, |a0| ≤ kn−s|an−s|, therefore
it follows that Theorem 2.5 gives a refinement of Theorem 2.1.

For k = 1, we get the following result which constitutes a refinement of inequal-
ity (3) as a special case.

Corollary 2.8. If P (z) = zs(a0 + a1z + . . . + an−sz
n−s) is a polynomial of degree

n ≥ 2 having all its zeros in |z| ≤ 1 with s-fold zeros at origin and m1 = min
|z|=1

|P (z)|,

then for 0 ≤ l < 1, then

max
|z|=1

|P ′(z)| ≥ (n+ s)

2

(
max
|z|=1

|P (z)|+ lm1

)
+

1

2

(
|an−s| − lm1 − |a0|
|an−s| − lm1 + |a0|

)
(max
|z|=1

|P (z)| − lm1) (9)

The result is sharp and equality in (9) holds for P (z) = zn + 1.

3. Lemmas

For the proofs of these theorems, we need the following lemmas.

Lemma 3.1 ([10]). If F (z) = zs(a0+a1z+ . . .+an−sz
n−s), 0 ≤ s ≤ n, is a polynomial

of degree n ≥ 1 having all its zeros in |z| ≤ 1, then for all z on |z| = 1 for which
F (z) ̸= 0,

Re

(
zF ′(z)

F (z)

)
≥ 1

2

(
n+ s+

|an−s| − |a0|
|an−s|+ |a0|

)
.

Lemma 3.2. If P (z) is a polynomial of degree n having all its zeros in |z| ≤ 1 and

Q(z) = znP ( 1z ), then for |z| = 1: |Q′(z)| ≤ |P ′(z)|.

The above lemma is a special case of a result due to Aziz and Rather [4].

Lemma 3.3 ([8]). If P (z) is a polynomial of degree n ≥ 1, then for R ≥ 1

max
|z|=R

|P (z)| ≤ Rnmax
|z|=1

|P (z)| − (Rn −Rn−2)|P (0)|, if n > 1 (10)

and max
|z|=R

|P (z)| ≤ R max
|z|=1

|P (z)| − (R− 1)|P (0)|, if n = 1. (11)

Lemma 3.4 ([17]). If P (z) is a polynomial of degree n having all its zeros in |z| ≤ k,
k ≥ 1, then for 0 ≤ l < 1

max
|z|=k

|P (z)| ≥ 2kn

1 + kn
max
|z|=1

|P (z)| − l

(
kn − 1

kn + 1

)
min
|z|=k

|P (z)|
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+
2kn−1|an−1|
kn + 1

(
kn − 1

n
− kn−2 − 1

n− 2

)
, if n > 2 (12)

and max
|z|=k

|P (z)| ≥ 2k2

1 + k2
max
|z|=1

|P (z)|+ l

(
k2 − 1

k2 + 1

)
min
|z|=k

|P (z)|

+
k(k − 1)2|a1|

k2 + 1
, if n = 2. (13)

4. Proofs of the theorems

Proof of Theorem 2.1

Since, by hypothesis, P (z) has all its zeros in |z| ≤ k, k ≥ 1, with s-fold zeros at
origin, then f(z) = P (kz) has all its zeros in |z| ≤ 1 with s-fold zeros at origin. Hence
by applying Lemma 3.1 to the polynomial f(z), we obtain for all points z on |z| = 1
with f(z) ̸= 0

Re

(
zf ′(z)

f(z)

)
≥ 1

2

(
n+ s+

kn−s|an−s| − |a0|
kn−s|an−s|+ |a0|

)
,

which for |z| = 1 and f(z) ̸= 0 implies∣∣∣∣zf ′(z)f(z)

∣∣∣∣ ≥ 1

2

(
n+ s+

kn−s|an−s| − |a0|
kn−s|an−s|+ |a0|

)
,

|f ′(z)| ≥ 1

2

(
n+ s+

kn−s|an−s| − |a0|
kn−s|an−s|+ |a0|

)
|f(z)|.

Replacing f(z) by P (kz), we obtain for |z| = 1

k|P ′(kz)| ≥ 1

2

(
n+ s+

kn−s|an−s| − |a0|
kn−s|an−s|+ |a0|

)
|P (kz)|,

that is kmax
|z|=k

|P ′(z)| ≥ 1

2

(
n+ s+

kn−s|an−s| − |a0|
kn−s|an−s|+ |a0|

)
max
|z|=k

|P (z)|. (14)

Since P ′(z) is a polynomial of degree n − 1, we get by applying (10) of Lemma 3.3
with R = k ≥ 1

kn−1max
|z|=1

|P ′(z)| − (kn−1 − kn−3)|a1| ≥ max
|z|=k

|P ′(z)|, if n > 2.

