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Abstract. In this paper, we use an inequality involving a coupled multivalued mapping
and a singlevalued mapping to obtain a coupled coincidence point theorem. We discuss
special conditions under which coupled common fixed point theorems are obtained. The
result combines several ideas prevalent in fixed point theory studies. There are several
corollaries and illustrative examples. The Hausdorff-Pompeiu metric between sets is used.
The work is in the context of metric spaces and is a part of set-valued analysis with the
singlevalued consequences.

1. Introduction

In this paper we establish a coupled coincidence point result for a singlevalued map-
ping and a coupled multivalued mapping defined on a metric space. We also discuss
additional conditions under which the coupled coincidence point is a coupled com-
mon fixed point. We achieve our goal by merging several ideas, which are discussed
below. The famous Banach principle of contraction mappings was extended to the
field of set-valued analysis by Nadler [9] in 1969, where he proved the multi-valued
contraction mapping theorem using the Hausdorff-Pompeiu metric, which is a metric
on the set of nonempty closed and bounded subsets of a metric space. This work was
followed by several other papers forming the metric fixed point theory of multivalued
functions, which remains an active area of research in mathematics to this day.

The concept of coupled fixed point was first introduced by Guo et al. [6]. Only
after the publication of the work of Bhaskar et al. [4] in 2006 coupled fixed points and
related results for both singlevalued and multivalued coupled mappings have appeared
in large numbers. Some recent work in this area includes [1, 2, 10,11].

In the development of metric fixed point theory, contractive inequalities with ra-
tional expressions first appeared in the work of Dass and Gupta [5]. Subsequently,
several results have appeared in this area for mappings satisfying rational inequalities.
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The use of a class of functions known as MT-functions to generalize Banach’s the-
orem was made by Mizoguchi and Takahashi [8]. Subsequently, this class of functions
was used to obtain a new class of contractions whose fixed point properties have been
studied in several papers.

Bringing together the above research trends, we establish here a new coincidence
point theorem in metric spaces. Several consequences and supporting examples are
discussed.

In the following, we discuss some concepts from the set-valued analysis. Let (X, d)
be a metric space. We use the following notations in our paper.

N(X) = the collection of all nonempty subsets of X,

CB(X) = the collection of all nonempty closed and bounded subsets of X, and

C(X) = the collection of all nonempty compact subsets of X.

For A,B ∈ CB(X), H(A,B) = max{supx∈AD(x,B), supy∈B D(y,A)}, where
D(x,B) = inf{d(x, b) : b ∈ B} and D(y,A) = inf{d(y, a) : a ∈ A}. H is known
as the Hausdorff-Pompeiu metric induced by d on CB(X) [9]. Furthermore, if (X, d)
is complete, then (CB(X), H) is also complete. Nadler [9] established the following
lemma.

Lemma 1.1 ([9]). Let A,B ∈ C(X) and k ≥ 1. For every x ∈ A there exists y ∈ B
such that d(x, y) ≤ k H(A,B).

Definition 1.2 ( [11]). Let X be a nonempty set and F : X × X → N(X) be a
coupled multivalued mapping. Then (x, y) ∈ X ×X is called a coupled fixed point of
F if x ∈ F (x, y) and y ∈ F (y, x).

Definition 1.3 ([7]). Let X be a nonempty set, F : X ×X → C(X) be a coupled
multivalued mapping, and f : X → X be a singlevalued mapping. Then (x, y) ∈ X ×
X is called a coupled coincidence point of F and f if fx ∈ F (x, y) and fy ∈ F (y, x).

We denote the set of all coupled coincidence points of F and f by C(F, f). Note
that if (x, y) ∈ C(F, f), then (y, x) is also in C(F, f).

Definition 1.4 ([1]). Let X be a nonempty set, F : X ×X → N(X) be a coupled
multivalued mapping, and f : X → X be a singlevalued mapping. Then (x, y) ∈
X ×X is called a coupled common fixed point of F and f if x = fx ∈ F (x, y) and
y = fy ∈ F (y, x).

Definition 1.5 ([1]). Let X be a nonempty set, F : X ×X → N(X) be a coupled
multivalued mapping, and f : X → X be a singlevalued mapping. The pair (F, f) is
called w-compatible if fF (x, y) ⊆ F (fx, fy), whenever (x, y) ∈ C(F, f).

