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DETERMINANTAL REPRESENTATION OF

WEIGHTED MOORE-PENROSE INVERSE

Predrag Stanimirovi�c and Miomir Stankovi�c

Abstract. In this paper we introduce determinantal representation of weighted Moore-
Penrose inverse of a rectangular matrix.

We generalize concept of generalized algebraic complement, introduced by Moore, Arghiri-
ade, Dragomir and Gabriel. This extension is denoted as weighted generalized algebraic comple-
ment.

Moreover, we derive an explicit determinantal representation for the weighted least-squares
minimum norm solution of a linear system and prove that this solution lies in the convex hull of
the solutions to the square subsystems of the original system.

1. Introduction

Let Cn be the n-dimensional complex vector space, Cm�n the set of m � n

complex matrices, and Cm�n
r = fX 2 Cm�n : rank(X) = rg. We suppose that

A 2 Cm�n
r , unless indicated otherwise. The adjungate matrix of a square matrix B

will be denoted as adj(B), and its determinant as jBj. Conjugate, transponsed and
conjugate-transponsed matrix of A will be denoted as A, AT and A� respectively.
Submatrix of A containing rows �1; . . . ; �t and columns �1; . . . ; �t is denoted as

A
h
�1. . .�t
�1 . . .�t

i
: Also, minor of a rectangular matrix A 2 Cm�n containing rows

�1; . . . ; �t and columns �1; . . . ; �t is denoted as A
�
�1. . .�t
�1 . . .�t

�
an its algebraic com-

plement is de�ned as

Aij

�
�1 ... �p�1 i �p+1 ... �t
�1 ... �q�1 j �q+1 ... �t

�
= (�1)i+jA

�
�1 ... �p�1 �p+1 ... �t
�1 ... �q�1 �q+1 ... �t

�
.

For any A 2 Cm�n ; x 2 Cm ; j 2 f1; . . . ; ng ; A(j ! x) denotes the
matrix obtained by replacing the jth column of A with x, and jAj(j ! x) =
jA(j ! x)j.

Penrose [16] has shown the existence and uniqueness of a solution X 2 Cn�m

to the equations

(1) AXA = A ; (2) XAX = X ; (3) (AX)� = AX ; (4) (XA)� = XA:
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For a subset S of the set f1; 2; 3; 4g the set of matrices G obeying the conditions
represented in S will be denoted by AfSg. A matrix G in AfSg is called an S-
inverse of A and is denoted by A(S). In particular for any A 2 Cm�n the set
Af1; 2; 3; 4g consists of a single element, the Moore-Penrose inverse of A, denoted
by Ay [2], [17].

In the following theorem general forms of the sets AfSg are described.

Theorem 1.1 [18] If A 2 Cm�n
r has a full-rank factorization A = PQ ; P 2

Cm�r
r ; Q 2 Cr�n

r , W1 2 Cn�r and W2 2 Cr�m are some matrices such that
rank(QW1) = rank(W2P ) = rank(A), then

Ay = QyP y = Q�(QQ�)�1(P �P )�1P �

Af1; 2g = fW1(QW1)
�1(W2P )

�1W2g

Af1; 2; 3g = fW1(QW1)
�1(P �P )�1P �g

Af1; 2; 4g = fQ�(QQ�)�1(W2P )
�1W2g:

Concept of determinant i.e. algebraic complement is intimately related to
the concept of generalized inversion of matrices. Determinantal representation of
Moore-Penrose inverse is studied in [1], [3], [7], [8], [9], [15]. The main result is
contained in the following theorem.

Theorem 1.2 Element lying on the i-row and j-column of the Moore-Penrose
inverse of a given matrix A 2 Cm�n

r can be represented in terms of determinants
of square matrices, as follows:

a
(y;r)
ij =

A
(y;r)
ji

kAkr
=

P
1��1<...<�r�n
1��1<...<�r�m

A
�
�1 ... i ... �r
�1 ... j ... �r

�
Aji

�
�1 ... i ... �r
�1 ... j ... �r

�
P

1��1<...<�r�n
1�
1<...<
r�m

A
� 
1 ... 
r
�1 ... �r

�
A
� 
1 ... 
r
�1 ... �r

� ;
�

1�i�n
1�j�m

�
:

The numerator of this expression represents generalized algebraic complement
of the order r corresponding to aij , while the denominator expresses determinantal
representation of the norm of A.

