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ON I-STATISTICAL CONVERGENCE OF SEQUENCES IN
GRADUAL NORMED LINEAR SPACES

Chiranjib Choudhury and Shyamal Debnath

Abstract. In this article, we introduce the notion of I-statistical convergence of se-
quences as one of the extensions of I-convergence in the gradual normed linear spaces. We
investigate some fundamental properties of the newly introduced notion and its relation
with some other methods of convergence. Also we introduce and investigate the concept of
I-statistical limit points, cluster points and establish some implication relations.

1. Introduction

The idea of fuzzy sets [20] was first introduced by Zadeh in the year 1965 which was an
extension of the classical set-theoretical concept. Nowadays it has wide applicability in
different branches of science and engineering. The term “fuzzy number” plays a crucial
role in the study of fuzzy set theory. Fuzzy numbers were basically the generalization
of intervals, not numbers. In particular, fuzzy numbers do not obey some algebraic
properties of the classical numbers. So the term “fuzzy number” is debatable to
many authors due to its different behavior. The term “fuzzy intervals” is often used
by many authors instead of fuzzy numbers. To overcome the confusion among the
researchers, in 2008, Fortin et. al. [10] introduced the notion of gradual real numbers
as elements of fuzzy intervals. Gradual real numbers are mainly known by their
respective assignment function which is defined in the interval (0, 1]. So in some sense,
every real number can be viewed as a gradual number with a constant assignment
function. The gradual real numbers also obey all the algebraic properties of the
classical real numbers and can be used in computation and optimization problems.

In 2011, Sadeqi and Azari [16] first introduced the concept of gradual normed
linear space. They studied various properties of the space from both algebraic and
topological points of view. Further progress in this direction has occurred due to
Ettefagh, Azari, and Etemad (see [7,8]) and many others. For an extensive study on
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gradual real numbers [1, 6, 14] can be addressed, where many more references can be
found.

On the other hand, the notion of statistical convergence was first introduced by
Fast [9] and Steinhaus [19], independently in the year 1951. Later on, it was further
investigated from the sequence space point of view by Fridy [11], Salat [17], and many
others.

In 2001, the idea of I-convergence was developed by Kostyrko et. al. [13] mainly as
an extension of statistical convergence. They showed that many other known notions
of convergence were a particular type of I-convergence by considering particular ide-
als. Consequently, this direction gradually got more attention of the researchers and
became one of the most active areas of research. Several investigations and extensions
of I-convergence can be found in the works of Kostyrko et. al. [12] and many others.

Combining the notion of statistical convergence and I-convergence, in 2011, Savas
and Das [18] introduced the notion of I-statistical convergence. Later on, several
investigations in this direction have occurred due to Mursaleen et. al. [15] and many
others. For an extensive view of I-statistical convergence, one may refer to [3–5].

Research on the convergence of sequences in gradual normed linear spaces has not
yet gained much ground and it is still in its infant stage. The research carried out
so far shows a strong analogy in the behavior of convergence of sequences in gradual
normed linear spaces (for details one may refer to [7, 8, 16]).

The convergence of sequences in gradual normed linear spaces was introduced by
Ettefagh et. al. [8]. They have investigated some properties from the topological point
of view [7]. Recently, Choudhury and Debnath [2] have introduced the notion of I-
convergence of sequences in gradual normed linear spaces. From that point of view,
the study of I-statistical convergence of sequences in gradual normed linear spaces is
very natural.

2. Definitions and preliminaries

Definition 2.1 ([10]). A gradual real number r̃ is defined by an assignment function
Ar̃ : (0, 1] → R. The set of all gradual real numbers is denoted by G(R). A gradual
real number is said to be non-negative, if for every ξ ∈ (0, 1], Ar̃(ξ) ≥ 0. The set of
all non-negative gradual real numbers is denoted by G∗(R).

In [10], the gradual operations between the elements of G(R) were defined as
follows.
Definition 2.2. Let ∗ be any operation in R and suppose r̃1, r̃2 ∈ G(R) with assign-
ment functions Ar̃1 and Ar̃2 respectively. Then r̃1 ∗ r̃2 ∈ G(R) is defined with the
assignment function Ar̃1∗r̃2 given by Ar̃1∗r̃2(ξ) = Ar̃1(ξ)∗Ar̃2(ξ), ∀ξ ∈ (0, 1]. Then the
gradual addition r̃1 + r̃2 and the gradual scalar multiplication cr̃(c ∈ R) are defined
by Ar̃1+r̃2(ξ) = Ar̃1(ξ) +Ar̃2(ξ) and Acr̃(ξ) = cAr̃(ξ), ∀ξ ∈ (0, 1].