Definition 1.6 ([1]). Let X be a nonempty set, F : X ×X → N(X) be a coupled
multivalued mapping, and f : X → X be a singlevalued mapping. Then the pair
(F, f) is called weakly commutative at some point (x, y) ∈ X ×X if ffx ∈ F (fx, fy)
and ffy ∈ F (fy, fx).
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We use the following class of functions in our theorems.

Definition 1.7 ([8]). A function φ : [0, +∞) → [0, 1) is called an MT -function
(or R-function) if it satisfies the Mizoguchi-Takahashi condition, that is,
lim sups→t+ φ(s) < 1 for all t ∈ [0,+∞).

Denote by Ψ the set of all MT -functions and Θ the family of all functions θ :
[0, +∞)6 → [0,+∞) such that θ is nondecreasing and continuous in each coordinate;
θ(t, t, t, t, t, t) ≤ t for all t ≥ 0 and θ(t1, t2, t3, t4, t5, t6) = 0 for t1 = t2 = t3 = t4 =
t5 = t6 = 0.

2. Main results

Let (X, d) be a metric space and F : X × X → N(X) be a coupled multivalued
mapping, g : X → X be a self mapping and θ ∈ Θ. In the following we define
N(x, y, u, v) and M(x, y, u, v), which we use in our main theorem.

N(x, y, u, v) = max{d(gx, gu), d(gy, gv)}

M(x, y, u, v) = θ(d(gx, gu), d(gy, gv),
[1 +D(gx, F (x, y))]D(gx, F (x, y))

1 + d(gx, gu)
,

[1 +D(gu, F (u, v))]D(gu, F (x, y))

1 + d(gx, gu)
,
[1 +D(gy, F (y, x))]D(gy, F (y, x))

1 + d(gy, gv)
,

[1 +D(gv, F (v, u))]D(gv, F (y, x))

1 + d(gy, gv)
)

Theorem 2.1. Let (X, d) be a complete metric space, F : X×X → C(X) be a coupled
multivalued mapping and g : X → X be a singlevalued mapping. Suppose there exists
ψ ∈ Ψ such that for all x, y, u, v ∈ X the following inequality holds

H(F (x, y), F (u, v)) ≤ ψ(N(x, y, u, v))M(x, y, u, v). (1)

Suppose further that F (x, y) ⊆ g(X) for all (x, y) ∈ X × X and g(X) is a closed
subset of X. Then F and g have a coupled coincidence point.

Moreover, F and g will have a coupled common fixed point if one of the following
conditions holds:
(a) The pair (F, g) is w-compatible, and there exist (x, y) ∈ C(F, g), u, v ∈ X such
that limn→+∞ gnx = u and limn→+∞ gny = v, and also g is continuous at u and v.

(b) There exists (x, y) ∈ C(F, g) such that the pair (F, g) is weakly commuting at
(x, y) and gx, gy are fixed points of g.

(c) There exists (x, y) ∈ C(F, g), u, v ∈ X such that limn→+∞ gnu = x and
limn→+∞ gnv = y, and also g is continuous at x and y.

Proof. Let x0, y0 ∈ X be arbitrary. Since F (x, y) ⊆ g(X), for every u ∈ F (x, y) there
exists p ∈ X such that u = gp. By the condition F (x0, y0) ⊆ g(X) and F (y0, x0) ⊆
g(X). Then we can choose x1, y1 ∈ X such that gx1 ∈ F (x0, y0) and gy1 ∈ F (y0, x0).
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Since F (x0, y0), F (x1, y1) ∈ C(X) and gx1 ∈ F (x0, y0), by Lemma 1.1 there exists
x2 ∈ X such that gx2 ∈ F (x1, y1) and d(gx1, gx2) ≤ H(F (x0, y0), F (x1, y1)). Since
F (y0, x0), F (y1, x1) ∈ C(X) and gy1 ∈ F (y0, x0), by Lemma 1.1, there exists y2 ∈
X such that gy2 ∈ F (y1, x1) and d(gy1, gy2) ≤ H(F (y0, x0), F (y1, x1)). Again,
F (x1, y1), F (x2, y2) ∈ C(X) and gx2 ∈ F (x1, y1), by Lemma 1.1, there exists x3 ∈ X
such that gx3 ∈ F (x2, y2) and d(gx2, gx3) ≤ H(F (x1, y1), F (x2, y2)). Similarly, since
F (y1, x1), F (y2, x2) ∈ C(X) and gy2 ∈ F (y1, x1), by Lemma 1.1, there exists y3 ∈ X
such that gy3 ∈ F (y2, x2) and d(gy2, gy3) ≤ H(F (y1, x1), F (y2, x2)).