Weighted Moore-Penrose inverse is investaged in [2], [6], [12]. The main results
are contained in the following three theorems.

Theorem 1.3 Let positive-de�nite (and hermitian) matrices M 2 Cm�m and
N 2 Cn�n be given. For any matrix A 2 Cm�n there exists a unique solution

X = A
y
M�;�N 2 Af1; 2g satisfying

(5) (MAX)� =MAX (6) (XAN)� = XAN:

Similarly, we use the following notations:

A
y
M�;N� represents unique solution of the equations (1), (2), and

(7) (MAX)� =MAX (8) (NXA)� = NXA;
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A
y
�M;N� is unique solution of the equations (1), (2), and

(9) (AXM)� = AXM (10) (NXA)� = NXA;

while Ay�M;�N is unique solution of the equations (1), (2), and

(11) (AXM)� = AXM (12) (XAN)� = XAN:

Theorem 1.4 [6] An equivalent of condition (5) is (AXM�1)� = AXM�1;

while the condition (6) can be expressed in the form (N�1XA)� = N�1XA:

Theorem 1.5 [6] If A = PQ is a full rank factorization of A, then:

A
y
M�;�N = (QN)�(Q(QN)�)�1((MP )�P )�1(MP )�:

Using these notions, Theorem 1.4. and Theorem 1.5. the following corollary
can be proved.

Corollary 1.1 a) AyM�;�N = A
y
�M�1;�N = A

y
M�;N�1� = A

y
�M�1;N�1�:

b) AyM�;N� = (QN�1)�(Q(QN�1)�)�1((MP )�P )�1(MP )� = AM�;�N�1 ;

c) Ay�M;N� = (QN�1)�(Q(QN�1)�)�1((M�1P )�P )�1(M�1P )� = AM�1�;�N�1 ;

d) Ay�M;�N = (QN)�(Q(QN)�)�1((M�1P )�P )�1(M�1P )�:

One of indices of the form �M [�1]; �N [�1]; M [�1]�; �N [�1]; �M [�1]; N [�1]�;
M [�1]�; N [�1]� , where M [�1] denotes M�1 or M and N [�1] denotes N�1 or N we
formally denote as '(M;N).

In this paper weighted Moore-Penrose inverse of a rectangular matrix is pre-
sented in terms of her own square minors and square minors of matrix product
MAN . This determinantal representation is developed using two di�erent meth-
ods. In the �rst method we develop the determinantal representation of f1; 2g
inverse and weighted Moore-penrose inverse is treated as an f1; 2g inverse. In the
second access we generalize concept of generalized algebraic complement .

Also, we introduce and investage determinantal representation of weighted
least-squares minimum norm solution of a linear system.

2. Weighted Moore-Penrose inverse as an f1; 2g inverse

In the following two Theorems we develop determinantal representation of
class of f1; 2g inverses, and derive determinantal representation of weighted Moore-
Penrose inverse, which is treated as an f1; 2g inverse. The determinantal represen-
tation of the class of f1; 2g inverses is a signi�cant result in itself.

Theorem 2.1 If A = PQ is a full rank factorization of A 2 Cm�n
r and

W1 2 C
n�r, W2 2 C

r�m are some matrices such that rank(QW1) = rank(W2P ) =

rank(W1W2) = rank(A), then an element a
(1;2)
ij 2 A(1;2) is given by
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a
(1;2)
ij =

P
1��1<...<�r�n
1��1<...<�r�m

(W1W2)
T

�
�1 ... i ... �r
�1 ... j ... �r

�
Aji

�
�1 ... j ... �r
�1 ... i ... �r

�

P
1��1<...<�r�n
1�
1<...<
r�m

A
� 
1 ... 
r
�1 ... �r

�
(W1W2)T

� 
1 ... 
r
�1 ... �r

� :

Proof. Starting from A(1;2) = W1(QW1)
�1(W2P )

�1W2, it is easy to see that

a
(1;2)
ij is equal to

rX
k=1

P
�1<...<�r

WT
1

�
1 ... k ... r

�1 ... i ... �r

�
Qki

�
1 ... k ... r

�1 ... i ... �r

� P
�1<...<�r

WT
2

�
�1 ... j ... �r
1 ... k ... r

�
Pjk

�
�1 ... j ... �r
1 ... k ... r

�
P

�1<...<�r

Q
�

1 ... r

�1 ... �r

�
WT

1

�
1 ... r

�1 ... �r

� P
1�
1<...<
r�r

WT
2 ( 
1 ... 
r

1 ... r )P ( 
1 ... 
r
1 ... r )

