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MODIFIED INERTIAL HYBRID SUBGRADIENT
EXTRAGRADIENT METHOD FOR SOLVING VARIATIONAL
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FAMILY OF MULTIVALUED RELATIVELY NONEXPANSIVE
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Abstract. One of the most interesting and important problems in the theory of varia-
tional inequalities is the study of efficient iterative schemes for finding approximate solutions
and the convergence analysis of algorithms. In this article, we introduce a new inertial hy-
brid subgradient extragradient method for approximating a common solution of monotone
variational inequalities and fixed point problems for an infinite family of relatively nonex-
pansive multivalued mappings in Banach spaces. In our proposed method, the projection
onto the feasible set is replaced with a projection onto certain half spaces, which makes the
algorithm easy to implement. We incorporate inertial term into the algorithm, which helps
to improve the rate of convergence of the proposed method. Moreover, we prove a strong
convergence theorem and we apply our results to approximate common solutions of varia-
tional inequalities and zero point problems, and to finding a common solution of constrained
convex minimization and fixed point problems in Banach spaces. Finally, we present a nu-
merical example to demonstrate the efficiency and the advantages of the proposed method,
and we compare it with some related methods. Our results extend and improve some recent
works both in Hilbert spaces and Banach spaces in this direction.

1. Introduction

Throughout this article, we denote by N and R the sets of positive integers and real
numbers, respectively. Let E be a real Banach space with norm ∥ · ∥ and E∗ be the
dual of E. For x ∈ E and f ∈ E∗, let ⟨x, f⟩ be the value of f at x. Suppose that C
is a nonempty closed convex subset of E. The Variational Inequality Problem (VIP)
is to find a point x∗ ∈ C such that

⟨x− x∗, Ax∗⟩ ≥ 0, ∀ x ∈ C, (1)
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20 Variational inequalities and fixed point problems

where A : E → E∗ is a single-valued mapping. We denote the solution set of VIP (1)
by V I(C,A). The VIP was first introduced by Lions and Stampacchia [17] in 1967.
The problem is a very important tool in studying engineering mechanics, physics,
economics, optimization theory and applied sciences in a unified and general frame-
work [4].

Under appropriate conditions, there are two general approaches for solving the
VIP, one is the regularized method and the other is the projection method. In this arti-
cle, we consider the projection method. Several projection-type algorithms for solving
VIP have been proposed and analyzed by many authors (see [6,21] and the references
therein). The gradient method (GM) is the simplest algorithm in which only one
projection is made onto the feasible set, and the convergence of the method requires
a strongly monotonicity condition. In order to avoid the hypothesis of the strongly
monotonicity, Korpelevich [16] proposed an algorithm for solving the variational in-
equalities in Euclidean space, which is called the extragradient method (EgM). The
EgM involves two projections onto the closed convex set C and two evaluations of the
cost operator per iteration. Computing projection onto an arbitrary closed convex
set is a difficult task, a drawback which may affect the efficiency of the EgM as men-
tioned in [7]. Hence, a major improvement on the EgM is to minimize the number of
evaluations of PC per iteration. Censor et al. [7] initiated an attempt in this direc-
tion, modifying the EgM by replacing the second projection with a projection onto a
half-space. This new method involves only one projection onto the closed convex set
and is called the subgradient extragradient method (SEgM).

In solving optimization problems, it is known that strong convergence results are
more applicable than weak convergence results. Hence, the motivation for construct-
ing iterative methods that converge strongly to the solution of optimization problems.

We note that all the above mentioned results on VIP are confined in Hilbert spaces.
However, many important problems related to practical problems are generally defined
in Banach spaces. Hence, it is more desirable to propose an iterative algorithm for
finding a solution of VIP (1) in Banach spaces.

In order to increase the speed of convergence of iterative methods, researchers
often employed the inertial technique. The inertial algorithm is a two-step iteration
where the next iterate is defined by making use of the previous two iterates. Recently,
several researchers have constructed some fast iterative algorithms by using inertial
extrapolation (see, e.g., [1, 2, 9, 20,28]).

Very recently, Tian and Jiang [27] proposed the inertial hybrid SEgM for solving
VIP (1) and proved a strong convergence theorem in a Banach space E.

Algorithm 1.1.

x0, x1 ∈ E,

wn = J−1(Jxn + αn(Jxn − Jxn−1)),

yn = ΠCJ
−1(Jwn − λnAwn),

Tn = {w ∈ E : ⟨w − yn, Jwn − λnAwn − Jyn⟩ ≤ 0},
zn = ΠTn

J−1(Jwn − λnAyn),
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Dn = {w ∈ E : ϕ(w, zn) ≤ ϕ(w, xn)− 2αn⟨w − xn, Jxn − Jxn−1⟩+ ϕ(xn, wn)},
Qn = {w ∈ E : ⟨w − xn, Jx1 − Jxn⟩ ≤ 0},

xn+1 = ΠDn∩Qnx1.

Here A : E → E∗ is a monotone and L-Lipschitz continuous mapping with L >
0, {αn} is a bounded sequence of real numbers, and {λn} ⊂ [a, b] for some a, b ∈
(0, c2

2L ), where
1
c is the 2-uniformly convexity constant of E.

Let S : E → E be a nonlinear mapping, a point x∗ ∈ E is called a fixed point of
S if Sx∗ = x∗. We denote by F (S), the set of all fixed points of S, i.e. F (S) = {x∗ ∈
E : Sx∗ = x∗}. If S is a multivalued mapping, i.e. S : E → 2E , then x∗ ∈ E is called
a fixed point of S if x∗ ∈ Sx∗.

The fixed point theory for multivalued mappings find applications in various fields
such as game theory, control theory, mathematical economics. On the other hand,
the existence of common fixed points for a countable family of nonlinear mappings
has been considered by many authors, for instance see [24, 29]. Many optimization
problems can be formulated as finding a common fixed point of a countable family of
nonlinear mappings. For instance, the well-known convex feasibility problem reduces
to finding a point in the intersection of the fixed point sets of a countable family of
nonexpansive mappings (see [5]). The problem of finding an optimal point that mini-
mizes a given cost function over the common set of fixed points of a countable family
of nonlinear mappings is of wide interdisciplinary interest and practical importance
(see [30]).