Continuing this process we construct two sequences {xn} and {yn} in X such that
for all n ≥ 1, gxn ∈ F (xn−1, yn−1) and gyn ∈ F (yn−1, xn−1),

d(gxn, gxn+1) ≤ H(F (xn−1, yn−1), F (xn, yn)) (2)

and d(gyn, gyn+1) ≤ H(F (yn−1, xn−1), F (yn, xn)).

We first prove that the sequences {d(gxn, gxn+1)} and {d(gyn, gyn+1)} are Cauchy
sequences. Using (1) and (2), we have

d(gxn, gxn+1) ≤ H(F (xn−1, yn−1), F (xn, yn))

≤ ψ(N(xn−1, yn−1, xn, yn)) M(xn−1, yn−1, xn, yn). (3)

By the definition of N(x, y, u, v) and M(x, y, u, v) and the property of θ, we have

N(xn−1, yn−1, xn, yn) = max{d(gxn−1, gxn), d(gyn−1, gyn)}
and M(xn−1, yn−1, xn, yn) = θ(d(gxn−1, gxn), d(gyn−1, gyn),

[1 +D(gxn−1, F (xn−1, yn−1))]D(gxn−1, F (xn−1, yn−1))

1 + d(gxn−1, gxn)
,

[1 +D(gxn, F (xn, yn))]D(gxn, F (xn−1, yn−1))

1 + d(gxn−1, gxn)
,

[1 +D(gyn−1, F (yn−1, xn−1))]D(gyn−1, F (yn−1, xn−1))

1 + d(gyn−1, gyn)
,

[1 +D(gyn, F (yn, xn))]D(gyn, F (yn−1, xn−1))

1 + d(gyn−1, gyn)
)

≤ θ(d(gxn−1, gxn), d(gyn−1, gyn),
[1 + d(gxn−1, gxn)]d(gxn−1, gxn)

1 + d(gxn−1, gxn)
,

[1 + d(gxn, gxn+1)]d(gxn, gxn)

1 + d(gxn−1, gxn)
,
[1 + d(gyn−1, gyn)]d(gyn−1, gyn)

1 + d(gyn−1, gyn)
,

[1 + d(gyn, gyn+1)]d(gyn, gyn)

1 + d(gyn−1, gyn)
)

≤ θ(d(gxn−1, gxn), d(gyn−1, gyn), d(gxn−1, gxn), 0, d(gyn−1, gyn), 0)

≤ θ(max{d(gxn−1, gxn), d(gyn−1, gyn)},max{d(gxn−1, gxn), d(gyn−1, gyn)},
max{d(gxn−1, gxn), d(gyn−1, gyn)},max{d(gxn−1, gxn), d(gyn−1, gyn)},
max{d(gxn−1, gxn), d(gyn−1, gyn)},max{d(gxn−1, gxn), d(gyn−1, gyn)})

≤ max{d(gxn−1, gxn), d(gyn−1, gyn)}.



290 Multivalued coupled coincidence point results in metric spaces

From (3), we have

d(gxn, gxn+1) ≤
ψ(max{d(gxn−1, gxn), d(gyn−1, gyn)})max{d(gxn−1, gxn), d(gyn−1, gyn)}. (4)

Using the fact ψ(t) ≤ 1, we have

d(gxn, gxn+1) ≤ max{d(gxn−1, gxn), d(gyn−1, gyn)}. (5)

Similarly, we can prove that

d(gyn, gyn+1) ≤ max{d(gxn−1, gxn), d(gyn−1, gyn)}. (6)

From (5) and (6), we have

max{d(gxn, gxn+1), d(gyn, gyn+1)} ≤ max{d(gxn−1, gxn), d(gyn−1, gyn)}, (7)

which implies that {max{d(gxn, gxn+1), d(gyn, gyn+1)}} is a nondecreasing sequence
of real number. Hence there exists a real number r ≥ 0 such that

lim
n→+∞

max{d(gxn, gxn+1), d(gyn, gyn+1)} = r. (8)