For any real number p ∈ R, the constant gradual real number p̃ is defined by the
constant assignment function Ap̃(ξ) = p for any ξ ∈ (0, 1]. In particular, 0̃ and 1̃ are
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the constant gradual numbers defined by A0̃(ξ) = 0 and A1̃(ξ) = 1 respectively. One
can easily verify that G(R) with the gradual addition and multiplication forms a real
vector space [10].

Definition 2.3 ([16]). Let X be a real vector space. The function ∥·∥G : X → G∗(R)
is said to be a gradual norm on X, if for every ξ ∈ (0, 1], following three conditions
are true for any x, y ∈ X:
(G1) A∥x∥G

(ξ) = A0̃(ξ) iff x = 0;

(G2) (G2) A∥λx∥G
(ξ) = |λ|A∥x∥G

(ξ) for any λ ∈ R;

(G3) (G3) A∥x+y∥G
(ξ) ≤ A∥x∥G

(ξ) +A∥y∥G
(ξ).

The pair (X, ∥ · ∥G) is called a gradual normed linear space (GNLS).

Definition 2.4 ([16]). Let (xk) be a sequence in the GNLS (X, ∥ · ∥G). Then (xk) is
said to be gradual convergent to x ∈ X, if for every ξ ∈ (0, 1] and ε > 0, there exists
N(= Nε(ξ)) ∈ N such that A∥xk−x∥G

(ξ) < ε, ∀k ≥ N .

Example 2.5 ( [16]). Let X = Rm and for x = (x1, x2, . . . , xm) ∈ Rm, ξ ∈ (0, 1],
define ∥ · ∥G by A∥x∥G

(ξ) = eξ
∑m

i=1 |xi|. Then ∥ · ∥G is a gradual norm on Rm and
(Rm, ∥ · ∥G) is a GNLS.

Definition 2.6 ([11]). If K is a subset of the set of all natural numbers N, then
Kn denotes the set {k ∈ K : k ≤ n}. The natural density of K is defined by d(K) =

lim
n→∞

|Kn|
n .

Definition 2.7 ([11]). A real-valued sequence x = (xk) is said to be statistically
convergent to l, if for every ε > 0, the set A (ε) = {k ∈ N :| xk − l |≥ ε} has natural
density zero. l is called the statistical limit of the sequence (xk) and symbolically,

st-lim xk = l or xk
st−→ l.

Definition 2.8 ([13]). Let X be a non-empty set. A family of subsets I ⊂ P (X) is
called an ideal on X, if the following three conditions hold:
(i) ∅ ∈ I;
(ii) for each A,B, A,B ∈ I implies A ∪B ∈ I;
(iii) for each A,B, A ∈ I and B ⊂ A implies B ∈ I.

Some standard examples of ideals are given below.
(i) The set If of all finite subsets of N is an admissible ideal in N. Here N denotes
the set of all natural numbers.

(ii) The set Id of all subsets of natural numbers having natural density 0 is an ad-
missible ideal in N.

(iii) The set Ic = {A ⊆ N :
∑

a∈A a−1 < ∞} is an admissible ideal in N.

(iv) Suppose N =
⋃∞

p=1 Dp be a decomposition of N (for i ̸= j, Di ∩Dj = ∅). Then
the set I of all subsets of N which intersects finitely many Dp’s forms an ideal in N.
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More important examples can be found in [12].

Definition 2.9 ([13]). Let X be a non-empty set. A family of subsets F ⊂ P (X) is
called a filter on X, if the following three conditions hold:
(i) ∅ /∈ F ;

(ii) for each A,B, A,B ∈ F implies A ∩B ∈ F ;

(iii) for each A,B, A ∈ F and B ⊃ A implies B ∈ F .

