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ON THE EXPANSION THEOREM FOR A CERTAIN

BOUNDARY VALUE PROBLEM FOR A FUNCTIONAL

DIFFERENTIAL EQUATION

M. Dostani�c

Abstract. The boundary value problem

�y00 + q(x)y = �y +

Z
�

0

y d�(x); y(0) = y(�) = 0;

is concerned, where q 2 C[0; �] and � is a function of bounded variation. It is proved that the
system of eigenfunctions of the given problem is complete and minimal in L2(0; �), and also that
functions of a certain class can be expanded into uniformly convergent series with respect to the
mentioned system.

Introduction

In [1] and [2] problems concerning the asymptotics of spectra as well as deter-
mining regularized traces of the following two boundary problems were examined

�y00 + q(x)y = �y + y
��
2

�
; y(0) = y(�) = 0; (1)

�y00 + q(x)y = �y +

n�1X
k=1

�ky

�
k�

n

�
+ �n

Z �

0

y(t) dt; y(0) = y(�) = 0; (2)

where q is a su�ciently smooth function with complex values.

In [3] we see that, under certain conditions, the system of eigenfunctions of
the boundary problem (1) is a Riesz base of L2(0; �) and also that any function
f 2 C2[0; �] for which f(0) = f(�) = 0 can be expanded into a uniformly convergent
series with respect to a system of eigenfunctions of the boundary problem (1).

In this paper we examine the following boundary problem

�y00 + q(x)y = �y +

Z �

0

y d�(x); y(0) = y(�) = 0; (3)

where q is a real continuous function and � is a function of bounded variation on
[0; �]. We prove a similar expansion theorem.
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1. Preliminaries

Let L0 be the di�erential operator generated by the di�erential expression
l0(y) = �y00 + q(x)y and boundary conditions y(0) = y(�) = 0. Note that L0 is a
selfadjoint operator. Let L be the operator generated by the di�erentially-integral
expression l(y) = �y00+q(x)y�R �

0
y d�(x) with the same boundary conditions. We

say that � = �0 is an eigenvalue of the boundary problem (3) if there is a function
y0 2 C2[0; �] for which y0 6� 0 and

�y000 + q(x)y0 = �0y0 +

Z �

0

y0 d�(x); y0(0) = y0(�) = 0:

An eigenvalue is simple if there is one and only one corresponding eigenfunction
(up to a multiplicative constant).

The Green's function of the operator L0 � � is given by [4]

G(x; �; �) =
H(x; �; �)

�(�)
; (4)

where � is the characteristic determinant of the boundary problem

�y00 + q(x)y = �y; y(0) = y(�) = 0: (5)

For any �xed x and � from [0; �], the function H(x; �; �) is entire. The function �
is also entire and its roots are eigenvalues of the problem (5).

Then, the function �1(�) = �(�) � R �0 R �0 H(x; �; �) d�(x) d� is also entire.

We suppose:

1� No eigenvalue of the problem (5) is an eigenvalue of the problem (3).

2� Roots �1, �2, . . . of the function �1 are simple and �(�n) 6= 0.

3� Boundary problems �y00 + q(x)y = 0, y(0) = y(�) = 0 and �y00 + q(x)y =R �
0 y d�(x), y(0) = y(�) = 0 have only trivial solutions.

2. Main results

Lemma. If the conditions 1� and 2� are satis�ed then the eigenvalues of the
boundary problem (3) are simple and they are roots of the function �1.

Proof. Let �0 be an eigenvalue of the boundary problem (3). It means that
there is a function y0 2 C2[0; �] for which

�y000 + q(x)y0 = �0y0 +

Z �

0

y0 d�(x); y0(0) = y0(�) = 0 (6)

and y0 6� 0 on [0; �].

From 1� we see that �(�0) 6= 0. Applying the Green's function of the operator
L0 � �0 to (6) we get

y0(x) =

Z �

0

G(x; �; �0) d�

Z �

0

y0 d�(x): (7)
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From (7) we have y0(x) = K
R �
0 G(x; �; �0) d� (for some constant K). Also from

(7) we see that
R �
0 y0 d�(x) 6� 0 (otherwise we have y0 � 0 on [0; �]).

Integrating (7) with respect to the function � we haveZ �

0

y0 d�(x) =

Z �

0

Z �

0

G(x; �; �0) d� d�(x)

Z �

0

y0 d�(x): (8)

From (8), knowing that
R �
0 y0 d� 6= 0, we get

1�
Z �

0

Z �

0

G(x; �; �0) d� d�(x) = 0

and (because of �(�0) 6= 0 and (4)) �1(�0) = 0.