Since ψ ∈ Ψ, we have lim supx→r+ ψ(x) < 1 and ψ(r) < 1. Then there exists α ∈ [0, 1)
and δ > 0 such that

ψ(t) ≤ α, for all t ∈ [r, r + δ). (9)

From (7) and (8), there exists n0 ∈ N such that

r ≤ max{d(gxn−1, gxn), d(gyn−1, gyn)} ≤ r + δ, for all n ≥ n0. (10)

Thus for all n ≥ n0, it follows from (4), (9) and (10) that

d(gxn, gxn+1) ≤ αmax{d(gxn−1, gxn), d(gyn−1, gyn)}. (11)

Similarly, for all n ≥ n0, we have

d(gyn, gyn+1) ≤ αmax{d(gxn−1, gxn), d(gyn−1, gyn)}. (12)

Combining (11) and (12), we have for all n ≥ n0,

max{d(gxn, gxn+1), d(gyn, gyn+1)} ≤ αmax{d(gxn−1, gxn), d(gyn−1, gyn)}. (13)

Letting n → +∞ in the above inequality and using (8), we obtain r ≤ α r, where
α ∈ [0, 1), which is a contradiction unless r = 0. Hence

lim
n→+∞

max{d(gxn, gxn+1), d(gyn, gyn+1)} = 0.

If there exists a positive integerm such that max{d(gxm, gxm+1), d(gym, gym+1)} = 0,
then d(gxm, gxm+1) = 0 and d(gym, gym+1) = 0, which imply that gxm = gxm+1 ∈
F (xm, ym) and gym = gym+1 ∈ F (ym, xm), that is, (xm, ym) is a coupled coincidence
point of F and g. Hence we shall assume that

an =max{d(gxn, gxn+1), d(gyn, gyn+1)} ≠ 0, for all n ∈ N. (14)

From (13) and (14), we have 0 < an ≤ α an−1, for all n ≥ n0. From here, we have
+∞∑
n=0

an ≤
n0−1∑
n=0

an +

+∞∑
n=n0

an ≤
n0−1∑
n=0

an + an0−1

+∞∑
k=1

αk. (15)

Since α ∈ [0, 1),
∑+∞

k=1 α
k is convergent and hence

∑+∞
n=0 an is convergent, that is,
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∑∞
n=0 an < +∞. Thus by (15), we have∑

max{d(gxn, gxn+1), d(gyn, gyn+1)} < +∞. (16)

This implies that {gxn}+∞
n=0 and {gyn}+∞

n=0 are Cauchy sequences in g(X). Since g(X)
is closed in X and X is complete, there exist x, y ∈ X such that

lim
n→+∞

gxn = gx and lim
n→+∞

gyn = gy. (17)

Since gxn+1 ∈ F (xn, yn) and gyn+1 ∈ F (yn, xn), using (1) and the property of ψ, we
have

D(gxn+1, F (x, y)) ≤ H(F (xn, yn), F (x, y))

≤ ψ(N(xn, yn, x, y))M(xn, yn, x, y) ≤M(xn, yn, x, y). (18)

Now,

M(xn, yn, x, y) = θ(d(gxn, gx), d(gyn, gy),
[1 +D(gxn, F (xn, yn))]D(gxn, F (xn, yn))

1 + d(gxn, gx)
,

[1 +D(gx, F (x, y))]D(gx, F (xn, yn))

1 + d(gxn, gx)
,

[1 +D(gyn, F (yn, xn))]D(gyn, F (yn, xn))

1 + d(gyn, gy)
,

[1 +D(gy, F (y, x))]D(gy, F (yn, xn))

1 + d(gyn, gy)
)

≤ θ(d(gxn, gx), d(gyn, gy),
[1 + d(gxn, gxn+1)]d(gxn, gxn+1)

1 + d(gxn, gx)
,

[1 +D(gx, F (x, y))]d(gx, gxn+1)

1 + d(gxn, gx)
,
[1 + d(gyn, gyn+1)]d(gyn, gyn+1)

1 + d(gyn, gy)
,

[1 +D(gy, F (y, x))]d(gy, gyn+1)

1 + d(gyn, gy)
).