In this work, we are interested in studying the problem of finding a common
solution of both the VIP (1) and the common fixed point problem for multivalued
mappings in Banach spaces. The importance and motivation for studying the VIP
and common fixed point problems lies in its potential application to mathematical
models whose constraints can be expressed as fixed point problem and VIP. This
arises in practical problems such as signal processing, network resource allocation,
image recovery (see, for instance, [13] and the references therein).

We note that Algorithm 1.1 requires making a projection onto the closed convex
set C per iteration, and as earlier pointed out computing projection onto a general
closed convex set is a difficult task. Hence, in this article inspired and motivated
by the cited works, we introduce a new inertial hybrid SEgM for approximating a
common solution of VIP (1) and FPP for an infinite family of relatively nonexpansive
multivalued mappings in the setting of Banach spaces. In our proposed algorithm, we
replace the projection onto the closed convex set C in Algorithm 1.1 with a projection
onto an half-space which makes our algorithm easier to implement. Furthermore, we
prove a strong convergence theorem and apply our result to study other optimization
problems.

The paper is organized as follows. In Section 2, we recall some basic definitions and
results that will be needed in the sequel. Our hybrid SEgM is presented and analyzed
in Section 3 and we also obtained some consequent results. Then, in Section 4,
we apply our result to approximate the solutions of related optimization problems.
In Section 5, we present some numerical experiments to demonstrate the efficiency of
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our proposed method in comparison with some recent works in the literature. Finally,
concluding remarks are presented in Section 6.

2. Preliminaries

Here, we introduce some basic concepts and state some useful results that will be
employed in our subsequent analysis. Let E be a Banach space, E∗ the dual space
of E, and ⟨·, ·⟩ denote the duality pairing of E and E∗. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. An element z ∈ E is called a weak cluster point of {xn} if
there exists a subsequence {xnj

} of {xn} converging weakly to z. We write wω(xn)
to indicate the set of all weak cluster points of {xn}.

Next, we present some definitions and results which are employed in our subse-
quent analysis.

Definition 2.1. An operator A : E → E∗ is said to be
(i) monotone if ⟨x− y,Ax−Ay⟩ ≥ 0, ∀ x, y ∈ E;

(ii) α-inverse-strongly-monotone if there exists a positive real number α such that
⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2, ∀ x, y ∈ E;

(iii) L-Lipschitz continuous if there exists a constant L > 0 such that ∥Ax − Ay∥ ≤
L∥x− y∥, ∀ x, y ∈ E.
It is clear that an α-inverse-strongly-monotone mapping is monotone and 1

α -Lipschitz
continuous. However, the converse is not always true.

Let g : E → R be a function. The subdifferential of g at x is defined by ∂g(x) =
{w ∈ E∗ : g(y) ≥ g(x) + ⟨y − x,w⟩, ∀ y ∈ E}. If ∂g(x) ̸= ∅, then we say that g is
subdifferentiable at x.

A Banach space E is said to be strictly convex, if for all x, y ∈ E, ∥x∥ = ∥y∥ = 1
and x ̸= y implies ∥(x+ y)/2∥ < 1. The modulus of convexity of E is defined as

δE(ε) = inf
{
1−

∥∥∥x+ y

2

∥∥∥ : x, y ∈ E, ∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ε
}
.

Then, E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2]. It is well known
that a uniformly convex Banach space is strictly convex and reflexive. E is said to
be p-uniformly convex if there exists a constant c > 0 such that δE(ε) > cεp for all
ε ∈ [0, 2] with p ≥ 2. It is easy to see that a p-uniformly convex Banach space is
uniformly convex. In particular, a Hilbert space is two-uniformly convex.

A Banach space E is said to be smooth, if the limit limt→0(∥x+ty∥−∥x∥)/t exists
for all x, y ∈ SE , where SE = {x ∈ E : ∥x∥ = 1}. Moreover, if this limit is attained
uniformly for x, y ∈ SE , then E is said to be uniformly smooth. It is obvious that a
uniformly smooth space is smooth.

For p > 1, the generalized duality mapping Jp : E → 2E
∗
is defined by

Jpx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥p, ∥x∗∥ = ∥x∥p−1} ∀ x ∈ E.
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In particular, J = J2 is called the normalized duality mapping. If E = H, where H
is a Hilbert space, then J = I (see [25]).

Let E be a smooth Banach space. The Lyapunov functional ϕ : E × E → R
(see [3]) is defined by ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2 ∀ x, y ∈ E.

From the definition, it is easy to see that ϕ(x, x) = 0 for every x ∈ E. If E is
strictly convex, then ϕ(x, y) = 0 ⇐⇒ x = y. If E is a Hilbert space, it is easy to see
that ϕ(x, y) = ∥x−y∥2 for all x, y ∈ E. Moreover, for every x, y, z ∈ E and α ∈ (0, 1),
the Lyapunov functional ϕ satisfies the following properties:
(P1) 0 ≤ (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2;
(P2) ϕ(x, J−1(αJz + (1− α)Jy)) ≤ αϕ(x, z) + (1− α)ϕ(x, y);

(P3) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨z − x, Jy − Jz⟩;
(P4) ϕ(x, y) ≤ 2⟨y − x, Jy − Jx⟩;
(P5) ϕ(x, y) = ⟨x, Jx− Jy⟩+ ⟨y − x, Jy⟩ ≤ ∥x∥∥Jx− Jy∥+ ∥y − x∥∥y∥.

Also, we define the functional V : E × E∗ → [0,+∞) by

V (x, x∗) = ∥x∥2 − 2⟨x, x∗⟩+ ∥x∗∥2 ∀ x ∈ E, x∗ ∈ E∗. (2)

It can be deduced from (2) that V is non-negative and V (x, x∗) = ϕ(x, J−1(x∗)). We
have the following result in a reflexive strictly convex and smooth Banach space.

