AN INEQUALITY RELATED TO THE UNIFORM CONVEXITY IN BANACH SPACES

Miroslav Pavlovic

Abstract. We prove an inequality that implies that a 2-concave and p-convex Banach lattice is more uniformly convex than L^x .

1. Introduction

In this note we prove the following

THEOREM. Let X be a 2-concave Banach lattice with 2-concavity constant equal to one, and let $1 \leqslant p \leqslant 2$. Then

$$
\|(|x+y|^p + |x-y|^p)^{1/p}\| \geq \left\{ (\|x\| + \|y\|)^p + \left| \|x\| - \|y\| \right|^p \right\}^{1/p},\tag{1}
$$

for all $x, y \in X$. In particular, inequality (1) holds in an arbitrary L^q space with $1 \leqslant q \leqslant 2$.

For the definition of the expression $(|u|^p+|v|^p)^{1/p}$ and other notions concerning abstract Banach lattices we refer to [3], Ch. 1 (especially Theorem 1.d.1). In the case where $\Lambda = L^r$ (1 $\leq p \leq 2$) inequality (1) becomes

$$
||x + y||p + ||x - y||p \ge (||x|| + ||y||)p + ||x|| - ||y||p,
$$
\n(2)

which was used by Hanner [2] to calculate the precise value of the modulus of convexity of L^p . Moreover, it follows from $|4|$ that the validity of (2) in some normed spaces Λ implies that Λ is more unhormly convex than L^p (where L^p is at least two-dimensional). An immediate consequence of Theorem is that (1) holds in a large class (denoted by $\Delta(p, 2)$; see Section 2) containing, for example, L^q for $p \leq q \leq 2$ as well as certain Orlicz and mixed normed Lebesgue spaces. Note that, in [4], the validity of (2) in L^q ($p \leq q \leq 2$) was deduced from the case $q = p$ by using the fact that L^2 can be embedded into $L^p(0,1)$ isometrically (see [3], pp. $181–182$). The proof in the present note is quite elementary and lies on the fact that (for $1 \leqslant p \leqslant 2$) the function

$$
F_p(\xi, \eta) := \left\{ (\xi^{1/2} + \eta^{1/2})^p + |\xi^{1/2} - \eta^{1/2}|^p \right\}^{2/p} \qquad (\xi \geq 0, \ \eta \geq 0) \tag{3}
$$

is convex. Before proving the result we mention a generalization of F_p that could be of some independent interest. Let r_j $(j = 0, 1, 2, ...)$ denote the Rademacher functions,

$$
r_j(t) = \text{sign}(\sin(2^j \pi t)) \qquad (t \text{ real}).
$$

Denne the functions Ψ_p on the positive cone ι^+_\pm of the sequence space ι^- by

$$
\Phi_p(\xi) = \left\{ \int_0^1 \left| \sum_{j=0}^\infty r_j(t) \xi_j^{1/2} \right|^p dt \right\}^{2/p} \qquad (\xi = (\xi_j)_0^\infty \ge 0).
$$

That the definition is correct follows from the well known fact that if $(a_j)_0^{\infty} \in$ l^2 , then the series $\sum a_i r_i(t)$ converges almost everywhere, and from Khintchine's inequality [3], Theorem 2.b.3, which says that

$$
A_p \|\xi\|_{l^1} \leq \Phi_p(\xi) \leq B_p \|\xi\|_{l^1} \qquad (A_p, B_p = \text{const} > 0).
$$

Starting from the observation that $\Phi(\xi_1, \xi_2, 0, 0, ...)$ = const $F_p(\xi_1, \xi_2)$ we conjecture that Ψ_p is a convex function on ι_+^+ (for $1 \leqslant p \leqslant 2$). (We shall also prove that if $p > 2$, then F_p is concave, and we conjecture that Φ_p is concave if $p > 2$).

This would lead to the inequality

$$
\|\Phi_p(x_1, x_2, \dots)\| \geq \Phi_p(\|x_1\|, \|x_2\|, \dots),
$$

where x_1, x_2, \ldots are elements of a Banach lattice whose 2-concavity constant is eual to one. Further remarks are at the end of the paper.

2. Definitions and examples

We denote by $\Delta(p, q)$, where $1 \leq p \leq q \leq +\infty$, the class of (real) Banach lattices X such that

$$
\|(|u|^p + |v|^p)^{1/p}\| \le (\|u\|^p + \|v\|^p)^{1/p} \tag{4}
$$

and

$$
\|(|u|^q + |v|^q)^{1/q}\| \geq (||u||^q + ||v||^q)^{1/q} \tag{5}
$$

for all $u, v \in X$. In other words, X is in $\Delta(p, q)$ if it is p-convex and q-concave and its p-convexity and q-concavity constants are equal to one. It is clear that $\Delta(1,\infty)$ is just the class of all Banach lattices. And by [3], Proposition 1.d.5, $\Delta(p,q)$ is contained in $\Delta(r, s)$ for $r \leq p \leq q \leq s$. In particular, $L^q \in \Delta(r, s)$ if $r \leq q \leq s$, a fact which can easily be verified by direct calculations.