Using the property of θ, we have

lim
n→+∞

M(xn, yn, x, y) ≤ θ(0, 0, 0, 0, 0, 0) = 0. (19)

Taking limit as n→ +∞ in (18) and using (19), we obtain D(gx, F (x, y)) ≤ 0, which
implies that D(gx, F (x, y)) = 0, i.e., gx ∈ F (x, y) = F (x, y). Similarly, we can prove
that gy ∈ F (y, x). Therefore, we conclude that (x, y) is a coupled coincidence point
of F and g and hence C(F, g) is nonempty.

Suppose that the condition (a) holds. Therefore, there exist (x, y) ∈ C(F, g) and
u, v ∈ X, such that

lim
n→+∞

gnx = u and lim
n→+∞

gny = v, (20)

and also g is continuous at u and v.

As g is continuous at u and v, we have u = limn→+∞ gn+1x = limn→+∞ g(gnx) =
gu and v = limn→+∞ gn+1y = limn→+∞ g(gny) = gv. Here u and v are fixed points
of g. Now (x, y) ∈ C(F, g) implies that gx ∈ F (x, y) and gy ∈ F (y, x). Applying



292 Multivalued coupled coincidence point results in metric spaces

the w-compatibility of the pair (F, g), we have ggx = g2x ∈ gF (x, y) ⊆ F (gx, gy).
Similarly, ggy = g2y ∈ gF (y, x) ⊆ F (gy, gx). So (gx, gy) ∈ C(F, g). Continuing this
process, we can show by the mathematical induction that (gn−1x, gn−1y) ∈ C(F, g),
for all n ≥ 1. Hence g(gn−1x) ∈ F (gn−1x, gn−1y) and g(gn−1y) ∈ F (gn−1y, gn−1x),
that is, gnx ∈ F (gn−1x, gn−1y) and gny ∈ F (gn−1y, gn−1x), for all n ≥ 1.

By using (1) and the property of ψ, we obtain

D(gnx, F (u, v)) ≤ H(F (gn−1x, gn−1y), F (u, v))

≤ψ(N(gn−1x, gn−1y, u, v))M(gn−1x, gn−1y, u, v) < M(gn−1x, gn−1y, u, v), (21)

where,

M(gn−1x, gn−1y, u, v) = θ(d(gnx, gu), d(gny, gv),

[1 +D(gnx, F (gn−1x, gn−1y))]D(gnx, F (gn−1x, gn−1y))

1 + d(gnx, gu)
,

[1 +D(gu, F (u, v))]D(gu, F (gn−1x, gn−1y))

1 + d(gnx, gu)
,

[1 +D(gny, F (gn−1y, gn−1x))]D(gny, F (gn−1y, gn−1x))

1 + d(gny, gv)
,

[1 +D(gv, F (v, u))]D(gv, F (gn−1y, gn−1x))

1 + d(gny, gv)
)

≤ θ(d(gnx, u), d(gny, v),
[1 + d(gnx, gnx)]d(gnx, gnx)

1 + d(gnx, u)
,

[1 +D(u, F (u, v))]d(u, gnx)

1 + d(gnx, u)
,
[1 + d(gny, gny))]d(gny, gny)

1 + d(gny, v)
,

[1 +D(v, F (v, u))]d(v, gny)

1 + d(gny, v)
)

= θ
(
d(gnx, u), d(gny, v), 0,

[1 +D(u, F (u, v))]d(u, gnx)

1 + d(gnx, u)
,

0,
[1 +D(v, F (v, u))]d(v, gny)

1 + d(gny, v)
).

Using (20) and the property of θ, we have limn→+∞M(gn−1x, gn−1y, u, v) ≤
θ(0, 0, 0, 0, 0, 0) = 0. Taking limit as n → +∞ in (21), we have D(u, F (u, v)) ≤ 0
which implies that D(u, F (u, v)) = 0. Now, D(u, F (u, v)) = 0 implies that u ∈
F (u, v) = F (u, v). Similarly, we can prove that v ∈ F (v, u). Therefore, (u, v) is a
coupled common fixed point of F and g.