Let now �0 be a root of the function �1. Then, from 2�, we have �(�0) 6= 0.
Let us examine the function

y0(x) =

Z �

0

G(x; �; �0) d�: (9)

As �1(�0) = 0 we have

1�
Z �

0

Z �

0

G(x; �; �0) d� d�(x) = 0: (10)

From (9) we get (using characteristics of the Green's function)

�y000 + q(x)y0 = �0y0 + 1; y0(0) = y0(�) = 0: (11)

Integrating (9) with respect to the function � (and knowing (10)) we getZ �

0

y0 d�(x) = 1: (12)

From (11) and (12) we conclude that �0 is an eigenvalue and y0 an eigenfunction
of the boundary problem (3).

Lemma is proved.

The operator L0 is selfadjoint, so from (L0 � �)� = L0 � �� we get (see [4])

G(x; �; ��) = G(�; x; �) (13)

if � 2 �(L0). Let us denote by G0(x; �) the Green's function of the operator L0,
i.e. G0(x; �) = G(x; �; 0). From 3� we get �(0) 6= 0 and �1(0) 6= 0.

Solving the equation

�y00 + q(x)y �
Z �

0

y d�(x) = f(x); y(0) = y(�) = 0

we get

y(x) = (L�1f)(x) =

Z �

0

G0(x; �)f(�) d� +

Z �

0

G0(x; �) d�
R
�

0

R
�

0
G0(x;�)f(�) d� d�(x)

1�
R
�

0

R
�

0
G0(x;�) d� d�(x)

:

(14)
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Now, we put

c = 1�
Z �

0

Z �

0

G0(x; �) d� d�(x); '(�) =
1

�c

Z �

0

G0(�; x) d�(x):

So (14) becomes

L�1f(x) =

Z �

0

G0(x; �)f(�) d� + (f; ')

Z �

0

G0(x; �) d�; (15)

where (�; �) is the scalar product in L2(0; �). As L�1
0 f(x) =

R �
0 G0(x; �)f(�) d�,

from (15) we get

L�1f = L�1
0 f + (f; ')L�1

0 1: (16)

Let us now de�ne linear operators A and A0 by

Af(x) =

Z �

0

G0(x; �)f(�) d� + (f; ')

Z �

0

G0(x; �) d� (A = L�1);

A0f(x) =

Z �

0

G0(x; �)f(�) d� (A0 = L�1
0 ):

(17)

From (15), (16) and (17) we get

A = A0 + (�; ')A01: (18)

We de�ne an operator S : L2(0; �)! L2(0; �) by Sf(x) = (f; ') � 1. Then we have
(from (18))

A = A0(I + S): (19)

The operators A, A0, S act on L2(0; �). The operator A has the eigenvalues that
are reciprocal to the eigenvalues of the operator L; therefore

�(A) =

�
1

�n
: �1(�n) = 0

�
[ f0g

(because A 2 S1, S1 { the set of compact operators) and the eigenvectors are
equal to the eigenfunctions of the operator L. Similarly, the operator A0 has the
eigenvalues that are reciprocal to the eigenvalues of L0 and the eigenvectors are
equal to the eigenfunctions of the operator L0.

Since q is a real, continuous function on [0; �], the eigenvalues of the operator
L0 have the following asymptotics

�n = n2 +O(1):

From this we see that the asymptotics of eigenvalues of the operator A0 ( = A�
0) is

��1
n = n�2(1 +O(n�2))

and so we conclude that A0 2 S1 (nuclear operator).
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As yn(x) =
R �
0 G(x; �; �n) d� are eigenfunctions of the operator L correspond-

ing to the eigenvalues f�ng, they are the eigenvectors of the operator A correspond-
ing to the eigenvalues f��1

n g.
Theorem 1. If the conditions 1�, 2� and 3� are satis�ed, then the system of

eigenfunctions of the boundary problem (3) is complete and minimal in L2(0; �).

Proof. Because of the previous results it is enough to prove that the system of
eigenvectors of the operator A is complete in L2(0; �).

Since the operator S is compact (its rank is one) and the operator A0 is selfad-
joint and nuclear, by the Keldysh's theorem (see [5]), for proving that our system
is complete it is enough to prove that KerA = f0g.

As Af = 0 then, from (19), we have

A0(I + S)f = 0: (20)

As the operator A0 is 1{1 (because the operator L0 is 1{1), we get (I + S)f = 0
i.e.

f + (f; ')1 = 0: (21)

From this we get
(f; ') � (1 + (1; ')) = 0: (22)

It is easy to check that 1 + (1; ') 6= 0 (if 3� is satis�ed). Then, from (22), we get
(f; ') = 0 and so, from (21), we conclude that f = 0.

That proves the completeness of the system fyn(x)g11 .

For the proof of minimality, it is enough to construct a system biorthogonal
to the system fyng11 .