An ideal I is called non-trivial if I ≠ ∅ andX /∈ I. The filter F(I)= {X−A : A∈I}
is called the filter associated with the ideal I. A non-trivial ideal I ⊂ P (X) is called
an admissible ideal in X if and only if I ⊃ {{x} : x ∈ X}.

Definition 2.10 ([13]). Let I ⊂ P (N) be a non-trivial ideal on N. A real-valued
sequence (xk) is said to be I-convergent to l, if for each ε > 0, the set C (ε) =
{k ∈ N : |xk − l| ≥ ε} belongs to I. l is called the I-limit of the sequence (xk) and is

denoted as I-lim
k

xk = l or xk
I−→ l.

Definition 2.11 ([13]). Let I be an admissible ideal in N. A real-valued sequence (xk)
is said to be I∗-convergent to l, if there exists a set M = {m1 < m2 < . . . < mk < . . .}
in the associated filter F(I) such that lim

k∈M
xk = l. Symbolically, I∗-lim

k
xk = l or

xk
I∗

−→ l.

Definition 2.12 ([18]). A real-valued sequence (xk) is said to be I-statistically con-
vergent to l, if for every ε > 0, δ > 0,{

n ∈ N :
1

n
|{k ≤ n : |xk − l| ≥ ε}| ≥ δ

}
∈ I.

If a sequence (xk) is I-statistically convergent to l, then it is denoted by I-st- limxk =

l or xk
Ist−−→ l.

Definition 2.13 ( [5]). A real valued sequence (xk) is said to be I∗-statistically
convergent to l, if there exists a set M = {m1 < m2 < . . . < mk < . . .} ∈ F(I), such
that st- limxmk

= l.

If a sequence (xk) is I∗-statistically convergent to l, then it is denoted by I∗-st- limxk =

l or xk
I∗st−−−→ l.

Definition 2.14 ([5]). A real number x0 is said to be an I-statistical limit point of
a real valued sequence (xk), if there exists M = {m1 < m2 < . . . < mk < . . .} ⊂ N
such that M /∈ I and st- limxmk

= x0.

For a sequence (xk), the set of all I-statistical limit points is denoted by I-S(Λ(xk)).

Definition 2.15 ([15]). A real number x0 is said to be an I-statistical cluster point
of a real valued sequence (xk), if for every ε > 0 and δ > 0, {n ∈ N : 1

n | {k ≤ n :
|xk − x0| ≥ ε} |< δ} /∈ I.
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For a sequence (xk), the set of all I-statistical cluster points is denoted by I-S(Γ(xk)).

Definition 2.16. Let (xk) be a sequence in the GNLS (X, ∥ · ∥G). Then (xk) is said
to be gradual statistically convergent to x ∈ X, if for every ξ ∈ (0, 1] and ε > 0, the
set B(ξ, ε) = {k ∈ N : A∥xk−x∥G

(ξ) ≥ ε} has natural density zero. Symbolically we

write, xk
st-∥·∥G−−−−−→ x.

Definition 2.17 ([2]). Let (xk) be a sequence in the GNLS (X, ∥ · ∥G). Then (xk) is
said to be gradually I-convergent (in short, I-∥ ·∥G convergent) to x ∈ X, if for every
ξ ∈ (0, 1] and ε > 0, the set B(ξ, ε) = {k ∈ N : A∥xk−x∥G

(ξ) ≥ ε} ∈ I. Symbolically,

xk
I-∥·∥G−−−−→ x.

Definition 2.18 ([2]). Let I be an admissible ideal in N and (xk) be a sequence in the
GNLS (X, ∥ · ∥G). Then (xk) is said to be gradually I∗-convergent to x ∈ X, if there
exists a set M = {m1 < m2 < . . . < mk < . . .} ∈ F(I) such that the subsequence

(xmk
) is gradually convergent to x. Symbolically, xk

I∗-∥·∥G−−−−−→ x.

Throughout the paper, for simplicity we use 0 to denote the m-tuple (0, 0, . . . .0, 0)
and I stands for a non-trivial admissible ideal in N.

3. Main results

Definition 3.1. Let (xk) be a sequence in the GNLS (X, ∥ · ∥G). Then (xk) is said
to be gradually I-statistical convergent (in short, Ist-∥ · ∥G convergent) to x ∈ X, if
for every ξ ∈ (0, 1] and ε > 0, δ > 0, the set {n ∈ N : 1

n | {k ≤ n : A∥xk−x∥G
(ξ) ≥

ε} |≥ δ} ∈ I. Symbolically we write, xk
Ist-∥·∥G−−−−−→ x.

