GENERALIZED EIGENVECTOR EXPANSION FOR WEAKLY PERTURBATED DISCRETE OPERATORS

M. Dostanic

Abstract. In this paper we consider the expansion theorem in generalized eigenvectors of the operator $A = L + T$, where L is a discrete, positive selfadioint operator in a separable Hilbert space, and T is a closed operator which is subordinated to L in a certain sense.

Let $\mathcal H$ be a separable Hilbert space over **C** and let L be a discrete, positive selfadjoint operator on H. Vector $x \neq 0$ is a generalized eigenvector (for the eigenvalue λ) if for some $k \geq 1$ $(\lambda - L)^k x = 0$. Denote by $N(\cdot)$ the eigenvalue distribution function of L. Let $\mathcal{D}(L)$ and $\mathcal{D}(T)$ denote the domain of the operators L and T , respectively.

In this paper we consider the expansion theorem for the operator $A = L + T$, where T is a closed operator which is subordinated to L in a certain sense.

In the case when T is a bounded operator, $L = L$ is a discrete operator and $\lambda_{n+1}(L) - \lambda_n(L) \to \infty$ $(n \to \infty)$ the problem was solved in [3].

THEOREM 1. Suppose that T is a closed operator on H, $L = L^*$ is a positive discrete operator, $\mathcal{D}(L) \subset \mathcal{D}(T)$, $A = L + T$,

$$
||Tx|| \leq C||L^{\beta}x||, \quad x \in \mathcal{D}(L), \tag{1}
$$

and numbers and  satisfy one of the fol lowing two conditions: $a_1 \cup b_2 \cup c_3 \cup c_4 \cup c_5 \cup c_7 \cup c_8 \cup c_9 \cup c_9 \cup c_1 \cup c_1 \cup c_1 \cup c_2 \cup c_3 \cup c_4 \cup c_9 \cup c_1 \cup c_1 \cup c_2 \cup c_3 \cup c_4 \cup c_5 \cup c_6 \cup c_7 \cup c_8 \cup c_9 \cup c_9 \cup c_1 \cup c_1 \cup c_2 \cup c_3 \cup c_4 \cup c_5 \cup c_6 \cup c_7 \cup c_8 \cup c_9 \cup c_1 \cup c_2 \cup c_3 \cup c_4 \cup c_5 \cup c_6 \cup c_7 \cup$ $b \leq b \leq 1, \, 0 \leq \alpha \leq 1 - \beta \,$ and $N(t) = C_0 t^{\alpha} (1 + O(t^{-\alpha}))$, $\alpha \leq b \leq 1 \, (t \rightarrow +\infty)$. Then for every $f \in \mathcal{D}(L)$ we have

$$
f = \sum_{k=1}^{\infty} \left(\sum_{s=1}^{n_k} c_{ks} x_{ks} \right), \tag{2}
$$

where x_{ks} are generalized eigenvectors of A and $c_{ks} \in \mathbf{C}$.

Proof. Suppose that $\{e_n\}_{n=1}^{\infty}$ is the system of eigenvectors of L $(Le_n = \lambda_n e_n)$. Since $L = L^*, \{e_n\}_{n=1}^{\infty}$ is an orthonormal basis of H. Then

$$
(L - \lambda)^{-1} = \sum_{n=1}^{\infty} \frac{(\cdot, e_n)e_n}{\lambda_n - \lambda}
$$

62 M. Dostanic

and

$$
T(L - \lambda)^{-1} = \sum_{n=1}^{\infty} \frac{(\cdot, e_n) T e_n}{\lambda_n - \lambda}.
$$
 (3)

From (1) and (3), applying Cauchy's inequality, we conclude that

$$
||T(L-\lambda)^{-1}|| \leq C^{1/2} \left(\sum_{n=1}^{\infty} \frac{\lambda_n^{2\beta}}{|\lambda - \lambda_n|^2}\right)^{1/2}.
$$
 (4)

By the following Lemma, the righthandside of this inequality tends to zero if λ belongs to a certain sequence of circles with radii tending to infinity.