=

P
�1<...<�r
�1<...<�n

(W1W2)T
�
�1 ... j ... �r
�1 ... i ... �r

� � rP
k=1

Pjk
�
�1 ... j ... �r
1 ... k ... r

�
Qki

�
1 ... k ... r

�1 ... i ... �r

��

P
1��1<...<�r�r
1�
1<...<
r�m

A
� 
1 ... 
r
�1 ... �r

�
(W1W2)T

�
�1 ... �r


1 ... 
r

� :

Using the Cauchy-Binet formula, we can show
rP

k=1

Pjk

�
�1 ... j ... �r
1 ... k ... r

�
Qki

�
1 ... k ... r

�1 ... i ... �r

�
= Aji

�
�1 ... j ... �r
�1 ... i ... �r

�
and the proof is completed.

Theorem 2.2 Let M 2 Cm�m ; N 2 Cn�n be positive de�nite, and sup-
pose that A = PQ is a full rank factorization of A, such that rank(P �MP ) =
rank(QNQ�) = rank(MAN) = r: Element of the weighted Moore-Penrose inverse

A
y
M�;�N , lying on the ith row and jth column, can be represented in terms of square

minors as follows:

(ayM�;�N )ij =

P
1��1<...<�r�n
1��1<...<�r�m

(MAN)

�
�1 ... j ... �r
�1 ... i ... �r

�
Aji

�
�1 ... j ... �r
�1 ... i ... �r

�

P
1��1<...<�r�n
1�
1<...<
r�m

A
� 
1 ... 
r
�1 ... �r

�
(MAN)

� 
1 ... 
r
�1 ... �r

�

Proof. According to Theorem 1.1 and Theorem 1.5, weighted Moore-Penrose
inverse of a matrix A can be obtained as an element from the class of Af1; 2g
inverses satisfying relations W1 = (QN)� ; W2 = (MP )�. Applying these sub-
stitutions in formula which represent determinantal representation of the class of
f1; 2g inverses, the proof can be elementary obtained.

From Theorem 2.2., and Corollary 1.1. it follows:

Corollary 2.1 Let M 2 Cm�m ; N 2 Cn�n be positive de�nite and A =
PQ is a full rank factorization of A. Then

(Ay
'(M;N))ij =

P
1��1<...<�r�n
1��1<...<�r�m

(!(M;N))

�
�1 ... j ... �r
�1 ... i ... �r

�
Aji

�
�1 ... j ... �r
�1 ... i ... �r

�

P
1��1<...<�r�n
1�
1<...<
n�r

A
� 
1 ... 
r
�1 ... �r

�
(!(M;N))

� 
1 ... 
r
�1 ... �r

� ;
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where the expression !(M;N) represents a matrix such that rank(!(M;N)) =
rank(A) and

!(M;N) =

8>>><
>>>:

MAN; '(M;N) =M�; �N

MAN�1; '(M;N) =M�; N�

M�1AN; '(M;N) = �M; �N

M�1AN�1; '(M;N) = �M;N�

:

3. Weighted generalized algebraic complement

and weighted matrix norm

In this section we de�ne weighted generalized algebraic complement and weight-
ed norm of rectangular complex matrices, and using these notions we �nd the known
determinantal representation of the weighted Moore-Penrose inverse.

Definition 3.1 Weighted norm of A 2 Cm�n
r , denoted as kAkr

'(M;N) is equal
to

j (MP )�P j jQ(QN)� j

while the weighted adjoint matrix of A, denoted as adj
�
A

(y;r)
M�;�N

�
, is

(QN)� adj(Q(QN)�) � adj((MP )�P )(MP )�:

Theorem 3.1 Weighted norm of A has the following determinantal represen-
tation

kAkr'(M;N) =
P

1�i1<...<ir�m
1�j1<...<jr�n

A
�
j1 ... jr
i1 ... ir

�
(!(M;N))

�
j1 ... jr
i1 ... ir

�
:

Proof. Suppose that '(M;N) =M�; �N and A = PQ is a full rank factoriza-
tion of A.