Example 3.2. Let X = Rm and ∥ · ∥G be the norm defined in Example 2.5. Consider
the ideal I = Id, ideal consisting of all subsets of N having natural density zero.
Consider the sequence (µn) defined by

µn =

{
1, 1 ≤ n ≤ 10

n− 10, n ≥ 10

and let S = {12, 22, 32, . . .}. Then, the sequence (xk) defined by

xk =


(0, 0, . . . , 0, k), n− [

√
µn] + 1 ≤ k ≤ n, n /∈ S

(0, 0, . . . , 0, k), n− µn + 1 ≤ k ≤ n, n ∈ S

0, otherwise

is Ist-∥ · ∥G convergent to 0.
Justification. For any ε > 0 (0 < ε < 1), since 1

µn
| {n − µn + 1 ≤ k ≤ n :

A∥xk−0∥G
(ξ) ≥ ε} |= [

√
µn]

µn
→ ∞ as n → ∞ and n /∈ S, so for every δ > 0,

{n ∈ N :
1

µn
| {n− µn + 1 ≤ k ≤ n : A∥xk−0∥G

(ξ) ≥ ε} |≥ δ} ⊂ S ∪ {1, 2, . . . , k1} (1)
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for some k1 ∈ N. Now let δ > 0 be given. Then, the fact lim
n
(1− µn

n ) = 0 enables us

to choose k2 ∈ N such that 1 − µn

n < δ
2 for every n ≥ k2. Thus for the above ε > 0

we have
1

n
| {k ≤ n : A∥xk−0∥G

(ξ) ≥ ε} |

=
1

n
| {k ≤ n−µn : A∥xk−0∥G

(ξ) ≥ ε} | +1

n
| {n−µn+1 ≤ k ≤ n : A∥xk−0∥G

(ξ) ≥ ε} |

≤1− µn

n
+

1

n
| {n− µn + 1 ≤ k ≤ n : A∥xk−0∥G

(ξ) ≥ ε} |

≤δ

2
+

1

µn
| {n− µn + 1 ≤ k ≤ n : A∥xk−0∥G

(ξ) ≥ ε} |

for all n ≥ k2. Thus,

{n ∈ N :
1

n
| {k ≤ n : A∥xk−0∥G

(ξ) ≥ ε} |≥ δ}

⊂{n ∈ N :
1

µn
| {n− µn + 1 ≤ k ≤ n : A∥xk−0∥G

(ξ) ≥ ε} |≥ δ

2
} ∪ {1, 2, 3, . . . , k2}

⊂S ∪ {1, 2, 3, . . . , k3}, from (1) where k3 = max{k1, k2}.
Now, since d(S) = 0, from the above inclusion, we conclude that {n ∈ N : 1

n | {k ≤

n : A∥xk−0∥G
(ξ) ≥ ε} |≥ δ} ∈ I, proving that xk

Ist-∥·∥G−−−−−→ 0.

Theorem 3.3. Let (xk) be a sequence in the GNLS (X, ∥·∥G) such that xk
Ist-∥·∥G−−−−−→ x.

Then x is unique.

Proof. If possible suppose xk
Ist-∥·∥G−−−−−→ x and xk

Ist-∥·∥G−−−−−→ y hold for x, y ∈ X with
x1 ̸= x2. Then, for any ε > 0, δ > 0 and ξ ∈ (0, 1], we have, B1 = B1(ξ, ε, δ), B2 =
B2(ξ, ε, δ) ∈ F(I), where B1 = {n ∈ N : 1

n | {k ≤ n : A∥xk−x∥G
(ξ) ≥ ε} |< δ} and

B2 = {n ∈ N : 1
n | {k ≤ n : A∥xk−y∥G

(ξ) ≥ ε} |< δ}. Clearly B1 ∩ B2 ∈ F(I)
and is non-empty. Choose m ∈ B1 ∩ B2 and take ε = A∥ x−y

3 ∥G
(ξ) > 0. Then,

1
m | {k ≤ m : A∥xk−x∥G

(ξ) ≥ ε} |< δ and 1
m | {k ≤ m : A∥xk−y∥G

(ξ) ≥ ε} |< δ.
Now choosing δ sufficiently small, we can say most of the k′s (≤ m) will satisfy
A∥xk−x∥G

(ξ) < ε and A∥xk−y∥G
(ξ) < ε. Thus the set B = {k ≤ m : A∥xk−x∥G

(ξ) <
ε} ∩ {k ≤ m : A∥xk−y∥G

(ξ) < ε} ≠ ∅. Choose p ∈ B.