Lemma 2.2 ([3]). Let E be a reflexive strictly convex and smooth Banach space with
E∗ as its dual. Then, V (x, x∗) + 2⟨J−1x∗ − x, y∗⟩ ≤ V (x, x∗ + y∗), for all x ∈ E and
x∗, y∗ ∈ E∗.

Definition 2.3. Let C be a nonempty closed convex subset of a real Banach space
E. A point p ∈ C is called an asymptotic fixed point (see [22]) of T if C contains a
sequence {xn} which converges weakly to p such that limn→+∞ ∥xn − Txn∥ = 0. We
denote the set of asymptotic fixed points of T by F̂ (T ).
A mapping T : C → C is said to be:
(i) relatively nonexpansive if:

(a) F (T ) ̸= ∅; (b) ϕ(p, Tx) ≤ ϕ(p, x), ∀p ∈ F (T ), x ∈ C; (c) F̂ (T ) = F (T );

(ii) generalized nonspreading (see [12]) if there are α, β, γ, δ ∈ R such that

αϕ(Tx, Ty) + (1− α)ϕ(x, Ty) + γ[ϕ(Ty, Tx)− ϕ(Ty, x)]

≤ βϕ(Tx, y) + (1− β)ϕ(x, y) + δ[ϕ(y, Tx)− ϕ(y, x)].

The following result shows the relationship between generalized nonspreading map-
pings and relatively nonexpansive mappings.

Lemma 2.4 ([12]). Let E be a strictly convex Banach space with a uniformly Gâteaux
differentiable norm, let C be a nonempty closed convex subset of E and let T be a
generalized nonspreading mapping of C into itself such that F (T ) ̸= ∅. Then, T is
relatively nonexpansive.

Let N(C) and CB(C) denote the family of nonempty subsets and nonempty closed
bounded subsets of C, respectively. The Hausdorff metric on CB(C) is defined by
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H(A,B) := max{supa∈A dist(a,B), supb∈B dist(b, A)}, for all A,B ∈ CB(C), where
dist(a,B) := inf{∥a− b∥ : b ∈ B}.

Let T : C → CB(C) be a multivalued mapping. An element p ∈ C is called a
fixed point of T if p ∈ Tp. A point p ∈ C is called an asymptotic fixed point
of T , if there exists a sequence {xn} in C which converges weakly to p such that
limn→+∞ dist(xn, Txn) = 0.

A mapping T : C → CB(C) is said to be relatively nonexpansive if:
(a) F (T ) ̸= ∅; (b) ϕ(p, u) ≤ ϕ(p, x) ∀ u ∈ Tx, p ∈ F (T ); (c) F̂ (T ) = F (T ).

Remark 2.5 ([11]). Let E be a strictly convex and smooth Banach space, and C
a nonempty closed convex subset of E. Suppose T : C → N(C) is a relatively
nonexpansive multi-valued mapping. If p ∈ F (T ), then Tp = {p}.

Lemma 2.6 ([15]). Let E be a smooth and uniformly convex Banach space, and {xn}
and {yn} be sequences in E such that either {xn} or {yn} is bounded. If ϕ(xn, yn) → 0
as n → +∞, then ∥xn − yn∥ → 0 as n → +∞.

Remark 2.7. From property (P4) of the Lyapunov functional, it follows that the
converse of Lemma 2.6 also holds if the sequences {xn} and {yn} are bounded (see
also, [3])

Let C be a nonempty closed convex subset of a smooth, strictly convex and re-
flexive Banach space E. By Alber [3], for each x ∈ E, there exists a unique element
x0 ∈ C (denoted by ΠC(x)) such that ϕ(x0, x) = miny∈C ϕ(y, x). The mapping
ΠC : E → C, defined by ΠC(x) = x0, is called the generalized projection from E onto
C. Moreover, x0 is called the generalized projection of x. It is known that if E is a
real Hilbert space, then ΠC coincides with the metric projection operator PC . The
following results relating to the generalized projection are well known.

Lemma 2.8 ([14]). Let C be a nonempty closed convex subset of a reflexive, strictly
convex, and smooth Banach space E. Let x ∈ E and z ∈ C be given. Then, z = ΠCx
implies ϕ(y, z) + ϕ(z, x) ≤ ϕ(y, x), ∀ y ∈ C.

Lemma 2.9 ([14]). Let C be a nonempty closed and convex subset of a smooth Banach
space E and x ∈ E. Then, x0 = ΠCx if and only if ⟨x0 − y, Jx− Jx0⟩ ≥ 0, ∀ y ∈ C.

Lemma 2.10 ( [14]). Let p be a real number with p ≥ 2. Then, E is p-uniformly
convex if and only if there exists c ∈ (0, 1] such that 1

2 (∥x + y∥p + ∥x − y∥p) ≥
∥x∥p + cp∥y∥p ∀ x, y ∈ E. Here, the best constant 1/c is called the p-uniformly
convexity constant of E.

Lemma 2.11 ([19]). Let E be a 2-uniformly convex and smooth Banach space. Then,

for every x, y ∈ E, ϕ(x, y) ≥ c2

2 ∥x−y∥2, where 1
c is the 2-uniformly convexity constant

of E.
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Lemma 2.12 ([14]). Let E be a p-uniformly convex Banach space with p ≥ 2. Then
⟨x − y, jp(x) − jp(y)⟩ ≥ cp

2p−2p∥x − y∥p, ∀ x, y ∈ E, ∀jp(x) ∈ Jpx, jp(y) ∈ Jpy, where
1
c is the p-uniformly convexity constant.

An operator A of C into E∗ is said to be hemicontinuous if for all x, y ∈ C, the
mapping f of [0, 1] into E∗ defined by f(t) = A(tx + (1 − t)y) is continuous with
respect to the weak∗-topology of E∗.

Lemma 2.13 ([14]). Let C be a nonempty, closed and convex subset of a Banach space
E and A a monotone, hemicontinuous operator of C into E∗. Then V I(C,A) = {u ∈
C : ⟨v − u,Av⟩ ≥ 0 ∀ v ∈ C}.

It is obvious from Lemma 2.13 that the set V I(C,A) is a closed and convex subset
of C.

