AN INEQUALITY RELATED TO THE UNIFORM CONVEXITY IN BANACH SPACES

Miroslav Pavlović

Abstract. We prove an inequality that implies that a 2-concave and *p*-convex Banach lattice is "more" uniformly convex than L^p .

1. Introduction

In this note we prove the following

THEOREM. Let X be a 2-concave Banach lattice with 2-concavity constant equal to one, and let $1 \leq p \leq 2$. Then

$$\|(|x+y|^{p}+|x-y|^{p})^{1/p}\| \ge \left\{(\|x\|+\|y\|)^{p}+\left\|\|x\|-\|y\|\right\|^{p}\right\}^{1/p},\tag{1}$$

for all $x, y \in X$. In particular, inequality (1) holds in an arbitrary L^q space with $1 \leq q \leq 2$.

For the definition of the expression $(|u|^p + |v|^p)^{1/p}$ and other notions concerning abstract Banach lattices we refer to [3], Ch. 1 (especially Theorem 1.d.1). In the case where $X = L^p$ (1 < p < 2) inequality (1) becomes

$$\|x+y\|^{p} + \|x-y\|^{p} \ge (\|x\|+\|y\|)^{p} + \|\|x\|-\|y\||^{p},$$
(2)

which was used by Hanner [2] to calculate the precise value of the modulus of convexity of L^p . Moreover, it follows from [4] that the validity of (2) in some normed spaces X implies that X is "more" uniformly convex than L^p (where L^p is at least two-dimensional). An immediate consequence of Theorem is that (1) holds in a large class (denoted by $\Delta(p, 2)$; see Section 2) containing, for example, L^q for $p \leq q \leq 2$ as well as certain Orlicz and mixed normed Lebesgue spaces. Note that, in [4], the validity of (2) in L^q ($p \leq q \leq 2$) was deduced from the case q = p by using the fact that L^q can be embedded into $L^p(0, 1)$ isometrically (see [3], pp. 181–182). The proof in the present note is quite elementary and lies on the fact that (for $1 \leq p \leq 2$) the function

$$F_p(\xi,\eta) := \left\{ (\xi^{1/2} + \eta^{1/2})^p + |\xi^{1/2} - \eta^{1/2}|^p \right\}^{2/p} \qquad (\xi \ge 0, \ \eta \ge 0)$$
(3)

is convex. Before proving the result we mention a generalization of F_p that could be of some independent interest. Let r_j (j = 0, 1, 2, ...) denote the Rademacher functions,

$$r_i(t) = \operatorname{sign}(\sin(2^j \pi t)) \quad (t \text{ real}).$$

Define the functions Φ_p on the positive cone l^1_+ of the sequence space l^1 by

$$\Phi_p(\xi) = \left\{ \int_0^1 \left| \sum_{j=0}^\infty r_j(t) \xi_j^{1/2} \right|^p dt \right\}^{2/p} \qquad (\xi = (\xi_j)_0^\infty \ge 0)$$

That the definition is correct follows from the well known fact that if $(a_j)_0^{\infty} \in l^2$, then the series $\sum a_j r_j(t)$ converges almost everywhere, and from Khintchine's inequality [3], Theorem 2.b.3, which says that

$$A_p \|\xi\|_{l^1} \leqslant \Phi_p(\xi) \leqslant B_p \|\xi\|_{l^1} \qquad (A_p, B_p = \text{const} > 0).$$

Starting from the observation that $\Phi(\xi_1, \xi_2, 0, 0, ...) = \text{const } F_p(\xi_1, \xi_2)$ we conjecture that Φ_p is a convex function on l^1_+ (for $1 \leq p \leq 2$). (We shall also prove that if p > 2, then F_p is concave, and we conjecture that Φ_p is concave if p > 2).

This would lead to the inequality

$$\|\Phi_p(x_1, x_2, \dots)\| \ge \Phi_p(\|x_1\|, \|x_2\|, \dots),$$

where x_1, x_2, \ldots are elements of a Banach lattice whose 2-concavity constant is eval to one. Further remarks are at the end of the paper.

2. Definitions and examples

We denote by $\Delta(p,q)$, where $1 \leq p \leq q \leq +\infty$, the class of (real) Banach lattices X such that

$$\|(|u|^{p} + |v|^{p})^{1/p}\| \leq (\|u\|^{p} + \|v\|^{p})^{1/p}$$
(4)

 and

$$\|(|u|^{q} + |v|^{q})^{1/q}\| \ge (\|u\|^{q} + \|v\|^{q})^{1/q}$$
(5)

for all $u, v \in X$. In other words, X is in $\Delta(p, q)$ if it is p-convex and q-concave and its p-convexity and q-concavity constants are equal to one. It is clear that $\Delta(1, \infty)$ is just the class of all Banach lattices. And by [3], Proposition 1.d.5, $\Delta(p, q)$ is contained in $\Delta(r, s)$ for $r \leq p \leq q \leq s$. In particular, $L^q \in \Delta(r, s)$ if $r \leq q \leq s$, a fact which can easily be verified by direct calculations.