Since Ayn = ��1
n yn and all eigenvalues are simple, if one denotes by zn(x) the

eigenvectors of the adjoint operator A� corresponding to the eigenvalues (�n)
�1,

then A�zn = (�n)
�1zn (all eigenvalues (�n)

�1 are simple). It is easy to check that

(zn; yn) 6= 0; n 2 N ; (zn; ym) = 0; m 6= n:

Because of this, we will suppose that the system fzng11 is chosen in such a way
that (yn; zm) = �nm. This system fzng11 is biorthogonal to the system fyng11 .
That proves the minimality.

Since the operatorA is compact, with eigenvalues that are simple, (I��A)�1 is
a meromorphic operator function with simple poles in points �n (see [5]). Moreover,
the principal part of the Laurent expansion in the neighborhood of the point � = �n
is ��n (�;zn)yn

���n
, i.e.

(I � �A)�1 = ��n (�; zn)yn
�� �n

+G1(�); (23)

where the function G1 is holomorphic in the neighborhood of the point � = �n.

As Ayn = ��1
n yn, from (23) we get

Res
�=�n

A(I � �A)�1 = �(�; zn)yn: (24)
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As before, applying the Green's function to the equation

�y00 + q(x)y � �y �
Z �

0

y d�(x) = f; y(0) = y(�) = 0

we get

(L��)�1f =

Z �

0

G(x; �; �)f(�) d�+

Z �

0

G(x; �; �) d�
R
�

0

R
�

0
G(x;�;�)f(�) d� d�(x)

1�
R
�

0

R
�

0
G(x;�;�) d� d�(x)

: (25)

We also note that

(L� �)�1f = A(I � �A)�1f (f 2 C2[0; �]): (26)

Now, from (25) and (26), we have (for f 2 C2[0; �])

A(I � �A)�1f =

Z �

0

G(x; �; �)f(�) d� +

Z �

0

G(x; �; �) d�
R
�

0

R
�

0
G(x;�;�)f(�) d� d�(x)

1�
R
�

0

R
�

0
G(x;�;�) d� d�(x)

:

(27)

There is a sequence of circles �k (whose centers are in the point � = 0 and
radii Rk ! +1 (k !1)) so that, on �k, we have

jG(x; �; �)j 6 Mp
j�kj

=
Mp
Rk

; (28)

where the constant M does not depend on k and x; � 2 [0; �] (see [4]). Let us
examine the integral

1

2�i

Z
�k

A(I � �A)�1f

�
d�;

where f is a �xed, continuous function (on [0; �]). By the Cauchy's residue theorem
we get

1

2�i

Z
�k

A(I � �A)�1f

�
d� = Res

�=0

A(I � �A)�1f

�
+

X
j�nj<Rk

Res
�=�n

A(I � �A)�1f

�
:

(29)

As Res�=0
A(I��A)�1f

�
= Af and (because of (24))

Res
�=�n

A(I � �A)�1f

�
= � 1

�n
(f; zn)yn;

we have (from (29))

1

2�i

Z
�k

A(I � �A)�1f

�
d� = Af �

X
j�nj<Rk

1

�n
(f; zn)yn: (30)

This can be written as

1

2�i

Z
�k

A(I � �A)�1f

�
d� = Af �

kX
�=0

� X
R�6j�nj<R�+1

1

�n
(f; zn)yn

�
; (31)

where we take R0 = 0.
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From (31) we get
����Af(x)�

kX
�=0

� X
R�6j�nj<R�+1

1

�n
(f; zn)yn(x)

����� 6 max
�2�k
x2[0;�]

jA(I � �A)�1f j: (32)

From (27) and (28) we get jA(I � �A)�1f j 6 C=
p
Rk, where C is a constant that

does not depend on k and x 2 [0; �]. From this and (32) we have

Af �
kX

�=0

� X
R�6j�nj<R�+1

1

�n
(f; zn)yn

�
� 0

when k !1, i.e.

Af(x) =

1X
�=0

� X
R�6j�nj<R�+1

1

�n
(f; zn)yn

�
: (33)

We will put Af = g. Since f 2 C[0; �], for the function g we know that
g 2 C2[0; �], g(0) = g(�) = 0 and

�g00 + q(x)g �
Z �

0

g d�(x) = f:

Now, from (33) we get

g(x) =

1X
�=0

� X
R�6j�nj<R�+1

(f;A�zn)yn(x)

�
=

1X
�=0

� X
R�6j�nj<R�+1

(Af; zn)yn(x)

�

or

g(x) =

1X
�=0

� X
R�6j�nj<R�+1

(g; zn)yn(x)

�
: (34)

All this can be formulated as a theorem:

Theorem 2. If the conditions 1�, 2� and 3� are satis�ed and if a function
g 2 C2[0; �] and g(0) = g(�) = 0, then it can be expanded into the uniformly
convergent series (34) with respect to a system of eigenfunctions of the boundary
value problem (3).
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