3. Main results

In this section, we present our algorithm and prove some strong convergence results
for the proposed algorithm. The strong convergence theorem of the algorithm is
established under the following conditions:
Condition A

(A1) E is a 2-uniformly convex and uniformly smooth Banach space with 2-uniformly
convexity constant 1

c ;

(A2) C is a nonempty closed convex set, which satisfies the following condition C =
{x ∈ E : g(x) ≤ 0}, where g : E → R is a convex function;

(A3) g(x) is weakly lower semicontinuous on E;

(A4) For any x ∈ E, at least one subgradient ξ ∈ ∂g(x) can be calculated (i.e. g is
subdifferentiable on E), where ∂g(x) = {z ∈ E∗ : h(y) ≥ h(x) + ⟨y − x, z⟩,∀ y ∈ E}.
In addition, ∂g(x) is bounded on bounded sets.

Condition B

(B1) The solution set denoted by Ω = V I(C,A) ∩
⋂+∞

i=1 F (Si) is nonempty, where
Si : E → CB(E) is an infinite family of multivalued relatively nonexpnsive mappings;

(B2) The mapping A : E → E∗ is monotone and Lipschitz continuous with Lipschitz
constant L > 0.

Condition C

(C1) {αn} is a bounded sequence of real numbers;

(C2) {βn,i} ⊂ [a, b] ⊂ (0, 1) for some a, b ∈ (0, 1),
∑+∞

i=0 βn,i = 1, and
lim infn→+∞ βn,0βn,i > 0 for all i ≥ 1;

(C3) {λn} ⊂ [d, k] for some d, k ∈ (0, c2

2L ).
Now, the algorithm is presented as follows.
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Algorithm 3.1.
Step 0. Select sequences {αn}, {βn,i}, and {λn} such that Condition C holds. Choose
x0, x1 ∈ E and set n = 1.

Step 1. Compute wn = J−1(Jxn + αn(Jxn − Jxn−1)).

Step 2. Construct the half-space Cn = {w ∈ E : g(wn) + ⟨w − wn, ξn⟩ ≤ 0}, where
ξn ∈ ∂g(wn), and compute yn = ΠCn

J−1(Jwn − λnAwn).

Step 3. Construct the half-space Tn = {w ∈ E : ⟨w− yn, Jwn−λnAwn−Jyn⟩ ≤ 0},
and compute zn = ΠTn

J−1(Jwn − λnAyn).

Step 4. Compute vn = J−1(βn,0Jxn +
∑+∞

i=1 βn,iJun,i), un,i ∈ Sizn.

Step 5. Construct the half-spaces

Dn = {w ∈ E : ϕ(w, vn) ≤ ϕ(w, xn)− 2αn(1− βn,0)⟨w − xn, Jxn − Jxn−1⟩
+ (1− βn,0)ϕ(xn, wn)},

Qn = {w ∈ E : ⟨w − xn, Jx1 − Jxn⟩ ≤ 0},
and compute xn+1 = ΠDn∩Qnx1, ∀n ≥ 1.

Remark 3.2. From the construction of the half-spaces Cn and Tn, it can easily be
verified that C ⊆ Cn and C ⊆ Tn.

Next, we prove the following lemma employed in establishing the convergence
result for the proposed algorithm.

Lemma 3.3. Let {xn}, {wn} and {yn} be sequences generated by Algorithm 3.1, and
suppose {xn} is bounded and limn→+∞ ∥wn − yn∥ = 0. Let {wnk

} be a subsequence
of {wn}, which converges weakly to some x̂ ∈ E as k → +∞. Then x̂ ∈ V I(C,A).

Proof. Since wnk
⇀ x̂, then by the hypothesis of the lemma, we have that ynk

⇀ x̂.
Also, since ynk

∈ Cnk
, it follows from the definition of Cn that g(wnk

) + ⟨ynk
−

wnk
, ξnk

⟩ ≤ 0. Since {xn} is bounded, it follows from the construction of the Algo-
rithm that {wn} and {yn} are also bounded. Then, by Condition (A4) there exists a
constantM > 0 such that ∥ξnk

∥ ≤ M for all k ≥ 0. Hence, g(wnk
) ≤ M∥wnk

−ynk
∥ →

0, k → +∞.
By Condition (A3), we have that g(x̂) ≤ lim infk→+∞ g(wnk

) ≤ 0. Hence, it
follows from Condition (A2) that x̂ ∈ C. From Lemma 2.9, we obtain ⟨ynk

−z, Jwnk
−

λnk
Awnk

− Jynk
⟩ ≥ 0, ∀ z ∈ C ⊆ Cnk

. By the monotonicity of A, we have

0 ≤ ⟨ynk
− z, Jwnk

− Jynk
⟩ − λnk

⟨ynk
− z,Awnk

⟩
= ⟨z − ynk

, Jynk
− Jwnk

⟩+ λnk
⟨z − ynk

, Awnk
⟩

= ⟨z − ynk
, Jynk

− Jwnk
⟩+ λnk

⟨z − wnk
, Awnk

⟩+ λnk
⟨wnk

− ynk
, Awnk

⟩
≤ ⟨z − ynk

, Jynk
− Jwnk

⟩+ λnk
⟨z − wnk

, Az⟩+ λnk
⟨wnk

− ynk
, Awnk

⟩.
≤ ∥z − ynk

∥∥Jynk
− Jwnk

∥+ λnk
⟨z − wnk

, Az⟩+ λnk
∥wnk

− ynk
∥∥Awnk

∥.
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Letting k → +∞, and since {Awn} is bounded and limn→+∞ ∥wn − yn∥ = 0, we
have ⟨z − x̂, Az⟩ ≥ 0, ∀ z ∈ C. From Lemma 2.13, it follows that x̂ ∈ V I(C,A) as
required. □

Now, we state and prove strong convergence theorem for Algorithm 3.1.

Theorem 3.4. Let {xn} be a sequence generated by Algorithm 3.1 such that condi-
tions (A)-(C) are satisfied. Then the sequence {xn} converges strongly to x† = ΠΩx1.

