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PRE-LINDEL�OF QUASI-PSEUDO-METRIC

AND QUASI-UNIFORM SPACES

H.-P. A. K�unzi, M. Mr�sevi�c, I. L. Reilly, M. K. Vamanamurthy

Abstract. When the �niteness condition in the de�nition of precompactness is replaced
by countability, a new notion in the class of quasi-uniform spaces is introduced, and we call it
pre-Lindel�ofness. Some properties of pre-Lindel�of spaces, in particular in the subclass of quasi-
pseudo-metric spaces, are investigated.

1. Introduction

Recently, extensive studies of precompact quasi-uniform spaces have been un-
dertaken. Precompactness is a weaker form of generalised total boundedness. Let
us recall that a quasi-uniform space (X;U) is called totally bounded if for each
U 2 U there is a �nite cover fAi : i = 1; . . . ; n g of X such that Ai � Ai � U
for each i = 1; . . . ; n. Furthermore (X;U) is called precompact if for each U 2 U
there is a �nite subset F � X such that X =

S
x2F U(x) = U(F ). As usual

U(x) = f y 2 X : (x; y) 2 U g.

If the �niteness condition in the de�nition of precompactness is replaced by
countability, a new property of quasi-uniform spaces is introduced, and we call it
pre-Lindel�ofness.

Definition 1. Let (X;U) be a quasi-uniform space. Then (X;U) is called
pre-Lindel�of if for each U 2 U there is a countable subset C � X such that
X =

S
c2C U(c) = U(C). A space X is hereditarily pre-Lindel�of if each subspace

of X is pre-Lindel�of.

In the class of uniform spaces the pre-Lindel�of property is called by di�erent
names, one of which is trans-separability. ( See for example [8].) This property is
strictly weaker than both Lindel�ofness and separability, and has proved useful in
investigations of metrisability of topological vector spaces.
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All (hereditarily) Lindel�of spaces and all (hereditarily) precompact spaces are
(hereditarily) pre-Lindel�of, but the converse is not true in general, except for hered-
itary Lindel�ofness in the class of quasi-pseudo-metric spaces as Theorem 2 shows.

As noted in [7], the usual metric on the set of real numbers gives a space
which is hereditarily Lindel�of but not precompact, while the Sorgenfrey plane is
pre-Lindel�of but not Lindel�of. The Sorgenfrey line quasi-metric restricted to the
interval [0; 1] is precompact. Its square is precompact but not Lindel�of.

In the class of quasi-pseudo-metric spaces pre-Lindel�ofness has some nice prop-
erties. We prove (Theorem 1) that pre-Lindel�ofness is equivalent to separability of
the conjugate space. Also, we show that hereditary pre-Lindel�ofness is equivalent
to the hereditary Lindel�of property (Theorem 2). Neither of these two statements
is true in general in the class of quasi-uniform spaces.

Our notation is standard. In particular, R and N denote the sets of real
numbers and positive integers, respectively. In a quasi-pseudo-metric space (X; d)
the ball with centre x and radius " is the set f y 2 X j d(x; y) < " g and is denoted
by Bd(x; "), although we suppress the 'd' when there is no possible confusion. If d is
a quasi-pseudo-metric on X , then so is d0 de�ned by d0(x; y) = d(y; x) for x; y 2 X ,
and d0 is called the conjugate of d.

2. Pre-Lindel�of quasi-pseudo-metric spaces.

In the subclass of quasi-pseudo-metric spaces pre-Lindel�ofness can be de�ned
in the following way.

Definition 2. A quasi-pseudo-metric space (X; d) is pre-Lindel�of if for every
" > 0 there is a countable subset C � X such that X �

S
c2C B(c; ").

The duality between pre-Lindel�ofness and separability is given by the following
result.

Theorem 1. A quasi-pseudo-metric space (X; d) is pre-Lindel�of if and only if
its conjugate space (X; d0) is separable.

Proof. Let (X; d) be pre-Lindel�of. For each n 2 N there is a countable subset
An � X such that X =

S
a2An

Bd(a;
1
n
). The set A =

S
n2NAn is countable and

dense in (X; d0).

Conversely, let D be a countable dense subset in (X; d0). Let " > 0 and let
x 2 X . There is an a 2 D such that d0(x; a) < ", which implies d(a; x) < ". Thus
X =

S
a2D Bd(a; "), so that (X; d) is a pre-Lindel�of space.

Corollary 1. In a pseudometric space the following are equivalent:

(i) second countability,

(ii) separability,

(iii) Lindel�ofness,

(iv) ccc ( the countable chain condition),

(v) pre-Lindel�ofness.
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Corollary 2. If Y is an open subset in the conjugate topology of a quasi-
pseudo-metric space (X; dX ), then (X; dX ) is pre-Lindel�of implies (Y; dY ) is pre-
Lindel�of.