LEMMA. If either of the conditions $a)$ and $b)$ of the Theorem 1 is satisfied, then there exists a sequence of circles $\Gamma_k = \{\lambda : |\lambda| = r_k\}$, $\lim_{k \to \infty} r_k = \infty$, such that

$$
\lim_{k \to \infty} \max_{\lambda \in \Gamma_k} \left(\sum_{\nu=1}^{\infty} \frac{\lambda_{\nu}^{2\beta}}{|\lambda - \lambda_{\nu}|^2} \right) = 0. \tag{5}
$$

Since $\lim_{n\to\infty} \max_{\lambda\in\Gamma_n} ||T(\lambda - L)^{-1}|| = 0$ (follows from (4) and the Lemma), It follows from $(A - A) = (A - L)$ $(I - I(A - L))$ intact the operator A is discrete and

$$
\lim_{k \to \infty} \max_{\lambda \in \Gamma_k} \| (\lambda - A)^{-1} \| = 0. \tag{6}
$$

From (6) and Naymark's theorem [4] we obtain the relation (2), for all $f \in \mathcal{D}(L)$, where x_{ks} , $s = 1, 2, \ldots, n_k$, are the generalized eigenvectors corresponding to eigenvalues lying in the ring $\{\lambda : r_k < |\lambda| < r_{k+1}\}\.$

REMARK. In the case when in each interval I of the fixed length l the number of eigenvalues λ of A with property $\text{Re }\lambda \in I$ is uniformly bounded, the Riesz basis property of the generalized eigenvectors system was proved in [1] (under some aditional conditions).

Proof of the Lemma. Case a). It follows from $N(t) = C_0t$ (1 + $O(1)$) that $\lambda_n = C_0$ ' $n^{1/\alpha}(1 + o(1))$. Let q be a real number such that

$$
0 < \alpha q < C_0^{-1/\alpha} \tag{7}
$$

Denote by S the set of natural numbers n such that $\lambda_{n+1} - \lambda_n \geq qn^{-1}$. Suppose that S is finite, i.e. $S = \{n_1, n_2, \ldots, n_s\}$. Then we have $\lambda_{n+1} - \lambda_n < qn^{1/\alpha - 1}$ for all $n > n_s + 1$ and

$$
\lambda_{N+1} - \lambda_{n_s+1} < q \sum_{\nu=n_s+1}^{N} \nu^{1/\alpha-1} < q \int_{n_s+1}^{N+1} x^{1/\alpha-1} dx = \alpha q \left[(N+1)^{1/\alpha} - (n_s+1)^{1/\alpha} \right],
$$
\ni.e.

$$
\frac{\lambda_{N+1} - \lambda_{n_s+1}}{N^{1/\alpha}} \leqslant \alpha q \frac{(N+1)^{1/\alpha} - (n_s+1)^{1/\alpha}}{N^{1/\alpha}}
$$

for each $N > n_s$. When $N \to \infty$ we obtain $C_0^{-\gamma - \epsilon} \leqslant \alpha q$, i.e. a contradiction with (7) . So, it follows that S is an infinite set.

Let $\Gamma_{\nu} = \{\lambda : |\lambda| = r_{\nu} = \frac{1}{2}(\lambda_{n_{\nu}+1} + \lambda_{n_{\nu}})\}\.$ We will prove now the realtion (5). If $\lambda \in \Gamma_k$, then

$$
\sum_{\nu=1}^{\infty} \frac{\lambda_{\nu}^{2\beta}}{|\lambda - \lambda_{\nu}|^2} \le \sum_{\nu=1}^{\infty} \frac{\lambda_{\nu}^{2\beta}}{(r_k - \lambda_{\nu})^2} \n= \sum_{\nu=1}^{n_k - 1} \frac{\lambda_{\nu}^{2\beta}}{(r_k - \lambda_{\nu})^2} + \sum_{\nu=n_k + 2}^{\infty} \frac{\lambda_{\nu}^{2\beta}}{(r_k - \lambda_{\nu})^2} + \frac{\lambda_{n_k}^{2\beta}}{(r_k - \lambda_{n_k})^2} + \frac{\lambda_{n_k + 1}^{2\beta}}{(r_k - \lambda_{n_k + 1})^2}.
$$

As we have $0 \lt \alpha \lt \frac{1}{2}(1-p)$, by direct computation we get

$$
\lim_{k \to \infty} \left[\frac{\lambda_{n_k}^{2\beta}}{(r_k - \lambda_{n_k})^2} + \frac{\lambda_{n_k+1}^{2\beta}}{(r_k - \lambda_{n_k+1})^2} \right] = 0. \tag{8}
$$

Since the function $\varphi(x) = x^{\beta}/(r_k - x)$ is nondecreasing on [0, r_k), we obtain

$$
\sum_{\nu=1}^{n_k-1} \frac{\lambda_{\nu}^{2\beta}}{(r_k - \lambda_{\nu})^2} \leqslant \text{const} \cdot n_k \frac{\lambda_{n_k}^{2\beta}}{(r_k - \lambda_{n_k})^2} \leqslant \frac{\text{const}}{n_k^{\frac{2}{3} - 3 - \frac{2\beta}{\alpha}}} \to 0 \ (k \to \infty). \tag{9}
$$