Proof. We divide the proof into four steps as follows:

Step 1: We show that Ω ⊂ Dn ∩Qn for each n ∈ N.

Note that Dn and Qn are half-spaces for each n ∈ N. Let p ∈ Ω, then by
property (P3) of the Lyapunov functional we have

ϕ(p, wn) = ϕ(p, xn) + ϕ(xn, wn) + 2⟨p− xn, Jxn − Jxn − αn(Jxn − Jxn−1)⟩
= ϕ(p, xn) + ϕ(xn, wn)− 2αn⟨p− xn, Jxn − Jxn−1⟩. (3)

By applying Lemma 2.8 and the monotonicity of A, we obtain

ϕ(p, zn) = ϕ(p,ΠTnJ
−1(Jwn − λnAyn))

≤ϕ(p, J−1(Jwn − λnAyn))− ϕ(zn, J
−1(Jwn − λnAyn))

=ϕ(p, wn) + ϕ(wn, J
−1(Jwn − λnAyn)) + 2λn⟨p− wn, Ayn⟩ − ϕ(zn, wn)

− ϕ(wn, J
−1(Jwn − λnAyn))− 2λn⟨zn − wn, Ayn⟩

=ϕ(p, wn)− ϕ(zn, wn) + 2λn⟨p− zn, Ayn⟩
=ϕ(p, wn)− ϕ(zn, wn) + 2λn⟨p− yn, Ayn −Ap⟩+ 2λn⟨p− yn, Ap⟩+ 2λn⟨yn − zn, Ayn⟩
≤ϕ(p, wn)− ϕ(zn, wn) + 2λn⟨yn − zn, Ayn⟩
=ϕ(p, wn)− ϕ(zn, yn)− ϕ(yn, wn)− 2⟨zn − yn, Jyn − Jwn⟩+ 2λn⟨yn − zn, Ayn⟩
=ϕ(p, wn)− ϕ(zn, yn)− ϕ(yn, wn) + 2⟨zn − yn, Jwn − λnAyn − Jyn⟩. (4)

By the definition of Tn, we have that ⟨zn − yn, Jwn − λnAwn − Jyn⟩ ≤ 0. Then, by
the Lipschitz continuity of A, Lemma 2.11 and Cauchy-Schwartz inequality, we have

2⟨zn−yn, Jwn−λnAyn−Jyn⟩ = ⟨zn−yn, Jwn−λnAwn−Jyn⟩+2λn⟨zn−yn, Awn−Ayn⟩
≤ 2λn⟨zn−yn, Awn−Ayn⟩ ≤ 2λnL∥zn−yn∥∥wn−yn∥

≤ 2λnL

√
2ϕ(zn, yn)

c

√
2ϕ(yn, wn)

c
≤ 2λnL

c2

(
ϕ(zn, yn)+ϕ(yn, wn)

)
(5)

By combining (3), (4) and (5) we obtain

ϕ(p, zn) ≤ ϕ(p, wn)− ϕ(zn, yn)− ϕ(yn, wn) +
2λnL

c2

(
ϕ(zn, yn) + ϕ(yn, wn)

)
= ϕ(p, wn)−

(
1− 2λnL

c2

)(
ϕ(zn, yn) + ϕ(yn, wn)

)
(6)

≤ ϕ(p, wn) ≤ ϕ(p, xn) + ϕ(xn, wn)− 2αn⟨p− xn, Jxn − Jxn−1⟩. (7)
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Next, we have that for each p ∈ Ω

ϕ(p, vn) =ϕ(p, J−1(βn,0Jxn +

+∞∑
i=1

βn,iJun,i))

=∥p∥2 − 2⟨p, βn,0Jxn +

+∞∑
i=1

βn,iJun,i⟩+ ∥βn,0Jxn +

+∞∑
i=1

βn,iJun,i∥2

≤∥p∥2 − 2βn,0⟨p, Jxn⟩ − 2

+∞∑
i=1

βn,i⟨p, Jun,i⟩+ βn,0∥Jxn∥2

+

+∞∑
i=1

βn,i∥Jun,i∥2 − βn,0βn,jg(∥Jxn − Jun,i∥)

=βn,0ϕ(p, xn) +

+∞∑
i=1

βn,iϕ(p, un,i)− βn,0βn,jg(∥Jxn − Jun,i∥)

≤βn,0ϕ(p, xn) +

+∞∑
i=1

βn,iϕ(p, zn)− βn,0βn,jg(∥Jxn − Jun,i∥)

≤βn,0ϕ(p, xn) + (1− βn,0)
(
ϕ(p, xn) + ϕ(xn, wn)− 2αn⟨p− xn, Jxn − Jxn−1⟩

)
− βn,0βn,jg(∥Jxn − Jun,i∥)

=ϕ(p, xn) + (1− βn,0)ϕ(xn, wn)− 2αn(1− βn,0)⟨p− xn, Jxn − Jxn−1⟩
− βn,0βn,jg(∥Jxn − Jun,i∥) (8)

≤ϕ(p, xn) + (1− βn,0)ϕ(xn, wn)− 2αn(1− βn,0)⟨p− xn, Jxn − Jxn−1⟩).
Hence, p ∈ Dn for each n ∈ N and Ω ⊂ Dn for each n ∈ N. For n = 1, we
have that Q1 = E and it follows that Ω ⊂ D1 ∩ Q1. Suppose xk is given and
Ω ⊂ Dk ∩ Qk for some k ∈ N. Then from xk+1 = ΠDk∩Qk

x1 and Lemma 2.9, we
have that ⟨y − xk+1, Jx1 − Jxk+1⟩ ≤ 0, ∀ y ∈ Dk ∩Qk. Since Ω ⊂ Dk ∩Qk, we have
⟨y − xk+1, Jx1 − Jxk+1⟩ ≤ 0, ∀ y ∈ Ω. It follows from the construction of Qn that
Ω ⊂ Qk+1. Therefore, Ω ⊂ Dk+1 ∩Qk+1. By induction, we have that Ω ⊂ Dn ∩Qn

for each n ∈ N.