While pre-Lindel�ofness is in general strictly weaker than the Lindel�of property,
their hereditary counterparts coincide in the class of quasi-pseudo-metric spaces,
as the following result shows.

Theorem 2. A quasi-pseudo-metric space is hereditarily pre-Lindel�of if and
only if it is hereditarily Lindel�of.

Proof. Only the "only if" part has to be proved. For this we modify the proof
of Lemma 2 in [7].

Let E � X and let G be a collection of open sets inX such that E �
S
fG j G 2

G g. For each x 2 E choose G(x) 2 G and n(x) 2 N such that B(x; 1=n(x)) � G(x).
For each n 2 N let An = fx 2 E j n(x) = n g. For each n 2 N there is countable
subset Cn of An such that An �

S
c2Cn

B(c; 1
n
). Then E �

S
fB(c; 1

n
) j c 2

Cn and n 2 N g. It follows that E is a Lindel�of subset of X .

Since both hereditary Lindel�ofness and separability imply the countable chain
condition, we have the following

Corollary 3. Let (X; d) be a hereditarily (pre-)Lindel�of quasi-pseudo-metric
space. Then both (X; d) and (X; d0) are hereditarily ccc.

Note that Example 5 in [7] gives a space (X; s) which is hereditarily pre-
compact, thus hereditarily (pre-)Lindel�of, but not separable. Thus hereditary
(pre-)Lindel�ofness and separability are not comparable; also, neither separabili-
ty nor hereditary (pre-)Lindel�ofness is equivalent to the ccc in quasi-pseudo-metric
spaces.

Corollary 4. [4, Theorem 4] A quasi-pseudo-metric space is hereditarily
(pre-)Lindel�of if and only if its conjugate space is hereditarily separable.

We are able to de�ne a more general version of the pre-Lindel�of property given
in De�nition 2.

Definition 3. Let (X; d) be a quasi-pseudo-metric space. Given D � X and
" > 0, we de�ne (X; d) to be (D; ")-Lindel�of if X =

S
x2DBd(x; ").

Definition 4. Let (X; d) be a quasi-pseudo-metric space. Given D � X and
" > 0, we de�ne D to be "-dense in (X; d), if for every x 2 X there is a point
y 2 D \Bd(x; ").

Remark. (X; d) is pre-Lindel�of (pre-compact) if for every " > 0 there is a
countable (�nite) subset D such that (X; d) is (D; ")-Lindel�of.

Theorem 3. (X; d) is separable if and only if for every " > 0 there is a
countable subset D which is "-dense in (X; d).

Proof. The "only if" part is obvious. For the converse, for every n 2 N there is
a countable subset Dn such that Dn is 1

n
-dense in (X; d). Let D =

S
n2NDn. Then
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D is countable. We claim that D is dense in (X; d). Let x 2 X and " > 0 be given.
Choose n 2 N, with 1

n
< ". Then there is a point y 2 Dn\Bd(x;

1
n
) � D\Bd(x; ").

Theorem 4. Let d; d0 be conjugate quasi-pseudo-metrics on X and let D �
X; " > 0. Then (X; d) is (D; ")-Lindel�of if and only if D is "-dense in (X; d0).

Proof. Let x 2 X; y 2 D. Then x 2 Bd(y; ") if and only if y 2 Bd0(x; ").

3. Pre-Lindel�of quasi-uniform spaces.

When the class of quasi-pseudo-metric spaces is enlarged to the class of quasi-
uniform spaces, pre-Lindel�ofness behaves in a slightly di�erent way. Theorems 1
and 2 no longer hold in general as the following examples show.

Example 1. LetX be an uncountable set endowed with the cocountable topol-
ogy T . Let U be the Pervin quasi-uniformity compatible with T . The space (X;U)
is totally bounded, thus both (X;U) and its conjugate (X;U�1) are hereditarily pre-
compact, hence hereditarily pre-Lindel�of. The topology T (U�1) is discrete, thus the
space (X;U�1) is neither separable nor Lindel�of. Furthermore (X; T ) = (X; T (U))
is not separable. Note that (X;U) has the ccc while (X;U�1) has not.

Example 2. For any topological spaceX the semi-continuous quasi-uniformity
S(X) has the property that S(X)� = supfS(X);S(X)�1g is (hereditarily) pre-
Lindel�of. (See [2, Theorem 2.12] and Proposition 2.) Thus Theorem 2 does not
hold even in the class of uniform spaces.