Suppose that the condition (b) holds. Therefore, there exists (x, y) ∈ C(F, g)
such that the pair (F, g) is weakly commuting at (x, y) and also gx and gy are fixed
points of g. As gx and gy are fixed points of g, we have gx = ggx = g2x and
gy = ggy = g2y. As (F, g) is weakly commuting at (x, y), we have gx = g2x = ggx ∈
F (gx, gy) and gy = g2y = ggy ∈ F (gy, gx), i.e., (gx, gy) is a coupled common fixed
point of F and g.

Suppose that the condition (c) holds. Therefore, there exists (x, y) ∈ C(F, g) and



B. S. Choudhury, N. Metiya, S. Kundu 293

u, v ∈ X such that limn→+∞ gnu = x and limn→+∞ gnv = y, and also g is continuous
at x and y. Since g is continuous at x and y, we have x = limn→+∞ gn+1u =
limn→+∞ g(gnu) = gx and y = limn→+∞ gn+1v = limn→+∞ g(gnv) = gy. Then x
and y are fixed points of g. Therefore, we have x = gx ∈ F (x, y) and y = gy ∈ F (y, x),
i.e., (x, y) is a coupled common fixed point of F and g. □

3. Consequences and examples

In Theorem 2.1, consider θ(x1, x2, x3, x4, x5, x6) = max{x1, x2, x3, x4, x5, x6} and
ψ(t) = k, where k ∈ [0, 1); we obtain the following corollary.

Corollary 3.1. Let (X, d) be a complete metric space, F : X × X → C(X) be a
coupled multivalued mapping and g : X → X be a singlevalued mapping. Suppose
there exists k ∈ [0, 1) such that for all x, y, u, v ∈ X the following inequality holds

H(F (x, y),F (u, v)) ≤ kmax{d(gx, gu), d(gy, gv),
[1 +D(gx, F (x, y))]D(gx, F (x, y))

1 + d(gx, gu)
,
[1 +D(gu, F (u, v))]D(gu, F (x, y))

1 + d(gx, gu)
,

[1 +D(gy, F (y, x))]D(gy, F (y, x))

1 + d(gy, gv)
,
[1 +D(gv, F (v, u))]D(gv, F (y, x))

1 + d(gy, gv)
}.

Suppose further that F (x, y) ⊆ g(X) for all (x, y) ∈ X × X and g(X) is a closed
subset of X. Then F and g have a coupled coincidence point. Moreover, F and g
will have a coupled common fixed point under each of the conditions as mentioned in
Theorem 2.1.

In Theorem 2.1, given θ(x1, x2, x3, x4, x5, x6) =
1

2
(x1 + x2) and ψ(t) = k, where

k ∈ [0, 1), we have the following corollary.

Corollary 3.2. Let (X, d) be a complete metric space, F : X × X → C(X) be a
coupled multivalued mapping and g : X → X be a singlevalued mapping. Suppose
there exists k ∈ [0, 1) such that for all x, y, u, v ∈ X the following inequality holds

H(F (x, y), F (u, v)) ≤ k

2
[d(gx, gu) + d(gy, gv)]. Suppose that F (x, y) ⊆ g(X) for all

(x, y) ∈ X × X and g(X) is a closed subset of X. Then F and g have a coupled
coincidence point. Moreover, F and g will have a coupled common fixed point under
each of the conditions as mentioned in Theorem 2.1.

In Theorem 2.1, considering θ(x1, x2, x3, x4, x5, x6) = max{x1, x2}, we have the
following corollary.

Corollary 3.3. Let (X, d) be a complete metric space, F : X × X → C(X) be a
coupled multivalued mapping and g : X → X be a singlevalued mapping. Suppose
there exists ψ ∈ Ψ such that for all x, y, u, v ∈ X the following inequality holds

H(F (x, y), F (u, v)) ≤ ψ(max{d(gx, gu), d(gy, gv)})max{d(gx, gu), d(gy, gv)}.
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Suppose further that F (x, y) ⊆ g(X) for all (x, y) ∈ X × X and g(X) is a closed
subset of X. Then F and g have a coupled coincidence point. Moreover, F and g
will have a coupled common fixed point under each of the conditions as mentioned in
Theorem 2.1.