Then, ε = A∥ x−y
3 ∥G

(ξ) ≤ 1
3 (A∥xp−x∥G

(ξ) + A∥xp−y∥G
(ξ)) < 1

3 (ε + ε) = 2ε
3 , which

is a contradiction. □

Theorem 3.4. Let (xk) be a sequence in the GNLS (X, ∥·∥G) such that xk
st-∥·∥G−−−−−→ x.

Then, xk
Ist-∥·∥G−−−−−→ x.

Proof. xk
st-∥·∥G−−−−−→ x implies that for every ξ ∈ (0, 1] and ε > 0, the set {k ∈ N :

A∥xk−x∥G
(ξ) ≥ ε} has natural density zero i.e., lim

n

1
n | {k ≤ n : A∥xk−x∥G

(ξ) ≥
ε} |= 0. So for every ξ ∈ (0, 1], ε > 0, and δ > 0, the set {n ∈ N : 1

n | {k ≤ n :



224 On I-statistical convergence of sequences in gradual normed linear spaces

A∥xk−x∥G
(ξ) ≥ ε} |≥ δ} is a finite set and eventually becomes a member of I, as I is

admissible. □

Remark 3.5. The converse of the above theorem is not true. One can easily verify
the fact by considering Example 3.2.

Remark 3.6. For a sequence (xk) in the GNLS (X, ∥ · ∥G), xk
I-∥·∥G−−−−→ x implies

xk
Ist-∥·∥G−−−−−→ x. But the converse is not true.

Example 3.7. Let X = Rm and ∥ · ∥G be the norm defined in Example 2.5. Consider
the ideal I = If , ideal consisting of all finite subsets of N. Define the sequence (xk)
as follows:

xk =

{
0, k = n2, n ∈ N
(0, 0, . . . , 0, 1), otherwise.

Then (xk) is Ist-∥ · ∥G convergent to (0, 0, . . . , 0, 1) but not I-∥ · ∥G convergent to
(0, 0, . . . , 0, 1).

Theorem 3.8. Let (xk) be a sequence in the GNLS (X, ∥ · ∥G). If each subsequence
of (xk) is Ist-∥ · ∥G convergent to x ∈ X, then (xk) is also gradually I-statistical
convergent to x.

Proof. If possible suppose (xk) is not Ist-∥ · ∥G convergent to x in spite of having
all the subsequences Ist-∥ · ∥G converging to x. Then, by definition, there exists
particular ε > 0 and δ > 0 such that the set B = B(ξ, ε, δ) = {n ∈ N : 1

n | {k ≤ n :
A∥xk−x∥G

(ξ) ≥ ε} |≥ δ} /∈ I. Now admissibility of I ensures that B is an infinite set.
Put B = {n1 < n2 < . . . < nj < . . .} and define yj = xkj

, j ∈ N. Then, (yj) is a
subsequence of (xk) that is not Ist-∥·∥G converging to x, which is a contradiction. □

Remark 3.9. The converse of the above theorem is not true. Example 3.7 works as
a counterexample.

Theorem 3.10. Let (xk) and (yk) be two sequences in the GNLS (X, ∥ ·∥G) such that

xk
Ist-∥·∥G−−−−−→ x and yk

Ist-∥·∥G−−−−−→ y. Then,

(i) xk + yk
Ist-∥·∥G−−−−−→ x+ y and (ii) cxk

Ist-∥·∥G−−−−−→ cx.