Precompactness is a productive property as stated in [2] for quasi-uniform
spaces. Theorem 5 shows that pre-Lindel�ofness is also productive. In Theorem
5 of [7] it was proved that hereditary precompactness is productive as well, while
the Sorgenfrey plane shows a di�erent behaviour of hereditary pre-Lindel�ofness.
By Theorem 2, the Sorgenfrey plane being quasi-metrisable is not hereditarily pre-
Lindel�of, thus hereditary pre-Lindel�ofness is not a productive property. Theorem
6 gives a necessary and su�cient condition for a product of in�nitely many quasi-
uniform factor spaces to be hereditarily pre-Lindel�of.

The next two results are given without proofs which are straightforward.

Proposition 1. Let (X;U) and (Y;V) be quasi-uniform spaces and let
f : (X;U) ! (Y;V) be a quasi-uniformly continuous function. If (X;U) is (heredi-
tarily) pre-Lindel�of, then so is (f(X);Vf(X)).

Proposition 2. Pre-Lindel�ofness is hereditary in uniform spaces.

Theorem 5. The nonempty product of a family of quasi-uniform spaces is
pre-Lindel�of if and only if each factor space is pre-Lindel�of.

Proof. The "only if" part follows from Proposition 1. For the converse, let
(X;U) be the product of a family f(Xi;Ui)gi2I of pre-Lindel�of quasi-uniform spaces.
For each j 2 I let prj :

Q
i2I Xi ! Xj denote the projection. Suppose that

U =
Tn

k=1(prik � prik )
�1(Vik ), where Vik 2 Uik , k = 1; . . . ; n, and n 2 N. For each
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Vik there is a countable subset Cik � Xik such that Xik =
S
c2Ci

k

Vik (c). For each

i 2 I n fi1; . . . ; ing choose a point ai 2 Xi. Let C be a subset of X consisting of
all points c 2 X such that ci 2 Ci if i 2 fi1; . . . ; ing, and ci = ai otherwise. The
subset C is countable and X = U(C). Therefore

Q
i2I Xi is pre-Lindel�of.

Theorem 6. The nonempty product of a family f(Xi;Ui)gi2I of hereditari-
ly pre-Lindel�of quasi-uniform spaces is hereditarily pre-Lindel�of if and only if the
product

Q
i2F Xi is hereditarily pre-Lindel�of for any nonempty �nite subset F of I.

Proof. Since hereditary pre-Lindel�ofness is preserved by quasi-uniformly con-
tinuous surjections, the "only if" part is clear. For the converse, let A be a sub-
space of

Q
i2I Xi. For each j 2 I let prj :

Q
i2I Xi ! Xj denote the projection.

Suppose that U =
Tn

k=1(prik � prik)
�1(Vik ), where Vik 2 Uik , k = 1; . . . ; n, and

n 2 N. Let p :
Q
i2I Xi !

Qn

k=1Xik be the projection. For simplicity the pro-
jections of the latter product onto its factor spaces are also denoted by pri. SinceQn

k=1Xik is hereditarily pre-Lindel�of, there is a countable subset C � p(A) such
that p(A) �

S
c2C [Vi1 (pri1(c))� � � � � Vin(prin(c))]. For each c 2 C choose dc 2 A

such that p(dc) = c. Therefore A �
S
c2C U(dc) and we conclude that

Q
i2I Xi is

hereditarily pre-Lindel�of.

Proposition 3. Let (X;U) be a quasi-uniform space such that supfU ;U�1g
is (hereditarily) pre-Lindel�of and let (Y;V) be a hereditarily pre-Lindel�of quasi-
uniform space. Then (X � Y; U � V) is hereditarily pre-Lindel�of.

Proof. Let B � X � Y and let U 2 U and V 2 V . Since supfU ;U�1g is
pre-Lindel�of, there exists a countable cover (Ai)i2N of fx 2 X j (x; y) 2 B g such
that Ai �Ai � U whenever i 2 N. For each i 2 N set Di = f y 2 Y j there is x 2
Ai with (x; y) 2 B g. Since (Y;V) is hereditarily pre-Lindel�of, for each i 2 N there
is a countable set Ci � Di such that Di � V (Ci). For each i 2 N and each c 2 Ci
choose xc 2 Ai such that (xc; c) 2 B. Set C = f (xc; c) j c 2 Ci; i 2 N g. Let
(x; y) 2 B. There is i0 2 N such that x 2 Ai0 . Therefore y 2 Di0 and y 2 V (c)
for some c 2 Ci0 . Thus (x; y) 2 Ai0 � V (c) � U(xc) � V (c). We conclude that
(X � Y; U � V) is hereditarily pre-Lindel�of.

Theorem 7. The product (X�Y; U �V) of a hereditarily pre-Lindel�of quasi-
uniform space (X;U) and a hereditarily precompact quasi-uniform space (Y;V) is
hereditarily pre-Lindel�of.