It was proved by Figiel [1] (see also [3], pp. 80–81) that if $X \in \Delta(p,q)$ with p > 1 and $q < +\infty$, then X is uniformly convex in the sense that

$$\delta_X(\varepsilon) = \inf\left\{1 - \left\|\frac{x+y}{2}\right\| : \|x-y\| = \varepsilon, \|x\| = \|y\| = 1\right\} > 0$$

for $\varepsilon > 0$. The function δ_X is called the modulus of convexity of X. Let δ_p denote the modulus of convexity of L^p , $\dim(L^p) \ge 2$. (It follows from [2] that δ_p is

independent of a particular choice of L^{p} .) As noted in Introduction, the following fact follows immediately from (1) and (4).

COROLLARY 1. If $X \in \Delta(p,2)$ (in particular, $X = L^q$ for $2 \ge q \ge p$), then inequality (2) holds.

As noted in Introduction, this implies the following

COROLLARY 2. If $X \in \Delta(p, 2)$, then $\delta_X(\varepsilon) \ge \delta_p(\varepsilon)$ ($\varepsilon > 0$).

Mixed normed spaces. For technical reasons we define only sequence spaces. Let $1 \leq r, s \leq 2$. The space $X = l^{r,s}$ consists of those scalar sequences $x = \{x_{j,k}\}_{j,k=0}^{\infty}$ such that

$$||x|| = \left\{ \sum_{j=0}^{\infty} \left[\sum_{k=0}^{\infty} |x_{j,k}|^s \right]^{r/s} \right\}^{1/r} < \infty.$$

It is not hard to show that $l^{r,s} \in \Delta(p,q)$, where $p = \min(r,s)$ and $q = \max(r,s)$. Hence, by Corollary 2, $\delta_X(\varepsilon) \ge \delta_p(\varepsilon)$. Since $l^{r,s}$ contains an isometric copy of l^p , we conclude that $\delta_X = \delta_p$.

Orlicz spaces. Let M be a convex, strictly increasing function on the interval $[0, \infty)$ with M(0) = 0. The space l^M consists of the scalar sequences $x = \{x_j\}_0^\infty$ for which

$$||x|| = ||x||_M = \inf\left\{\lambda > 0: \sum_{j=0}^{\infty} M\left(\frac{|x_j|}{\lambda}\right) \leqslant 1\right\} < \infty.$$

One can prove that $l^M \in \Delta(p,q)$ provided that the function $M(t^{1/p})$ is convex and the function $M(t^{1/q})$ is concave. Therefore, inequality (1) holds in l^M if the function $M(t^{1/q})$ is concave. Estimates for the moduli of convexity of Orlicz spaces can be found in [1].

3. Proofs

Our proof is based on the following lemma.

LEMMA. Let F_p be defined by (3). Then, if $1 \leq p \leq 2$, the function F_p is convex, and if p > 2, it is concave. In all the cases $F_p(\xi, \eta)$ increases with ξ and η .

Before proving the lemma we use it to prove the theorem. Let $x, y \in X$, where $X \in \Delta(1, 2)$, and $1 \leq p \leq 2$. Then

$$(|x + y|^{p} + |x - y|^{p})^{1/p} = ((|x| + |y|)^{p} + ||x| - |y||^{p})^{1/p}$$

(this is deduced from the case where x, y are real scalars, by using Theorem 1.d.1 of [3]) and we may assume that $x \ge 0, y \ge 0$. Assuming this we have

$$(|x+y|^p + |x-y|^p)^{1/p} = F_p(x^2, y^2)^{1/2}$$

(see [3], Theorem 1.d.1). Since F_p is convex, homogeneous and "increasing", there is a set $A \subset \{ (\alpha, \beta) : \alpha \ge 0, \beta \ge 0 \}$ such that

$$F_p(\xi, \eta) = \sup\{ \alpha \xi + \beta \eta : (\alpha, \beta) \in A \},\$$

whence $F_p(x^2, y^2)^{1/2} \ge (\alpha x^2 + \beta y^2)^{1/2}$, $(\alpha, \beta) \in A$, and hence, by (5) with q = 2,

$$||F_p(x^2, y^2)^{1/2}|| \ge (\alpha ||x||^2 + \beta ||y||^2)^{1/2}$$

for all $(\alpha, \beta) \in A$. Taking the supremum over $(\alpha, \beta) \in A$ we obtain