Since

$$
\sum_{\nu=n_k+2}^{\infty} \frac{\lambda_{\nu}^{2\beta}}{(r_k-\lambda_{\nu})^2} = \int_{\lambda_{n_k+1}}^{\infty} \frac{t^{2\beta}}{(r_k-t)^2} dN(t)
$$

$$
= \frac{n_k \lambda_{n_k}^{2\beta}}{(r_k-\lambda_{n_k+1})^2} - \int_{\lambda_{n_k+1}}^{\infty} N(t) \left(\frac{t^{2\beta}}{(r_k-t)^2}\right)' dt,
$$

it is enough to prove that

$$
\lim_{k \to \infty} \int_{\lambda_{n_k+1}}^{\infty} t^{\alpha} \left(\frac{t^{2\beta}}{(r_k - t)^2} \right)' dt = 0.
$$
 (10)

 \blacksquare \blacks \int_0^∞ [$(\beta - 1)u - \beta$] $/(u - 1)^3 du$ $(x > 1)$ has the following asymptotical behavior in the neighborhood of $x = 1$: $G(x) \sim \frac{1}{2}(x-1)^{-2}$. Then (10) follows from

$$
\int_{\lambda_{n_k+1}}^{\infty} t^{\alpha} \left(\frac{t^{2\beta}}{(r_k-t)^2} \right)' dt = 2r_k^{\alpha+2\beta-2} G(c_k) \sim \frac{r_k^{\alpha+2\beta}}{(\lambda_{n_k+1}-r_k)^2} \to 0 \ (k \to \infty),
$$

where $c_k = \lambda_{n_k+1}/r_k$ (\rightarrow 1). From (8), (9) and (10) we obtain (5).

Case b). It follows from b) that

$$
\lambda_n = C_0^{-1/\alpha} n^{1/\alpha} (1 + O(n^{-\delta/\alpha})). \tag{11}
$$

Let $\mu_n = C_0^{-1/\alpha} n^{1/\alpha}$ and $\Gamma_n = \{\lambda : |\lambda| = r_n = \frac{1}{2}(\mu_n + \mu_{n+1})\}$. From (11) we get

$$
\sup_{n,\nu} \left| \frac{\lambda_{\nu} - \mu_{\nu}}{r_n - \lambda_{\nu}} \right| < \infty. \tag{12}
$$

If $\lambda \in \Gamma_n$, then from (12) we obtain

$$
\sum_{\nu=1}^{\infty} \frac{\lambda_{\nu}^{2\beta}}{|\lambda - \lambda_{\nu}|^2} \leqslant \text{const} \sum_{\nu=1}^{\infty} \frac{\mu_{\nu}^{2\beta}}{(r_n - \mu_{\nu})^2}.
$$

As in the case a) it can be proved that

$$
\sum_{\nu=1}^{\infty} \frac{\mu_{\nu}^{2\beta}}{(r_n - \mu_{\nu})^2} \to 0 \quad (n \to \infty)
$$

for $0 < \alpha < 1 - \beta$. The Lemma is proved.

Example. Suppose m, n and rare integers, m ρ is σ . The state integers, must be an integer of σ bounded domain in \mathbb{R}^n with sufficiently smooth boundary, L is a formal selfadjoint eliptic differential expression

$$
L = (-1)^{m/2} \sum_{|k|=m} a_k(x) D^k
$$

with smooth coefficients and T is a linear differential expression

$$
T = \sum_{|k| \leqslant r} b_k(x) D^k
$$

with smooth complex functions b_k . Let $A: \mathcal{D}(A) \to L^2(\Omega)$ $(\mathcal{D}(A) = W_2^m \cup W_2^{m/2})$ be a differential operator defined by $A = L + T$. Then we get

THEOREM 2. If $n/m < \frac{2}{3}(1-r/m)$, the for $f \in \mathcal{D}(A)$ the expansion theorem in generalized eigenvectors of the operator A holds.

Proof. The statement of the theorem is obtained from Theorem 1 for = n=m, $\beta = r/m$ (see [2]).

REFERENCES

- [1] В. Г. Долголаптев, О базисности корневых векторов слабо возмущеных операторов, Mat. заметкы, 34, 6 (1983), 867-872
- [2] В. Э. Кацнельсон, О сходимости и суммируемости рядов по корневым векторам некоторых классов несамосопряженных операторов, Канд. дис, Харков 1967

[3] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1966

[4] R. D. Richtmyer, Principles of Advanced Mathematical Physics, Vol. I, Springer-Verlag 1978

(received 21 06 1993)