Proof. (i) From the hypothesis, we can conclude that for every ξ ∈ (0, 1] and ε >
0, δ > 0, the two sets C1 = C1(ξ, ε, δ), C2 = C2(ξ, ε, δ) ∈ I, where C1 = {n ∈ N : 1

n |
{k ≤ n : A∥xk−x∥G

(ξ) ≥ ε
2} |< δ

2} and C2 = {n ∈ N : 1
n | {k ≤ n : A∥yk−y∥G

(ξ) ≥
ε
2} |< δ

2}. Then, (N \ C1) ∩ (N \ C2) ∈ F(I) and so (N \ C1) ∩ (N \ C2) ̸= ∅. Choose
n ∈ (N \ C1) ∩ (N \ C2). Then the following inequality

1

n
| {k ≤ n : A∥(xk+yk)−(x+y)∥G

(ξ) ≥ ε} |

≤ 1

n
| {k ≤ n : A∥xk−x∥G

(ξ) ≥ ε

2
} | +1

n
| {k ≤ n : A∥yk−y∥G

(ξ) ≥ ε

2
} |,
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yields the following inclusion

(N \ C1) ∩ (N \ C2) ⊆ {n ∈ N :
1

n
| {k ≤ n : A∥(xk+yk)−(x+y)∥G

(ξ) ≥ ε} |< δ}. (2)

Now as (N\C1)∩ (N\C2) ∈ F(I), so the set in the right-hand side of (2) also belongs

to F(I) which means that xk + yk
Ist-∥·∥G−−−−−→ x+ y.

(ii) For c = 0, there is nothing to prove. So let c ̸= 0. Then, for every ξ ∈ (0, 1]
and ε > 0, the following inequation

1

n
| {k ≤ n : A∥cxk−cx∥G

(ξ) ≥ ε} |

=
1

n
| {k ≤ n : |c|A∥xk−x∥G

(ξ) ≥ ε} |≤ 1

n
| {k ≤ n : A∥xk−x∥G

(ξ) ≥ ε

|c|
} |

holds good and the result follows. □

Definition 3.11. Let I be an admissible ideal in N and (xk) be a sequence in the
GNLS (X, ∥·∥G). Then (xk) is said to be gradually I∗st-convergent (in short, I∗st-∥·
∥G convergent) to x ∈ X, if there exists a set M = {m1 < m2 < . . . < mk < . . .} ∈
F(I) such that xmk

st-∥·∥G−−−−−→ x. Symbolically we write, xk
I∗st-∥·∥G−−−−−−→ x.

Theorem 3.12. Let I be an admissible ideal in N and (xk) be a sequence in the GNLS

(X, ∥ · ∥G). Then, xk
I∗st-∥·∥G−−−−−−→ x implies xk

Ist-∥·∥G−−−−−→ x.

Proof. Let xk
I∗st-∥·∥G−−−−−−→ x. Then, by definition there exists M = {m1 < m2 < . . . <

mk < . . .} ∈ F(I) such that xmk

st-∥·∥G−−−−−→ x. So, for any ε, δ > 0 and ξ ∈ (0, 1], the
set B = B(ξ, ε, δ) = {n ∈ N : 1

n | {mk ≤ n : A∥xmk
−x∥G

(ξ) ≥ ε} |≥ δ} is a finite set
and so belongs to I, as I is admissible.

Now we have, {n ∈ N : 1
n | {k ≤ n : A∥xk−x∥G

(ξ) ≥ ε} |≥ δ} ⊆ (N \M) ∪ B ∈ I,

i.e. xk
Ist-∥·∥G−−−−−→ x. This completes the proof. □

The converse of the above theorem is not true. The following example justifies
the fact

Example 3.13. Let X = Rm and ∥·∥G be the norm defined in Example 2.5. Consider
the ideal I consisting of all subsets of N which intersect finitely many Dp’s where
N =

⋃∞
p=1 Dp and Di ∩Dj = ∅ for i ̸= j. Consider the sequence (xk) in Rm defined

by xk = (0, 0, . . . , 0, 1
p ), if k ∈ Dp. Then xk

Ist-∥·∥G−−−−−→ 0 but xk
I∗st-∥·∥G−−−−−−→ 0 does not

hold.