Proof. Suppose that a subspace B of X � Y is not pre-Lindel�of. Then there
are U 2 U and V 2 V such that B �

S
a2AW (a) and A � B imply that A is

uncountable, where W = [(prX � prX)
�1(U)] \ [(prY � prY )

�1(V )] and prX : X �

Y ! X and prY : X � Y ! Y denote the projections. Inductively construct
C = fx� j � < !1 g such that x� 2 B n W (fx� j � < � g) whenever � < !1.
De�ne a graph with vertex set C and edges fx�; x�g provided that � < � < !1
and prX(x�) 2 U(prX(x�)). Since (X;U) is hereditarily pre-Lindel�of, for each
uncountable D � C there are two vertices of D connected by an edge. By [1,
Theorem 5.22], there is a countably in�nite subset E of C such that any two
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vertices of E are connected. Hence if � < � < !1 and x�; x� 2 E, then prY (x�) 62

V (prY (x�)). We conclude that the �rst in�nite initial segment of prY (E) ordered
according to the index set is not precompact, a contradiction. Therefore X � Y is
hereditarily pre-Lindel�of.

Theorem 8. A topological space X is hereditarily Lindel�of if and only if each
of its compatible quasi-uniformities is hereditarily pre-Lindel�of.

Proof. Only the "if" part needs a proof. If X is not hereditarily Lindel�of, then
there is a strictly increasing sequence (G�)�<!1 of open sets in X . The binary
relation T de�ned by T (x) =

T
fG� j x 2 G�; � < !1 g for all x 2 X , where we use

the convention that the intersection over the empty collection is X , belongs to the
�ne quasi-uniformity V of X . Since V restricted to the subspace

S
�<!1

G� is not
pre-Lindel�of, V is not hereditarily pre-Lindel�of.

Problem. Characterize those topological spaces that admit only pre-Lindel�of
quasi-uniformities.

Proposition 4. If (X;U) and (Y;V) are hereditarily pre-Lindel�of, then each
subspace A of X � Y has the property that for each W 2 U � V there is M � A
such that jM j � 2@0 and A �W (M).

Proof. Otherwise there are U 2 U ; V 2 V and C = fx� j � < (2@0)+ g

such that x� =2 U(prX(x�)) � V (prY (x�)) whenever � < � < (2@0)+ . Let

� < � < (2@0)+. If prX(x�) =2 U(prX(x�)), set f(fx�; x�g) = 1, and set
f(fx� ; x�g) = 0 otherwise. Since X and Y are hereditarily pre-Lindel�of we see
similarly as above that there is no uncountable subset A of C such that f is con-
stant on [A]2, contradicting the well known Erd�os-Rado Partition Theorem [3,
Theorem 69].

Recall that a topological space is almost realcompact if each maximal open
�lter F such that F = fF j F 2 F g has the countable intersection property has
a cluster point. The space is called closed complete if each maximal closed �lter
with the countable intersection property has a non-empty intersection. (See [6, p.
360].) A quasi-uniform space (X;U) is called complete if each U-Cauchy �lter has
a cluster point. (See [2, De�nition 3.8].)

Proposition 5. Each pre-Lindel�of complete quasi-uniform space (X;U) is:
(i) almost realcompact, (ii) closed complete.

Proof. (i) Let F be a maximal open �lter in (X;U) such that F has the
countable intersection property. Consider U 2 U . There is a V 2 U such that V (x)
is open in (X; T (U)) whenever x 2 X [2, p. 3] and such that V � U . Since U is
pre-Lindel�of, there is a countable subset C of X such that

S
x2C V (x) = X . Since

F has the countable intersection property, there is an x 2 C such that V (x)\F 6= ;
whenever F 2 F . By maximality of F , V (x) 2 F . We conclude that F is a U-
Cauchy �lter base. Hence

T
F 6= ; because (X;U) is complete. We have shown

that (X; T (U)) is almost realcompact.

(ii) Closed completeness is proved in a similar way.
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An analogue of the well known result in the class of topological spaces that
compactness is equivalent to countable compactness and Lindel�ofness, is the follow-
ing, whose straightforward proof is omitted. The statement for quasi-pseudo-metric
spaces then follows from Corollary 2 of [5].

Proposition 6. A countably compact pre-Lindel�of quasi-uniform space is
precompact. In particular, a countably compact pre-Lindel�of quasi-pseudo-metric
space is compact.

That the converse of Proposition 6 does not hold can be seen from Example 3.
Example 4 shows that the statement is not true for hereditary counterparts even
in quasi-metric spaces.

Example 3. The subspace (0, 1) of the real line is precompact but not count-
ably compact.

Example 4. Let X = N and for m;n 2 X let

d(m;n) =

8>><
>>:

1

n
; if m = 1 and n > 1,

0; if m = n ,

1; otherwise .

The space (X; d) is compact but not hereditarily precompact.
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