It was proved by Figiel [1] (see also [3], pp. 80-81) that if $X \in \Delta(p,q)$ with $p > 1$ and $q < +\infty$, then X is uniformly convex in the sense that

$$
\delta_X(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : \|x - y\| = \varepsilon, \|x\| = \|y\| = 1 \right\} > 0
$$

for $\varepsilon > 0$. The function δ_X is called the modulus of convexity of X. Let δ_p denote the modulus of convexity of L^p , $\dim(L^p) \geqslant 2$. (It follows from [2] that v_p is

independent of a particular choice of L^p .) As noted in Introduction, the following fact follows immediately from (1) and (4).

COROLLARY 1. If $X \in \Delta(p, 2)$ (in particular, $X = L^q$ for $2 \geqslant q \geqslant p$), then inequality (2) holds.

As noted in Introduction, this implies the following

COROLLARY 2. If $X \in \Delta(p, 2)$, then $\delta_X(\varepsilon) \geq \delta_p(\varepsilon)$ ($\varepsilon > 0$).

Mixed normed spaces. For technical reasons we define only sequence spaces. Let $1 \leqslant r, s \leqslant 2$. The space $X = l^{r,s}$ consists of those scalar sequences $x =$ ${x_{j,k}}\}_{i,k=0}^{\infty}$ such that

$$
||x|| = \left\{ \sum_{j=0}^{\infty} \left[\sum_{k=0}^{\infty} |x_{j,k}|^s \right]^{r/s} \right\}^{1/r} < \infty.
$$

It is not hard to show that $l^{r,s} \in \Delta(p,q)$, where $p = \min(r, s)$ and $q = \max(r, s)$. Hence, by Corollary 2, $\sigma_X(\varepsilon) \geqslant \sigma_n(\varepsilon)$. Since ι contains an isometric copy of ι , we conclude that $\delta_X = \delta_p$.

Orlicz spaces. Let M be a convex, strictly increasing function on the interval $[0, \infty)$ with $M(0) = 0$. The space l^M consists of the scalar sequnces $x = \{x_i\}_0^{\infty}$ for which $\mathbf{r} = \mathbf{r}$

$$
||x|| = ||x||_M = \inf \left\{ \lambda > 0 : \sum_{j=0}^{\infty} M\left(\frac{|x_j|}{\lambda}\right) \leq 1 \right\} < \infty.
$$

One can prove that $l^m \in \Delta(p,q)$ provided that the function $M(t^{1/p})$ is convex and the function $M(U^{\gamma_2})$ is concave. Therefore, inequality (1) holds in U^{γ} if the function $M(t^{1/q})$ is concave. Estimates for the moduli of convexity of Orlicz spaces can be found in [1].

3. Proofs

Our proof is based on the following lemma.

LEMMA. Let F_p be defined by (3). Then, if $1 \leqslant p \leqslant 2$, the function F_p is convex, and if $p > 2$, it is concave. In all the cases $F_p(\xi, \eta)$ increases with ξ and η .

Before proving the lemma we use it to prove the theorem. Let $x, y \in X$, where $X \in \Delta(1, 2)$, and $1 \leqslant p \leqslant 2$. Then

$$
(|x + y|^p + |x - y|^p)^{1/p} = ((|x| + |y|)^p + |x| - |y||^p)^{1/p}
$$

(this is deduced from the case where x, y are real scalars, by using Theorem 1.d.1 of [3]) and we may assume that $x \ge 0, y \ge 0$. Assuming this we have

$$
(|x + y|^p + |x - y|^p)^{1/p} = F_p(x^2, y^2)^{1/2}
$$

(see [3], Theorem 1.d.1). Since F_p is convex, homogeneous and "increasing", there is a set $A \subset \{ (\alpha, \beta) : \alpha \geq 0, \beta \geq 0 \}$ such that

$$
F_p(\xi, \eta) = \sup \{ \alpha \xi + \beta \eta : (\alpha, \beta) \in A \},
$$

whence $F_p(x^2, y^2)^{1/2} \geqslant (\alpha x^2 + \beta y^2)^{1/2}$, $(\alpha, \beta) \in A$, and hence, by (5) with $q = 2$,

$$
||F_p(x^2, y^2)^{1/2}|| \geq (\alpha ||x||^2 + \beta ||y||^2)^{1/2}
$$

for all $(\alpha, \beta) \in A$. Taking the supremum over $(\alpha, \beta) \in A$ we obtain

$$
||F_p(x^2, y^2)^{1/2}|| \geq F_p(||x||^2, ||y||^2)^{1/2},
$$

which concludes the proof.