Justification. Clearly, A∥xk−0∥G
(ξ) = 1

pe
ξ for k ∈ Dp. Let ε > 0 be given. Then

by Archimedean property, there exists q ∈ N such that 1
q e

ξ < ε which in turn yields
the following inclusion:

{k ∈ N : A∥xk−0∥G
(ξ) ≥ ε} ⊆ {k ∈ N : A∥xk−0∥G

(ξ) ≥ 1

q
eξ} (3)
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and as A∥xk−0∥G
(ξ) = 1

pe
ξ for k ∈ Dp, we have

{k ∈ N : A∥xk−0∥G
(ξ) ≥ 1

q
eξ} =

q⋃
p=1

Dp ∈ I. (4)

From (3) and (4), we obtain {k ∈ N : A∥xk−0∥G
(ξ) ≥ ε} ∈ I i.e., xk

I-∥·∥G−−−−→ x.

By Remark 3.6, we have xk
Ist-∥·∥G−−−−−→ x. But we claim that (xk) is not I∗st-∥ · ∥G

convergent to 0.

If xk
I∗st-∥·∥G−−−−−−→ 0, then there exists a set M = {m1<m2<. . .<mk<. . .} ∈ F(I)

such that

xmk

st-∥·∥G−−−−−→ x. (5)

Now for anyM ∈ F(I), there is someH ∈ I such thatM = N\H and by the structure

of I, for that H there exists p ∈ N such that H ⊆
p⋃

j=1

Dj and as a consequence

Dp+1 ⊆ M . Now for any particular η ∈ (0, 1
p+1 ), d({mk ∈ Dp+1 : A∥xmk

−0∥G
(ξ) ≥

η}) = 1
2p+1 ̸= 0, which contradicts (5).

Definition 3.14. Let I be an admissible ideal in N and x = (xk) be a sequence in
the GNLS (X, ∥ · ∥G). Then x0 ∈ X is said to be gradual Ist-limit point of x, if
there exists a set M ⊂ N with M = {m1 < m2 < . . . < mk < . . .} /∈ I such that

xmk

st-∥·∥G−−−−−→ x0.

For any sequence (xk), the set of all gradual Ist-limit points is denoted by Ist-∥ ·
∥G(Λ(xk)).

Definition 3.15. Let I be an admissible ideal in N and (xk) be a sequence in the
GNLS (X, ∥·∥G). Then x0 ∈ X is said to be gradual Ist-cluster point of (xk), if for any
ε > 0, δ > 0 and ξ ∈ (0, 1], the set {n ∈ N : 1

n | {k ≤ n : A∥xk−x0∥G
(ξ) ≥ ε} |< δ} /∈ I.

For any sequence (xk), the set of all gradual Ist-cluster points is denoted by
Ist-∥ · ∥G(Γ(xk)).

Theorem 3.16. Let (xk) be a sequence in the GNLS (X, ∥·∥G) such that xk
Ist-∥·∥G−−−−−→ x.

Then, Ist-∥ · ∥G(Λ(xk)) = {x}.

Proof. If possible suppose Ist-∥·∥G(Λ(xk)) contains one more element y such that y ̸=x.
Then, by definition, there exists a set M ⊂ N with M = {m1<m2<. . .<mk<. . .} /∈ I
such that xmk

st−-∥·∥G−−−−−−→ x. Let B = B(ξ, ε, δ) = {n ∈ N : 1
n | {k ≤ n : A∥xk−y∥G

(ξ) ≥

ε} |≥ δ}. Then B is a finite set, so N \ B ∈ F(I). Now, since xk
Ist−∥·-∥G−−−−−−−→ x, so

for any ξ ∈ (0, 1] and ε > 0, δ > 0, the set C = C(ξ, ε, δ) = {n ∈ N : 1
n | {k ≤

n : A∥xk−x∥G
(ξ) ≥ ε} |< δ} ∈ F(I). Put D = D(ξ, ε, δ) = {n ∈ M : 1

n | {k ≤ n :
A∥xk−x∥G

(ξ) ≥ ε} |≥ δ}, then since N \ D ⊃ C, so N \ D ∈ F(I). Thus we have,
(N\B)∩(N\D) ∈ F(I) and eventually (N\B)∩(N\D) ̸= ∅. Let j ∈ (N\B)∩(N\D)
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and take ε = A∥ x−y
2 ∥G