kAkrM�;�N = j (MP )�P j jQ(QN)� j

=

" X
i1<...<ir

P
�
i1 ... ir
1 ... r

�
(MP )

�
i1 ... ir
1 ... r

�# 24 X
j1<...<jr

Q
�

1 ... r

j1 ... jr

�
(QN)

�
1 ... r

j1 ... jr

�35
=

X
1�i1<...<ir�r
1�j1<...<jr�s

A
�
i1 ... ir
j1 ... jr

�
(MAN)

�
i1 ... ir
j1 ... jr

�
:

Theorem 3.2 Element lying on ith row and jth column of the weighted adjoint

matrix of A, denoted as adj
�
A

(y;r)
M�;�N

�
ij

can be represented in terms of square

minors as follows:

adj
�
A

(y;r)
'(M;N)

�
ij

=
P

1��1<...<�r�m
1��1<...<�r�n

(!(M;N))
�
�1 ... j ... �r
�1 ... i ... �r

�
Aji

�
�1 ... j ... �r
�1 ... i ... �r

�
:
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Proof. Let '(M;N) =M�; �N and consider a full rank factorization A = PQ.
Element on ith row and jth column of (QN)� adj(Q(QN)�) is equal to

rX
k=1

(QN)�ik(adj(Q(QN)�))kj

=
rX

k=1

(QN)
ki

2
4(�1)k+j X

j1<...<jr�1

Q
�
j1 ... ... ... ... jr�1
1 ... j�1 j+1 ... r

�
(QN)

�
j1 ... ... ... ... jr�1
1 ... k�1 k+1 ... r

�35

=
X

j1<...<jr�1

(�1)jQ
�
j1 ... ... ... ... jr�1
1 ... j�1 j+1 ... r

�" rX
k=1

(�1)k(QN)
ki
(QN)

�
j1 ... ... ... ... jr�1
1 ... k�1 k+1 ... r

�#
:

If i is contained in combination j1; . . . ; jr�1, then

rX
k=1

(�1)k(QN)ki(QN)
�
j1 ... ... ... ... jr�1
1 ... k�1 k+1 ... r

�
= 0:

If the set fj1; . . . ; jr�1g does not contain i, then i = jp and the system is de-
noted as j1; . . . ; jp�1; jp+1; . . . ; jr. Now we get the following representation for
rP

k=1

(QN)�ik(adj(Q(QN)�))kj :

X
j1<...<jp�1<jp+1<...<jr

(�1)jQ
�
j1 ... jp�1 jp+1 ... jr�1
1 ... j�1 j+1 ... r

�
(�1)p(QN)

�
j1 ... ... i=jp ... ... jr
1 ... k�1 k k+1 ... r

�

=
X

j1<...<i<...<jr

(QN) ( j1 ... i ... jr
1 ... ... ... r

)Qji ( j1 ... i ... jr
1 ... ... ... r

) :

Similarly, element on ith row and jth column of adj((MP )�P )(MP )�) is equal toP
1��1<...<�r�m

(MP )
�

1 ... ... ... r

�1 ... j ... �r

�
Pjk

�
1 ... ... ... r

�1 ... j ... �r

�
:

Now, element lying on the ith row an jth column of weighted adjoint matrix ,

denoted as adj(A
(y;r)
M�;�N )ij is equal to

rX
k=1

2
4 X
1��1<...<�r�n

(QN)
�
�1 ... i ... �r
�1 ... i ... �r

�
Qki

�
1 ... ... ... r

�1 ... i ... �r

�35

�

2
4 X
1��1<...<�r�m

(MP ) ( �1 ... j ... �r
1 ... ... ... r

)Pjk ( �1 ... j ... �r
1 ... ... ... r

)

3
5

=

2
664 X
1�1<...<�r�m
1��1<...<�r�n

(MAN)
�
�1 ... j ... �r
�1 ... i ... �r

�
3
775
"

rX
k=1

Pjk (
1 ... ... ... r�1 ... j ... �r
1 ... ... ... r

)Qki

�
1 ... ... ... r

�1 ... i ... �r

�#

=
X

1��1<...<�r�m
1��1<...<�r�n

(MAN)
�
�1 ... j ... �r
�1 ... i ... �r

�
Aji

�
�1 ... j ... �r
�1 ... i ... �r

�
:

Theorem 3.3 Element on the ith row and jth column of the weighted Moore-
Penrose inverse is equal to

(A
(y;r)
'(M;N))ij =

adj(A
(y;r)

'(M;N)
)ji

kAkr
'(M;N)

:
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Proof. Follows from A
y
M�;�N = (QN)�(Q(QN)�)�1 � ((MP )�P )�1(MP )� and

Corollary 1.1.