$$||F_p(x^2, y^2)^{1/2}|| \ge F_p(||x||^2, ||y||^2)^{1/2},$$

which concludes the proof. \blacksquare

Proof of Lemma. Let 1 . (The case <math>p = 1 is similar.) Since $F_p(\lambda\xi,\lambda\eta) = \lambda F_p(\xi,\eta)$ for $\lambda \ge 0$, the convexity of F_p will follow from the convexity of the function $f(t) = F_p(1,t), t > 0$. To prove that f is convex observe first that f(t) = tf(1/t), whence $f''(t) = t^{-3}f''(1/t)$ for $t \ne 1$. And since f'(1) exists, it remains to prove that $f''(t) \ge 0$ for 0 < t < 1. To prove this write f as

$$f(t) = g(t^{1/2})^{2/p}, \quad g(t) = (1+t)^p + (1-t)^p \qquad (0 < t < 1).$$

We have

$$2pf''(t) = t^{-2/3}g(t^{1/2})^{(2/p)-2} \left[\left(\frac{2}{p} - 1\right)g'(t^{1/2})^2 t^{1/2} + g(t^{1/2})g''(t^{1/2})t^{1/2} - g(t^{1/2})g'(t^{1/2}) \right].$$

Hence, f''(t) > 0 if and only if A(t) > 0, where

$$A(t) = \frac{1}{p} \left[\left(\frac{2}{p} - 1 \right) g'(t)^2 t + g(t)g''(t)t - g(t)g'(t) \right]$$

= 4(p-1)t(1-t^2)^{p-2} - [(1+t)^{2p-2} - (1-t)^{2p-2}]

If $3/2 \leq p \leq 2$, the function $\varphi(t) = (1+t)^{2p-2} - (1-t)^{2p-2}$ is concave and therefore

$$\varphi(t) \leqslant \varphi(0) + \varphi'(0)t = 4(p-1)t \leqslant 4(p-1)t(1-t^2)^{p-2}$$

which implies A(t) > 0. If 1 , then

$$A'(t) = 4(p-1)(1-t^2)^{p-3}[1+(3-2p)t^2] - 2(p-1)[(1+t)^{2p-3} + (1-t)^{2p-3}].$$

Since $0 \leq 3 - 2p \leq 1$, the function $t \mapsto t^{3-2p}$ is concave, hence

$$\frac{(1+t)^{2p-3} + (1-t)^{2p-3}}{2} = \frac{1}{2} \left[\left(\frac{1}{1+t} \right)^{3-2p} + \left(\frac{1}{1-t} \right)^{3-2p} \right] \le (1-t^2)^{2p-3}.$$

Hence

$$A'(t) \ge 4(p-1)(1-t^2)^{2p-3}[1+(3-2p)t^2-1] \ge 0.$$

This implies $A(t) \ge A(0) = 0$, which concludes the proof in the case 1 . If <math>p > 2, proving that F_p is concave reduces to proving that $A(t) \le 0$ (0 < t < 1). In this case the function φ is convex which implies that

$$\varphi(t) \ge \varphi(0) + \varphi'(0)t = 4(p-1)t \ge 4(p-1)t(1-t^2)^{p-2},$$

and this completes the proof. \blacksquare

Remark. The discussion of the case $1 can be made simplier. Namely, it is easy to see that the function <math>g(t^{1/2})$ is convex (0 < t < 1), which implies that $f(t) = g(t^{1/2})^{2/p}$ is convex (since 2/p > 1). This trick can also be used if $2 , because then the function <math>g(t^{1/2})$ is concave. However, if p > 3, $g(t^{1/2})$ is convex.

4. Dual results

Using the case p > 2 of Lemma one proves that if $x, y \in X$, where $X \in \Delta(2, \infty)$ (which means that X satisfies (4) with p = 2), then there holds the reverse of (1). A consequence is that the reverse of (2) is valid in every lattice of class $\Delta(2, p)$ (p > 2) and, in particular, in L^q for $2 \leq q \leq p$. (The latter was proved in [4] by using the Riesz-Thorin interpolation theorem.) Combining this with Hanner's results we see that if $X \in \Delta(2, p)$, then X is "more" uniformly convex than L^p (dimension ≥ 2) in the sense that $\rho_X(\tau) \leq \rho_p(\tau)$, where

$$\rho_X(\tau) = \sup\left\{\frac{\|x + \tau y\| + \|x - \tau y\|}{2} - 1 : \|x\| = 1, \|y\| = 1\right\},\$$

and $\rho_p = \rho_{L^p}$. The function ρ_X is called the modulus of smoothness of X (see [3], Ch. 1, for further information).

REFERENCES

- [1] T. Figiel, On the moduli of convexity and smoothness, Studia math. 56 (1976), 121-155.
- [2] O. Hanner, On the uniform convexity of L^p and l^p, Arkiv f. Math 3:3 (1956), 239-244.
- [3] J. Lindenstaruss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Ergebnisse 97, Berlin-Heidelberg-New York, Springer-Verlag 1979.
- [4] M. Pavlović, Some inequalities in L^p spaces II, Mat. vesnik 10(23)(38) (1986), 321-326.

(received 05.03.1993)

Matematički fakultet, Studentski trg 16, 11000 Beograd, YUGOSLAVIA