Proof of Lemma. Let $1 < p \le 2$. (The case $p = 1$ is similar.) Since $F_p(\lambda \xi, \lambda \eta) = \lambda F_p(\xi, \eta)$ for $\lambda \geq 0$, the convexity of F_p will follow from the convexity of the function $f(t) = F_p(1, t), t > 0$. To prove that f is convex observe first that $f(t) = tf(1/t)$, whence $f''(t) = t^{-3} f''(1/t)$ for $t \neq 1$. And since $f'(1)$ exists, it remains to prove that $f''(t) \geq 0$ for $0 < t < 1$. To prove this write f as

$$
f(t) = g(t^{1/2})^{2/p}, \quad g(t) = (1+t)^p + (1-t)^p \qquad (0 < t < 1).
$$

We have

$$
2pf''(t) = t^{-2/3}g(t^{1/2})^{(2/p)-2}\left[\left(\frac{2}{p}-1\right)g'(t^{1/2})^{2}t^{1/2} + g(t^{1/2})g''(t^{1/2})t^{1/2} - g(t^{1/2})g'(t^{1/2})\right].
$$

Hence, $f''(t) > 0$ if and only if $A(t) > 0$, where

$$
A(t) = \frac{1}{p} \left[\left(\frac{2}{p} - 1 \right) g'(t)^2 t + g(t) g''(t) t - g(t) g'(t) \right]
$$

= 4(p - 1)t(1 - t²)^{p-2} - [(1 + t)^{2p-2} - (1 - t)^{2p-2}].

If $3/2 \leqslant p \leqslant 2$, the function $\varphi(t) = (1+t)^{2p-2} - (1-t)^{2p-2}$ is concave and therefore

$$
\varphi(t) \leq \varphi(0) + \varphi'(0)t = 4(p-1)t \leq 4(p-1)t(1-t^2)^{p-2},
$$

which implies $A(t) > 0$. If $1 < p \leq 3/2$, then

$$
A'(t) = 4(p-1)(1-t^2)^{p-3}[1+(3-2p)t^2] - 2(p-1)[(1+t)^{2p-3}+(1-t)^{2p-3}].
$$

Since $0 \leqslant 3 - 2p \leqslant 1$, the function $t \mapsto t^2 t^2$ is concave, hence

$$
\frac{(1+t)^{2p-3}+(1-t)^{2p-3}}{2} = \frac{1}{2} \left[\left(\frac{1}{1+t} \right)^{3-2p} + \left(\frac{1}{1-t} \right)^{3-2p} \right] \leq (1-t^2)^{2p-3}.
$$

Hence

$$
A'(t) \geqslant 4(p-1)(1-t^2)^{2p-3}[1+(3-2p)t^2-1] \geqslant 0.
$$

This implies $A(t) \geq A(0) = 0$, which concludes the proof in the case $1 < p \leq 2$. If $p > 2$, proving that F_p is concave reduces to proving that $A(t) \leq 0 \ (0 < t < 1)$. In this case the function φ is convex which implies that

$$
\varphi(t) \geq \varphi(0) + \varphi'(0)t = 4(p-1)t \geq 4(p-1)t(1-t^2)^{p-2},
$$

and this completes the proof. \blacksquare

Remark. The discussion of the case $1 < p \leq 2$ can be made simplier. Namely, it is easy to see that the function $q(t+1)$ is convex ($0 \leq t \leq 1$), which implies that $f(t) = g(t^{-\gamma})^{-\gamma}$ is convex (since $2/p \ge 1$). This trick can also be used if $2 \le p \le 3$, because then the function $q(t+1)$ is concave. However, if $p > 3$, $q(t+2)$ is convex.

4. Dual results

Using the case $p > 2$ of Lemma one proves that if $x, y \in X$, where $X \in \Delta(2, \infty)$ (which means that X satisfies (4) with $p=2$), then there holds the reverse of (1). A consequence is that the reverse of (2) is valid in every lattice of class $\Delta(2, p)$ $(p > 2)$ and, in particular, in L^q for $2 \le q \le p$. (The latter was proved in [4] by using the Riesz-Thorin interpolation theorem.) Combining this with Hanner's results we see that if $X \in \Delta(2, p)$, then X is "more" uniformly convex than L^p (dimension ≥ 2) in the sense that $\rho_X(\tau) \leq \rho_p(\tau)$, where

$$
\rho_X(\tau) = \sup \left\{ \frac{\|x + \tau y\| + \|x - \tau y\|}{2} - 1 : \|x\| = 1, \|y\| = 1 \right\},\
$$

and $\rho_p = \rho_{L^p}$. The function ρ_X is called the modulus of smoothness of X (see [3], Ch. 1, for further information).

- [1] T. Figiel, On the moduli of convexity and smoothness, Studia math. 56 (1976), 121-155.
- $|2|$ O. Hanner, On the uniform convexity of L^p and l^p, Arkiv f. Math 3:3 (1950), 239–244.
- [3] J. Lindenstaruss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Ergebnisse 97, Berlin-Heidelberg-New York, Springer-Verlag 1979.
- $[4]$ M. Pavlovic, Some inequalities in L^e spaces II, Mat. vesnik 10(23)(38)(1980), 321=320.

(received 05.03.1993)

Matematicki fakultet, Studentski trg 16, 11000 Beograd, YUGOSLAVIA