Step 2: Next, we show that {xn} is bounded. From the construction ⟨y− xn, Jx1 −
Jxn⟩ ≤ 0, ∀y ∈ Qn and by Lemma 2.9, we have xn = ΠQn

x1. From this, it follows
that

ϕ(xn, x1) ≤ ϕ(y, x1) ∀ y ∈ Qn. (9)

Since Ω ⊂ Qn, we have

ϕ(xn, x1) ≤ ϕ(y, x1) ∀ y ∈ Ω, (10)

and this implies that {ϕ(xn, x1)} is bounded. Consequently, by property (P1) of the
Lyapunov functional we have that {xn} is bounded.

Step 3: We next show that wω(xn) ⊂ Ω. By xn+1 ∈ Qn and (9), we get ϕ(xn, x1) ≤
ϕ(xn+1, x1). Hence, there exists k = limn→+∞ ϕ(xn, x1). Since xn+1 ∈ Qn, then we
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obtain

ϕ(xn+1, xn) + ϕ(xn, x1) = ϕ(xn+1, x1) + 2⟨xn − xn+1, Jxn − Jx1⟩ ≤ ϕ(xn+1, x1).

It follows that ϕ(xn+1, xn) ≤ ϕ(xn+1, x1)− ϕ(xn, x1). Hence,

lim
n→+∞

ϕ(xn+1, xn) = 0. (11)

Then it follows from Lemma 2.6 that

xn+1 − xn → 0 as n → +∞. (12)

Since J is uniformly norm-to-norm continuous on each bounded subset of E, we have

Jxn+1 − Jxn → 0 as n → +∞. (13)

By the definition of wn, we have Jwn−Jxn = αn(Jxn−Jxn−1). We know that {αn}
is bounded, then we have

Jwn − Jxn → 0 as n → +∞. (14)

From Lemma 2.12, we have

∥wn − xn∥2 ≤ 2

c2
⟨wn − xn, Jwn − Jxn⟩ ≤

2

c2
∥wn − xn∥∥Jwn − Jxn∥,

which gives ∥wn − xn∥ ≤ 2

c2
∥Jwn − Jxn∥ → 0, n → +∞.

Hence,

wn − xn → 0, n → +∞. (15)

Since {xn} and {wn} are bounded, then it follows from Remark 2.7 that

ϕ(xn, wn) → 0, n → +∞. (16)

We know that xn+1 ∈ Dn, then we have ϕ(xn+1, vn) ≤ ϕ(xn+1, xn) − 2αn(1 −
βn,0)⟨xn+1 − xn, Jxn − Jxn−1⟩+ (1− βn,0)ϕ(xn, wn), and it follows that

ϕ(xn+1, vn) → 0, n → +∞. (17)

Then it follows from Lemma 2.6 that

xn+1 − vn → 0, n → +∞. (18)

By combining (12), (15) and (18), we obtain vn − wn → 0, n → +∞. Since J
is uniformly norm-to-norm continuous on each bounded subset of E, then we have
Jvn − Jwn → 0, n → +∞, and by property (P5) of the Lyapunov functional we
get ϕ(vn, wn) → 0, n → +∞. Also, by property (P3) of the Lyapunov functional
we have ϕ(p, wn) − ϕ(p, xn) = ϕ(xn, wn) + 2⟨p − xn, Jxn − Jwn⟩. By applying (14)
and (16), we obtain

ϕ(p, wn)− ϕ(p, xn) → 0, n → +∞. (19)

Similarly, ϕ(p, xn+1) − ϕ(p, xn) = ϕ(xn, xn+1) + 2⟨p − xn, Jxn − Jxn+1⟩. By apply-
ing (11) and (13), we have

ϕ(p, xn+1)− ϕ(p, xn) → 0, n → +∞. (20)

By using (6), (17), (19), (20) and the definition of vn, we have

0 = lim
n→+∞

(
ϕ(p, xn+1)− ϕ(p, xn)

)
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= lim
n→+∞

(
ϕ(p, vn) + ϕ(vn, xn+1) + 2⟨vn − p, Jxn+1 − Jvn⟩ − ϕ(p, xn)

)
≤ lim

n→+∞

(
βn,0ϕ(p, xn) +

+∞∑
i=1

βn,iϕ(p, Sizn)− ϕ(p, xn)
)

≤ lim
n→+∞

(
βn,0ϕ(p, xn) + (1− βn,0)ϕ(p, zn)− ϕ(p, xn)

)
= lim

n→+∞

(
(1− βn,0)

(
ϕ(p, zn)− ϕ(p, xn)

))
≤ (1− a) lim

n→+∞

(
ϕ(p, zn)− ϕ(p, xn)

)
≤ (1− a) lim

n→+∞

(
ϕ(p, wn)−

(
1− 2λnL

c2
)(
ϕ(zn, yn) + ϕ(yn, wn)

)
− ϕ(p, xn)

)
= −(1− a) lim

n→+∞

((
1− 2λnL

c2
)(
ϕ(zn, yn) + ϕ(yn, wn)

))
,

which implies that ϕ(zn, yn) → 0, n → +∞ and ϕ(yn, wn) → 0, n → +∞. By
Lemma 2.6, we obtain

zn − yn → 0, n → +∞ and yn − wn → 0, n → +∞. (21)

Combining (15) and (21), we have

xn − yn → 0, n → +∞. (22)

By the boundedness of {xn}, there exists a subsequence {xnk
} of {xn} such that

xnk
⇀ z. From (21) and (22), and by applying Lemma 3.3 we obtain z ∈ V I(C,A).