Example 3.4. Let X = [0, 1] and d be the usual metric on X. Let F : X×X → C(X)

and g : X → X be defined respectively as follows: F (x, y) =
[
0, x

2

4

]
for x, y ∈ X and

gx = x2

2 for x ∈ X. Let θ : [0, +∞)6 → [0, +∞) be defined as follows:

θ(x1, x2, x3, x4, x5, x6) = max{x1, x2, x3, x4, x5, x6}.
Let ψ : [0,+∞) → [0, 1) be defined as follows:

ψ(t) =


1

2
+
t2

4
, if t is rational and 0 ≤ t ≤ 1,

3

4
, otherwise.

All the conditions of Theorem 2.1 are satisfied and (0, 0) is a coupled coincidence
point and also a coupled common fixed point of F and g.

Example 3.5. Take the metric space (X, d) as considered in Example 3.4. Let F :
X ×X → C(X) and g : X → X be defined respectively as follows:

F (x, y) =
[
0,

x+ y

24

]
and gx =

x

2
for x ∈ X.

Let θ : [0,+∞)6 → [0,+∞) be defined as follows:

θ(x1, x2, x3, x4, x5, x6) =
x1 + x2 + x3 + x4 + x5 + x6

6
.

We take the function ψ ∈ Ψ as taken in Example 3.4. All the conditions of the
Theorem 2.1 are satisfied and (0, 0) is a coupled coincidence point and also a coupled
common fixed point of F and g.

Example 3.6. Take the metric space (X, d) as considered in Example 3.4. Let F :
X ×X → C(X) and g : X → X be defined respectively as follows:

F (x, y) =
{1

2

}
for x, y ∈ X and gx = 1− x

2
for x ∈ X.

We take the functions θ ∈ Θ and ψ ∈ Ψ as taken in Example 3.5. Except the
conditions (a), (b) and (c), all the conditions of the Theorem 2.1 are satisfied. Here
(1, 1) is a coupled coincidence point of F and g but they have no coupled common
fixed point.

4. Conclusions

The main result of this paper is a coupled coincidence point theorem of a singlevalued
and a coupled multivalued mapping. The result is derived on a metric space and
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obtained by combining several ideas. For a recent survey of various aspects of metric
fixed point theory, we refer to [3]. Hybrid results may continue to be obtained in fixed
point theory and related studies, combining several individual research trends, as in
the present case. Efforts in this direction should generate interest.

Acknowledgement. The authors are grateful to the reviewer for his/her sug-
gestions.
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[3] P. Debnath, N. Konwar, S. Radenović, Metric Fixed Point Theory, Applications in Science,
Engineering and Behavioural Sciences, Forum for Interdisciplinary Mathematics, Springer Na-
ture Singapore, 2021.

[4] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric
spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393.

[5] B. K. Dass, S. Gupta, An extension of Banach contraction principle through rational expres-
sions, Inidan J. Pure Appl. Math., 6 (1975), 1455–1458.

[6] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications,
Nonlinear Anal., 11 (1987), 623–632.

[7] N. Hussain, A. Alotaibi, Coupled coincidences for multi-valued contractions in partially ordered
metric spaces, Fixed Point Theory Appl., 2011 (2011), Article 82.

[8] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete
metric spaces, J. Math. Anal. Appl., 141 (1989), 177–188.

[9] S. B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488.

[10] H. K. Nashine, B. S. Choudhury, N. Metiya, Coupled coincidence point theorems in partially
ordered metric spaces, Thai J. Math., 12 (2014), 665–685.

[11] B. Samet, C. Vetro, Coupled fixed point theorems for multi-valued nonlinear contraction map-
pings in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 4260–4268.

(received 09.03.2022; in revised form 20.05.2022; available online 19.04.2023)

Department of Mathematics, Indian Institute of Engineering Science and Technology,
Shibpur, Howrah - 711103, West Bengal, India

E-mail: binayak12@yahoo.co.in

Department of Mathematics, Sovarani Memorial College, Jagatballavpur, Howrah - 711408,
West Bengal, India

E-mail: metiya.nikhilesh@gmail.com

Department of Mathematics, Government General Degree College, Salboni, Paschim Me-
dinipur - 721516, West Bengal, India

E-mail: sunirmalkundu2009@rediffmail.com


	Introduction
	Main results
	Consequences and examples
	Conclusions