(ξ). Then we have, 1
j | {k ≤ j : A∥xj−x∥G

(ξ) ≥ ε} |< δ and
1
j | {k ≤ j : A∥xj−y∥G

(ξ) ≥ ε} |< δ. Now choosing δ sufficiently small we can have an

element say p ∈ {k ≤ j : A∥xj−x∥G
(ξ) ≥ ε} ∩ {k ≤ j : A∥xj−y∥G

(ξ) ≥ ε}. But then,

ε = A∥ x−y
2 ∥G

(ξ) ≤ 1
2 (A∥xp−x∥G

(ξ)+A∥xp−y∥G
(ξ)) < 1

2 (ε+ε) = ε, a contradiction. □

Theorem 3.17. For any sequence (xk) in the GNLS (X, ∥ · ∥G),
Ist-∥ · ∥G(Λ(xk)) ⊆ Ist-∥ · ∥G(Γ(xk)).

Proof. Let x0 ∈ Ist-∥ · ∥G(Λ(xk)). Then, there exists a set M ⊂ N with M =

{m1<m2<. . .<mk<. . .} /∈ I such that lim
n

1
n | {mk ≤ n : A∥xmk

−x0∥G
(ξ) ≥ ε} |= 0.

Thus for any δ > 0, there exists some n0 ∈ N such that for any n > n0,
1
n | {mk ≤ n :

A∥xmk
−x0∥G

(ξ) ≥ ε} |< δ. Let B = {n ∈ N : 1
n | {k ≤ n : A∥xk−x0∥G

(ξ) ≥ ε} |< δ}.
Then, B ⊃ M \ {m1,m2, . . . ,mn0

}. Now since I is admissible and M /∈ I, so B /∈ I
and the proof is complete. □

Theorem 3.18. Let (xk) and (yk) be two sequences in the GNLS (X, ∥ ·∥G) such that
{k ∈ N : xk ̸= yk} ∈ I. Then,
(i) Ist-∥ · ∥G(Λ(xk)) = Ist-∥ · ∥G(Λ(yk)).

(ii) Ist-∥ · ∥G(Γ(xk)) = Ist-∥ · ∥G(Γ(yk)).

Proof. (i) Let x0 ∈ Ist-∥ · ∥G(Λ(xk)). Then, there exists a set M ⊂ N with M =

{m1 < m2 < . . . < mk < . . .} /∈ I such that xmk

st-∥·∥G−−−−−→ x0. Now since the inclusion
{k ∈ M : xk ̸= yk} ⊆ {k ∈ N : xk ̸= yk} holds, so N = {k ∈ M : xk = yk} /∈ I and

N ⊆ M . Therefore, ymk

st-∥·∥G−−−−−→ x0 holds and eventually we have Ist-∥ · ∥G(Λ(xk)) ⊆
Ist-∥ · ∥G(Λ(yk)). By symmetry, Ist-∥ · ∥G(Λ(yk)) ⊆ Ist-∥ · ∥G(Λ(xk)). Hence we have,
Ist-∥ · ∥G(Λ(xk)) = Ist-∥ · ∥G(Λ(yk)).

(ii) Suppose x0 ∈ Ist-∥ · ∥G(Γ(xk)). Then by definition, for any ε > 0, δ > 0 and

ξ ∈ (0, 1], the set B = B(ξ, ε, δ) = {n ∈ N : 1
n | {k ≤ n : A∥xk−x0∥G

(ξ) ≥ ε} |<
δ} /∈ I. Let C = C(ξ, ε, δ) = {n ∈ N : 1

n | {k ≤ n : A∥yk−x0∥G
(ξ) ≥ ε} |< δ}.

We claim that C /∈ I. Because if C ∈ I, then N \ C ∈ F(I) and then by the
hypothesis we obtain, (N \ C) ∩ {k ∈ N : xk = yk} ∈ F(I). Consequently, the
inclusion (N \ B) ⊃ (N \ C) ∩ {k ∈ N : xk = yk} leads us to the contradiction that
N \ B ∈ F(I). Therefore, we must have, C /∈ I i.e., x0 ∈ Ist-∥ · ∥G(Γ(yk)). Thus,
Ist-∥·∥G(Γ(xk)) ⊆ Ist-∥·∥G(Γ(yk)). By symmetry, Ist-∥·∥G(Γ(yk)) ⊆ Ist-∥·∥G(Γ(xk)).
Hence we have, Ist-∥ · ∥G(Γ(xk)) = Ist-∥ · ∥G(Γ(yk)). □
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