Hence, we have that

wω(xn) ⊂ V I(C,A). (23)

Next, we show that wω(xn) ⊂
⋂+∞

i=1 F (Si). By property (P3) of the Lyapunov func-
tional we have ϕ(p, vnk

) − ϕ(p, xnk
) = ϕ(xnk

, vnk
) + 2⟨p − xnk

, Jxnk
− Jvnk

⟩. Com-
bining (12) and (18), and using property (P5) of the Lyapunov functional we obtain

ϕ(p, vnk
)− ϕ(p, xnk

) → 0, n → +∞. (24)

By applying (8), (14), and (16) together with (24) we have

0 = lim
k→+∞

(
ϕ(p, vnk

)−ϕ(p, xnk
)
)

≤ lim
k→+∞

(
ϕ(p, xnk

) + (1−βnk,0)ϕ(xnk
, wnk

)−2αnk
(1−βnk,0)⟨p−xnk

, Jxnk
−Jxnk−1⟩

−βnk,0βnk,jg(∥Jxnk
−Junk,i∥)−ϕ(p, xnk

)
)

= lim
k→+∞

(
−2(1−βnk,0)⟨p−xnk

, αnk
(Jxnk

−Jxnk−1)⟩−βnk,0βnk,jg(∥Jxnk
−Junk,i∥)

)
= lim

k→+∞

(
−2(1−βnk,0)⟨p−xnk

, Jwnk
−Jxnk

⟩−βnk,0βnk,jg(∥Jxnk
−Junk,i∥)

)
= lim

k→+∞

(
−βnk,0βnk,jg(∥Jxnk

−Junk,i∥)
)
,

and this implies that g(∥Jxnk
− Junk,i∥) → 0, k → +∞. It follows from the

property of g that limk→+∞ ∥Jxnk
− Junk,i∥ = 0, ∀ i ≥ 1. Since J−1 is uniformly
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norm-to-norm continuous on bounded sets, we have

lim
k→+∞

∥xnk
− unk,i∥ = 0, ∀ i ≥ 1. (25)

By combining (21) and (22), we get

lim
k→+∞

∥znk
− xnk

∥ = 0. (26)

Using (25) and (26), we obtain ∥znk
− unk,i∥ ≤ ∥znk

− xnk
∥ + ∥xnk

− unk,i∥ → 0,
∀ i ≥ 1. Hence, limk→+∞ ∥znk

− unk,i∥ = 0, ∀ i ≥ 1. It follows that

lim
k→+∞

d(znk
, Siznk

) ≤ lim
k→+∞

∥znk
− unk,i∥ = 0, ∀ i ≥ 1. (27)

By (26) and (27), and the definition of Si for all i ≥ 1, we have z ∈ Siz, ∀ i ≥ 1, and
this implies that z ∈

⋂+∞
i=1 F (Si). Thus, we have

wω(xn) ⊂
+∞⋂
i=1

F (Si). (28)

From (23) and (28), we have wω(xn) ⊂ Ω.

Step 4: Finally, we show that xn → x† = ΠΩx1 as n → +∞.

By the convexity and lower semicontinuity of the norm, we have ∥z∥ ≤ lim infk→+∞ ∥xnk
∥.

Therefore,

lim inf
k→+∞

ϕ(xnk
, x1) = lim inf

k→+∞
(∥xnk

∥2 − 2⟨xnk
, Jx1⟩+ ∥x1∥2)

= lim inf
k→+∞

∥xnk
∥2 − 2 lim inf

k→+∞
⟨xnk

, Jx1⟩+ ∥x1∥2

≥ ∥z∥2 − 2⟨z, Jx1⟩+ ∥x1∥2 = ϕ(z, x1). (29)

From x† = ΠΩx1, z ∈ Ω, (10) and (29), we obtain

ϕ(x†, x1) ≤ ϕ(z, x1) ≤ lim inf
k→+∞

ϕ(xnk
, x1) ≤ lim sup

k→+∞
ϕ(xnk

, x1) ≤ ϕ(x†, x1).

It follows that limk→+∞ ϕ(xnk
, x1) = ϕ(z, x1) = ϕ(x†, x1). Since x† = ΠΩx1, then

it implies that z = x†, i.e. wω(xn) = {x†}. Hence, xn ⇀ x†, n → +∞, and
limn→+∞ ϕ(xn, x1) = ϕ(x†, x1). Since

∥xn∥2 − ∥x†∥2 = ϕ(xn, x1) + 2⟨xn, Jx1⟩ − ∥x1∥2 − ϕ(x†, x1)− 2⟨x†, Jx1⟩+ ∥x1∥2

= ϕ(xn, x1)− ϕ(x†, x1) + 2⟨xn − x†, Jx1⟩,
then we have ∥xn∥2 − ∥x†∥2 → 0, n → +∞. Also, from

ϕ(xn, x
†) = ∥xn∥2 − 2⟨xn, Jx

†⟩+ ∥x†∥2 = ∥xn∥2 − ∥x†∥2 − 2⟨xn − x†, Jx†⟩,
we get ϕ(xn, x

†) → 0, n → +∞.

By Lemma 2.6, we have xn → x† as n → +∞, and this completes the proof. □

Remark 3.5. Observe that if we take the multivalued relatively nonexpansive map-
pings Si, i ∈ N in Theorem 3.4 as single-valued relatively nonexpansive mappings and
then apply Lemma 2.4, we obtain a consequent result for approximating the common
solution of an infinite family of generalized nonspreading mappings and VIP (1).
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4. Applications

In this section, we present some applications of our results to approximating solutions
of other optimization problems in Banach spaces.

4.1 Variational inequality and zero point problems of maximal monotone
mappings

Here, we apply our results to find a common solution of variational inequality and
zero point problems for an infinite family of maximal monotone mappings in Banach
spaces.

Let E be a real Banach space. We consider the following zero point problem: find
x ∈ E such that 0 ∈ Bx, where B : E → 2E

∗
is a maximal monotone operator. We

denote the solution set of this problem by B−10.
Let E be a smooth, strictly convex, and reflexive Banach space. An operator

B : E → 2E
∗
is said to be monotone, if ⟨x − y, x∗ − y∗⟩ ≥ 0, whenever x, y ∈ E,

x∗ ∈ Bx, y∗ ∈ By. A monotone operator B is said to be maximal, if its graph
G(B) := {(x, y) : y ∈ Bx} is not properly contained in the graph of any other
monotone operator. If B is maximal monotone, then B−10 is closed and convex. Let
B be a maximal monotone operator, then for each r > 0 and x ∈ E, there exists a
unique xr ∈ D(B) such that J(x) ∈ J(xr) + rB(xr) (see, for example, [3]), where
D(B) = {x ∈ E : Bx ̸= ∅}. We can define a single valued mapping Jr : E → D(B)
by Jr(x) = xr, that is, Jr = (J + rB)−1J and such Jr is called the relative resolvent
of B. We know that B−10 = F (Jr) for all r > 0 (see [26] for more details).