Theorem 3.3 is an equivalent of Theorem 2.2.

4. Representation of the weighted Moore-Penrose solution

of a system of linear equations

In [5] an explicit determinanatal representation of the Moore-Penrose solution
of an arbitrary system of linear equations is derived. Using this representation it
is proved that the Moore-Penrose solution is a convex combination of all uniquely
solvable partial subsystems. In [4] an equivalent determinantal representation for
the least-squares solution of an overdetermined linear system is derived. From
this fromula it is proved that the least-squares solution lies in the convex hull of
the solutions to the square subsystems of the original system. Also, in [4] this
result is extended, and it is proved that this geometric property holds for a more
general class of problems which includes the weighted least-squares and lp norm
ninimization problems.

In the following theorem we derive determinantal representation of the weighted
Moore-Penrose solution of a system of linear equations.

Theorem 4.1 The ith component of the weighted Moore-Penrose solution

x
y
'(M;N) = A

y
'(M;N)z of a linear system Ax = z; A 2 Cm�n

r , x 2 Cn ; z 2 Cm

can be represented in the following determinant representation:

(xy
'(M;N))i =

P
1�q1<...<qr�n
1�p1<...<pr�m

(!(M;N))
� p1 ... ... ... pr
q1 ... i ... qr

�
A
� p1 ... ... ... pr
q1 ... i ... qr

�
(i!pz)

kAkr
'(M;N)

;

where pz denotes the vector fzp1 ; . . . ; zprg.

Proof. If '(M;N) = M�; �N and A = BC is a full-rank factorization of A,
then

x
y
M�;�N = (CN)�(C(CN)�)�1((MB)�B)�1(MB)�z = C

y
M�;�NB

y
M�;�Nz:

In this manner, the starting system splits up into two equivalent systems.

First we calculate y
y
M�;�N = B

y
M�;�Nz , y 2 Cn. In view of ByM�;�N =

((MB)�B)
�1

(MB)�, we get ((MB)�B)yyM�;�N = (MB)�z. The ith component

of yyM�;�N is

(yyM�;�N )i =
j ((MB)�B)(i! (MB)�z) j

j (MB)�B j
=
j (MB)� � B(i! z) j

j (MB)�B j
; 1 � i � r:

Applying Cauchy-Binet Theorem, we obtain

(yyM�;�N )i =

P
1�p1<...<pr�m

(MB)
� p1 ... pr

1 ... r

�
B
� p1 ... pr

1 ... r

�
(i!pz)

j (MB)�B j
; 1 � i � r:

Also, using x
y
M�;�N = C

y
M�;�Ny

y
M�;�N = (CN)�(C(CN)�)�1y

y
M�;�N , it is easy to

see that



48 P. Stanimirovi�c, M. Stankovi�c

(xyM�;�N )i =
1

jC(CN)� j
�

�
rP

k=1

((CN)� adj(C(CN)�))ik(y
y
M�;�N )k

�
:

Element on the ith row and jth column of the matrix (CN)� adj(C(CN)�) is (see
Theorem 3.2.):

((CN)� adj(C(CN)�))ij =
P

1�q1<...<qr�n

(CN)
�

1 ... ... ... r

q1 ... i ... qr

�
Cji

�
1 ... ... ... r

q1 ... i ... qr

�
:

Now (xyM�;�N )i is equal to
rP

k=1

P
q1<...<qr

(CN)
�

1 ... ... ... r

q1 ... i ... qr

�
Cki

�
1 ... ... ... r

q1 ... i ... qr

� P
p1<...<pr

(MB) ( p1 ... pr
1 ... r )B ( p1 ... pr

1 ... r ) (k! pz)���C(CN)�
��� ��� (MB)�B

���

=

P
1�q1<...<qr�n
1�p1<...<pr�m

(MAN)
� p1 ... ... ... pr
q1 ... i ... qr

� � rP
k=1

Cki

�
1 ... ... ... r

q1 ... i ... qr

�
B ( p1 ... pr

1 ... r ) (k! pz)

�

kAkrM�;�N

:

By using Laplace's development on the kth column of the square matrix
B
� p1 ... pr

1 ... r

�
(k ! pz), we get

(xyM�;�N )i =P
1�q1<...<qr�n
1�p1<...<pr�m

(MAN)
� p1 ... ... ... pr
q1 ... i ... qr

� � rP
l=1

zp
l

rP
k=1

Cki

�
1 ... ... ... r

q1 ... i ... qr

�
Bp

l
k (

p1 ... pr
1 ... r )

�

kAkrM�;�N

=

P
1�q1<...<qr�n
1�p1<...<pr�m

(MAN)
� p1 ... ... ... pr
q1 ... i ... qr

� rP
l=1

zp
l
Ap

l
i

� p1 ... ... ... pr
q1 ... i ... qr

�

kAkrM�;�N

=

P
1�q1<...<qr�n
1�p1<...<pr�m

(MAN)
� p1 ... ... ... pr
q1 ... i ... qr

�
A
�
p1 ... pr
q1 ... qr

�
(i! pz)

kAkrM�;�N

:

As we mentioned above, in [4] it is showed that the weighted least-squares solu-
tion lies in the convex hull of the solutions to the square subsystems of the original
system. But, this result includes positive de�nite diagonal weighted matrices. In
the following theorem we generalize this result and prove that arbitrary weighted
Moore-Penrose solution of a linear system lies in the convex hull of the solutions
to the square subsystems of the original system.

Theorem 4.2 The weighted Moore-Penrose solution x
y
M�;�N of system of lin-

ear equations Ax = z is the convex combination

x
y
M�;�N =

P
1�q1<...<qr�n
1�p1<...<pr�m

�p
qx
(p;q)
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of the solutions of all uniquely solvable r-dimensional subsytems canonically imbed-
ded into Cm, where

� =
X

1��1<...<�r�m

(MB) ( �1 ... �r
1 ... r )B ( �1 ... �r

1 ... r ) ;


 =
X

1��1<...<�r�n

(CN)
�

1 ... r

�1 ... �r

�
B
�

1 ... r

�1 ... �r

�
;

�p =
1

�
(MB) ( p1 ... pr

1 ... r )B ( p1 ... pr
1 ... r ) ;


q =
1



(CN)

�
1 ... r

q1 ... qr

�
C
�

1 ... r

q1 ... qr

�
:

Proof. According to Theorem 4.1. (xyM�;�N )i has the following determinantal
representation

P
1�q1<...<qr�n
1�p1<...<pr�m

(MB) ( p1 ... pr
1 ... r ) (CN)

�
1 ... ... ... r

q1 ... i ... qr

�
A
�
p1 ... pr

q1 ... qr

�
(i! pz)

" P
1��1<...<�r�m

P ( �1 ... �r
1 ... r ) (MP ) ( �1 ... �r

1 ... r )

#" P
1��1<...<�r�n

Q
�

1 ... r

�1 ... �r

�
(QN)

�
1 ... r

�1 ... �r

�#

=
X

q1<...<qr
p1<...<pr

1

�
(MB) ( p1 ... pr

1 ... r )B ( p1 ... pr
1 ... r )

1



(CN)

�
1 ... ... ... r

q1 ... i ... qr

�
C
�

1 ... ... ... r

q1 ... i ... qr

�
�

�
A
�
p1 ... pr

q1 ... qr

�
(i! pz)

A
�
p1 ... pr

q1 ... qr

� :

In the case A
�
p1 ... pr
q1 ... qr

�
6= 0 let x(p;q) be the canonical imbedding of the solution

of A
h
p1 ... pr
q1 ... qr

i
x = pz into the m-dimensional space. This means that, according to

Cramer's rule, x(p;q) possesses the components

x
(p;q)
i =

A
� p1 ... pr
q1 ... qr

�
(i!pz)

A
� p1 ... pr
q1 ... qr

�

for i contained in combination 1 � q1 < . . . < qr � n, and x
(p;q)
i = 0 otherwise. In

the singular case A
�
p1 ... pr
q1 ... qr

�
= 0 we de�ne x(p;q) to be the zero vector. Now it is

evident that

x
y
M�;�N =

P
1�q1<...<qr�n
1�p1<...<pr�m

�p
qx
(p;q):

Since P
1�p1<...<pr�m

�p = 1;
P

1�q1<...<qr�n


q = 1

the proof is completed.
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