Combining this with inequality (14), we obtain for n > 2

2knmax
|z|=1

|P ′(z)| − 2(kn − kn−2)|a1| ≥
(
n+ s+

kn−s|an−s| − |a0|
kn−s|an−s|+ |a0|

)
max
|z|=k

|P (z)|. (15)

Let P (z) = zsh(z), where h(z) is a polynomial of degree n− s having all its zeros in
|z| ≤ k, k ≥ 1, then by applying (12) of Lemma 3.4 with l = 0 and R = k ≥ 1 to the
polynomial h(z) which is of degree n− s, we obtain for n > 2

max
|z|=k

|h(z)| ≥ 2kn−s

1 + kn−s
max
|z|=1

|h(z)|+2kn−s−1|an−s−1|
kn−s+1

(
kn−s−1

n−s
−k

n−s−2−1

n−s−2

)
. (16)
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Also max|z|=k |h(z)| = 1
ks max|z|=k |P (z)| and max|z|=1 |h(z)| = max|z|=1 |P (z)|.

Using these in inequality (16), we have for n > 2

max
|z|=k

|P (z)| ≥ 2kn

kn−s + 1
max
|z|=1

|P (z)|+2|an−s−1|kn−1

kn−s+1

(
kn−s−1

n−s
−k

n−s−2−1

n−s−2

)
. (17)

Combining (17) and (15), we obtain for n > 2

2knmax
|z|=1

|P ′(z)|−2(kn−kn−2)|a1| ≥
2kn

1+kn−s

(
n+s+

kn−s|an−s|−|a0|
kn−s|an−s|+|a0|

)
max
|z|=1

|P (z)|

+
2|an−s−1|kn−1

kn−s+1

(
n+s+

kn−s|an−s|−|a0|
kn−s|an−s|+|a0|

)(
kn−s−1

n−s
−k

n−s−2−1

n−s−2

)
.

This gives

max
|z|=1

|P ′(z)| ≥ 1

1+kn−s

(
n+s+

kn−s|an−s|−|a0|
kn−s|an−s|+|a0|

)
max
|z|=1

|P (z)|+(1−1/k2)|a1|

+
|an−s−1|
k(1+kn−s)

(
n+s+

kn−s|an−s|−|a0|
kn−s|an−s|+|a0|

)(
kn−s−1

n−s
−k

n−s−2−1

n−s−2

)
, if n > 2.

This proves inequality (6) in case n > 2. The result follows similarly for the case
n = 2, but instead of using the first part of Lemma 3.3 and Lemma 3.4, we use the
second part of Lemma 3.3 and Lemma 3.4. This completes the proof of Theorem 2.1.

Proof of Theorem 2.5

By hypothesis, P (z) has all its zeros in |z| ≤ k, k ≥ 1 with s-fold zeros at origin. If
P (z) has a zero on |z| = k, then m = 0 and the result follows from Theorem 2.1.
Therefore we assume that all the zeros of P (z) lie in |z| < k, with s-fold zeros at
origin, so that m > 0. Hence the polynomial g(z) = P (kz) has all its zeros in |z| < 1
with s-fold zeros at origin and m = min|z|=k |P (z)| = min|z|=1 |g(z)|. Therefore we
have m < |g(z)| for |z| = 1. This gives, for every γ ∈ C with |γ| < 1, m|γzn| < |g(z)|
for |z| = 1. Hence it follows by applying Rouche’s theorem that all the zeros of the
polynomial G(z) = g(z) + γmzn lie in |z| < 1 with s-fold zeros at origin. Therefore
as before in Theorem 2.1 by applying Lemma 3.1 to the polynomial G(z), we obtain
for |z| = 1 and G(z) ̸= 0 that

|G′(z)| ≥ 1

2

(
n+ s+

|kn−san−s + γm| − |a0|
|kn−san−s + γm|+ |a0|

)
|G(z)|.

Since the function t(x) = x−|a|
x+|a| ia non-decreasing function of x and |kn−san−s+γm| ≥

kn−s|an−s| − |γm|, we obtain for every γ ∈ C with |γ| < 1 and |z| = 1

|G′(z)| ≥ 1

2

(
n+ s+

kn−s|an−s| − |γm| − |a0|
kn−s|an−s| − |γm|+ |a0|

)
|G(z)|.

This gives for |z| = 1 and |γ| < 1

|g′(z) + nmγzn−1| ≥ 1

2

(
n+ s+

kn−s|an−s| − |γm| − |a0|
kn−s|an−s| − |γm|+ |a0|

)
(|g(z)| −m|λ|). (18)

Since all zeros of G(z) = g(z)+γmzn lie in |z| < 1 with s-fold zeros at origin, therefore
it follows from Gauss-Lucas theorem that all zeros of G′(z) = g′(z) + γnmzn−1 lie in
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|z| < 1 with s-fold zeros at origin for every γ ∈ C with |γ| < 1. This gives

|g′(z)| ≥ nm|z|n for |z| ≥ 1. (19)

Choosing argument of γ in the left hand side of (18) such that

|g′(z) + nmγzn−1| = |g′(z)| − nm|γ|, for |z| = 1,

which is possible by (19), we get

|g′(z)| − nm|γ| ≥1

2

(
n+ s+

kn−s|an−s| − |γm| − |a0|
kn−s|an−s| − |γm|+ |a0|

)
(|g(z)| −m|γ|),

which gives

|g′(z)| ≥1

2

(
n+ s+

kn−s|an−s| − |γm| − |a0|
kn−s|an−s| − |γm|+ |a0|

)
|g(z)|

+
1

2

(
n+ s− kn−s|an−s| − |γm| − |a0|

kn−s|an−s| − |γm|+ |a0|

)
|γ|m.