Lemma 4.1 ([26]). Let E be a uniformly convex and uniformly smooth Banach space
and let B : E → 2E

∗
be a maximal monotone operator. Let Jr be the relative resolvent

of B, where r > 0. If B−10 is nonempty, then Jr is a relatively nonexpansive mapping
on E.

In Theorem 3.4, if we consider the case where Si, i ∈ N are singled-valued map-
pings and we set Si = Jri for all i ∈ N, then by Lemma 4.1 Si : E → E, i ∈ N is an
infinite family of single-valued relatively nonexpansive mappings and

⋂+∞
i=1 B−1

i 0 =⋂+∞
i=1 F (Si) =

⋂+∞
i=1 F (Jri), ri > 0 is a nonempty closed convex subset of E. Hence,

we obtain from Theorem 3.4 a consequent result for approximating a common solution
of zero point problem (30) and VIP (1).

4.2 Constrained convex minimization and fixed point problems

Next, we apply our result to approximate a common solution of constrained convex
minimization problem and fixed point problem in Banach spaces.

Let E be a real Banach space and C be a nonempty closed convex subset of E.
The constrained convex minimization problem is to find a point x∗ ∈ C such that

f(x∗) = min
x∈C

f(x), (30)

where f is a real-valued convex function.
The following lemma will be employed in establishing our result in this section.
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Lemma 4.2 ([27]). Let E be a real Banach space and C be a nonempty closed convex
subset of E. Let f be a convex function of E into R. If f is Fréchet differentiable,
then z is a solution of problem (30) if and only if z ∈ V I(C,▽f).

If f : E → R is a Fréchet differentiable convex function such that ▽f is L-Lipschitz
continuous, then it is known that ▽f is monotone [27]. Now, taking A = ▽f in Theo-
rem 3.4 and by applying Lemma 4.2, we obtain a consequent result for approximating
a common solution of the constrained convex minimization problem (30) and fixed
point problem for an infinite family of multivalued relatively nonexpansive mappings.

5. Numerical example

In this section, we present a numerical example to illustrate the performance of our
Algorithm 3.1 as well as comparing it with [19, Algorithm 3.3] and [18, Algorithm
4.1]. All numerical computations are carried out using Matlab version R2019 (b).

We choose βn,0 = 9
10 , βn,i =

9i−1

10i+1 , αn = 1
n+1 .

Example 5.1. Let E = L2([0, 2π]) with inner product

⟨x, y⟩ :=
∫ 2π

0

x(t)y(t) dt, ∀x, y ∈ E,

and induced norm ∥x∥ :=

(∫ 2π

0

|x(t)|2dt
) 1

2

, ∀ x ∈ E.

Let C[0, 2π] denote the continuous function space defined on the interval [0, 2π] and
choose an arbitrary fixed φ ∈ C[0, 2π]. Let C := {x ∈ E : ∥φx∥ ≤ 1}. It can
easily be verified that C is a nonempty closed convex subset of E. Define an operator
A : E → E∗ by (Ax)(t) = max(0, x(t)), ∀ x ∈ E. It can easily be checked that
A is Lipschitz continuous and monotone. With these C and A given, the solution
set to the VIP (1) is given by V I(C,A) = {0} ̸= ∅. Define g : E → R by g(x) =
1
2 (∥φx∥

2 − 1), ∀ x ∈ E, then g is a convex function and C is a level set of g, i.e.
C = {x ∈ E : g(x) ≤ 0}. Also, g is differentiable on E and ∂g(x) = φ2x, ∀ x ∈ E
(see [10]). In this numerical example, we choose φ(t) = e−t, ∀ t ∈ [0, 2π]. For each

i ∈ N, let Si : L
2([0, 2π]) → L2([0, 2π]) be defined by (Six)(t) =

∫ 2π

0
x(t) dt, t ∈ [0, 1].

Observe that F (Si) ̸= ∅ since 0 ∈ F (Si) for each i ∈ N. Moreover, Si is quasi-
nonexpansive (note that in a Hilbert space relatively nonexpansive mapping reduces
to quasi-nonexpansive mapping). Therefore, the solution set of the problem is x†(t) =
{0} ≠ ∅. Taking λn = 0.7, we test the algorithms for four different starting points
using ∥xn+1 − xn∥ < ϵ as stopping criterion, where ϵ = 10−2. The numerical result is
reported in Figure 1 and Table 1.

Case I x0(t)= exp(5t), x1(t)= sin(πt); Case II x0(t)= exp(t), x1(t)=9t2+ 1
2 t;

Case III x0(t)= cos(πt), x1(t)= exp(2t); Case IV x0(t)=t+1, x1(t)=t3+3t+2.
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Figure 1: Top left: Case I; Top right: Case III; Bottom left: Case II; Bottom right: Case IV

Alg. 4.1
in [18]

Alg. 3.3
in [19]

Alg. 3.1

Case I CPU time (sec) 2.2198 0.3185 10.0611
No of Iter. 20 4 2

Case III CPU time (sec) 47.1152 1.0815 8.6748
No. of Iter. 34 5 5

Case II CPU time (sec) 2.5361 0.3575 3.2710
No of Iter. 35 5 3

Case IV CPU time (sec) 2.7027 0.3455 0.5916
No of Iter. 34 5 5

Table 1: Numerical results for Example 5.1

6. Conclusion

In this paper, we considered the monotone variational inequality and fixed point
problems for an infinite family of multivalued relatively nonexpansive mappings. We
proposed a new inertial hybrid subgradient extragradient method for approximating
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a common solution of the problem considered in Banach spaces. We obtained strong
convergence result for the proposed algorithm and applied our result to study related
optimization problems.
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