Replacing g(z) by P (kz), we get

kmax
|z|=k

|P ′(z)| ≥1

2

(
n+ s+

kn−s|an−s| − |γm| − |a0|
kn−s|an−s| − |γm|+ |a0|

)
max
|z|=k

|P (z)|

+
1

2

(
n+ s− kn−s|an−s| − |γm| − |a0|

kn−s|an−s| − |γm|+ |a0|

)
|γ|m.

Since P ′(z) is a polynomial of degree n − 1, from above inequality we obtain by
applying (10) of Lemma 3.3 with R = k ≥ 1 that, if n > 2,

2knmax
|z|=1

|P ′(z)| − 2(kn − kn−2)|a1| ≥
(
n+ s+

kn−s|an−s| − |γm| − |a0|
kn−s|an−s| − |γm|+ |a0|

)
max
|z|=k

|P (z)|

+

(
n+ s− kn−s|an−s| − |γm| − |a0|

kn−s|an−s| − |γm|+ |a0|

)
|γ|m.

(20)

Again as before, let P (z) = zsh(z), where h(z) is a polynomial of degree n− s having
all its zeros in |z| ≤ k, k ≥ 1. Therefore by using (12) of Lemma 3.4 with R = k ≥ 1,
we have for 0 ≤ l < 1 and n > 2

max
|z|=k

|h(z)| ≥ 2kn−s

1 + kn−s
max
|z|=1

|h(z)| − l

(
kn−s − 1

kn−s + 1

)
min
|z|=k

|h(z)|

+
2kn−s−1|an−s−1|

kn−s + 1

(
kn−s − 1

n− s
− kn−s−2 − 1

n− s− 2

)
. (21)

Also max|z|=k |h(z)| = 1
ks max|z|=k |P (z)|, min|z|=k |h(z)| = 1

ks min|z|=k |P (z)| and
max|z|=1 |h(z)| = max|z|=1 |P (z)|. Using these in inequality (21), we have for n > 2
and 0 ≤ l < 1,

max
|z|=k

|P (z)| ≥ 2kn

1 + kn−s
max
|z|=1

|P (z)|+ l

(
kn−s − 1

kn−s + 1

)
min
|z|=k|

|P (z)|

+
2kn−1|an−s−1|
kn−s + 1

(
kn−s − 1

n− s
− kn−s−2 − 1

n− s− 2

)
. (22)
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Using inequality (22) in inequality (20) and taking γ = l, we obtain for n > 2 and
0 ≤ l < 1

max
|z|=1

|P ′(z)| ≥ 1

2kn

(
n+ s+

kn−s|an−s| − lm− |a0|
kn−s|an−s| − lm+ |a0|

){
2kn

1 + kn−s
max
|z|=1

|P (z)|

+ l

(
kn−s − 1

kn−s + 1

)
min
|z|=k

|P (z)| +2kn−1|an−s−1|
kn−s + 1

(
kn−s − 1

n− s
− kn−s−2 − 1

n− s− 2

)}
+ (1− 1/k2)|a1|+

(
n+ s− kn−s|an−s| − lm− |a0|

kn−s|an−s| − lm+ |a0|

)
lm.

By simplifying this, for 0 ≤ l < 1 and n > 2, we get

max
|z|=1

|P ′(z)| ≥ (n+ s)

1 + kn−s

(
max
|z|=1

|P (z)|+ 1

ks
lm

)
+

(n+ s)|an−s−1|
k(1 + kn−s)

(
kn−s − 1

n− s
− kn−s−2 − 1

n− s− 2

)
+ (1− 1/k2)|a1|

+

(
kn−s|an−s| − lm− |a0|
kn−s|an−s| − lm+ |a0|

){
1

kn(1 + kn−s)

(
knmax

|z|=1
|P (z)| − lm

)
+

|an−s−1|
k(1 + kn−s)

(
kn−s − 1

n− s
− kn−s−2 − 1

n− s− 2

)}
.

This proves inequality (8) in the case n > 2. For the case n = 2, the result follows
similarly but instead of using inequality (10) of Lemma 3.3 and inequality (12) of
Lemma 3.4, we use inequality (11) of Lemma 3.3 and inequality (13) of Lemma 3.4.
This completely proves Theorem 2.5.
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