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ON LOCALLY SUBADDITIVE FUNCTIONS

Slavko Simi�c and Stojan Radenovi�c

Abstract. We de�ne locally (on C � R
2) subadditive functions f , f : C ! R, by

f(x1 + x2; y1 + y2) 6 f(x1; y1) + f(x2; y2); (x1; y1); (x2; y2) 2 C;

where C is some cone in R
2. The purpose of the paper is to �nd explicit form of such functions.

A function f : R! R is said to be additive if it satis�es the Cauchy functional
equation

f(x+ y) = f(x) + f(y); x; y 2 R:

Under some smoothing restrictions (measurability or Baire property) the only form
of additive functions, as is well known, is that of cx.

Two-dimensional case of Cauchy equation, i.e.

f(x1 + x2; y1 + y2) = f(x1; y1) + f(x2; y2); (x1; y1); (x2; y2) 2 R
2;

in a similar way has the solution f(x; y) = c1x+ c2y.

We de�ne locally (on C � R2) subadditive functions f , f : C ! R, by

f(x1 + x2; y1 + y2) 6 f(x1; y1) + f(x2; y2); (x1; y1); (x2; y2) 2 C; (1)

where C is some cone in R2. A non-empty convex subset C of Rn is called a cone
if �C � C for all � > 0. For the de�nition of a cone in an arbitrary vector space
see [2]. We shall denote the class of all such functions on C by LSC . In these
considerations we also admit sets C which are cones without the point 0.

Our task in this paper is to "solve" functional inequality (1), i.e. to give an
explicit form of f 2 LSC .

We begin with the following results:

Proposition 1. If fk 2 LSCk
, k = 1; 2; . . . ; n then:

c1f1 + c2f2 + � � �+ cnfn = f 2 LSC ; (2)

where C =
Tn

k=1 Ck and c1, c2, . . . , cn are arbitrary positive constants.
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Proof follows immediately from de�nition (1) of locally subadditive functions
and the fact that intersection of any family of cones is a cone.

Proposition 2. If g(t) is a convex function de�ned for t 2 (a; b), then

x � g(y=x) = f(x; y) 2 LSC ;

where C = f (x; y) j a < y=x < b; x > 0 g is a subset of R2.

Proof. It is clear that C is a non-empty convex subset of R2 with �C � C for
all � > 0. From this it follows that C + C � C. Now, according to de�nition of a
convex function g(t), t 2 (a; b)

g(pr + qs) 6 pg(r) + qg(s) (3)

for each r, s 2 (a; b) and each p, q > 0, p + q = 1, and since (x1; y1), (x2; y2) 2 C
implies that (x1 + x2; y1 + y2) = (x1; y1) + (x2; y2) 2 C + C � C, we have

f(x1 + x2; y1 + y2) = (x1 + x2)g

�
y1 + y2
x1 + x2

�

= (x1 + x2)g

�
x1

x1 + x2
�
y1
x1

+
x2

x1 + x2
�
y2
x2

�

6 (x1 + x2)

�
x1

x1 + x2
g

�
y1
x1

�
+

x2
x1 + x2

g

�
y2
x2

��

= x1g

�
y1
x1

�
+ x2g

�
y2
x2

�
= f(x1; y1) + f(x2; y2);

i.e. f 2 LSC .

Remark 1. Since 0 =2 C, the subset C from the proposition 2 is not a cone,
but this is permitted, by our previous convention.

Remark 2. We can conclude that a system of functions gi(t), convex for
t 2 (a; b), produces a system of subadditive functions fi(x; y) over C � R2 (denoted
as g(t) � f(x; y)), so, according to propostition 1, we obtain a solution of (1) in
the form

f(x; y) =
nP
i=1

cifi(x; y); ci > 0; (x; y) 2 C:

Conversely to proposition 2, we have the following

Proposition 20. If the function f 2 LSC, where C is the same subset of

R2 as in the proposition 2 and f(�x; �y) = �f(x; y) for every � 2 R+, then

f(x; y) = x � g(y=x), where g(t) is a convex function.

Proof. The function g(y) = f(1; y) is convex. Indeed, for p > 0, q > 0,
p+ q = 1:

g(py1 + qy2) = f(1; py1 + qy2) = f(p+ q; py1 + qy2) 6 f(p; py1) + f(q; qy2)

= pf(1; py1) + qf(1; y2) = pg(y1) + qg(y2):
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Now, for � = 1=x we obtain

1

x
� f(x; y) = f

�
1

x
� x;

1

x
� y

�
= f

�
1;

y

x

�
= g

�y
x

�
;

i.e. f(x; y) = xg(y=x). This prove the proposition.

Remark 3. A method of obtaining the function from LSC is following: If
sup(x;y)(f(x+ a; y + b)� f(x; y)) = g(a; b), then g 2 LSC , where f : C ! R.

Proof. Since

g(a1 + b1; a2 + b2) = sup
(x;y)

(f(x+ a1 + b1; y + a2 + b2)� f(x; y))

= sup
(x;y)

(f(x+ a1 + b1; y + a2 + b2)� f(x+ b1; y + b2) + f(x+ b1; y + b2)� f(x; y))

6 sup
(x;y)

(f(x+a1+b1; y+a2+b2)�f(x+b1; y+b2))+ sup
(x;y)

(f(x+b1; y+b2)�f(x; y))

= g(a1; a2) + g(b1; b2);

then g 2 LSC .

Another property of subadditive functions is the following

Proposition 3. If f 2 LSC then

f

�
nP

i=1
xi;

nP
i=1

yi

�
6

nP
i=1

f(xi; yi) for (xi; yi) 2 C, i = 1; 2; . . . ; n.

Proof. This is easy to prove by induction on n, since from (xi; yi) 2 C, i =
1; 2; . . . ; n it follows that�

nP
i=1

xi;
nP
i=1

yi

�
=

nP
i=1

(xi; yi) 2 C + C + � � �+ C| {z }
n

� C + C + � � �+ C| {z }
n�1

� � � � � C + C � C:

Propositions 2 and 3 are the source for obtaining several kinds of two-parameter
inequalities. We illustrate this with some examples.

Example 1. Since ln t� �x ln(y=x), x; y > 0, using proposition 3 and putting
xi = bi, yi = aibi, i = 1; 2; . . . ; n, we obtain generalized arithmetic-geometric
inequality

nQ
i=1

abii 6

�
nP
i=1

aibi

�
nP
i=1

bi

� nP

i=1

bi

; ai; bi > 0;

i.e. putting bi

�
nP
i=1

bi = pi, i = 1; 2; . . . ; n:

nQ
i=1

apii 6
nP

i=1
aipi; pi; ai > 0;

nP
i=1

pi = 1:
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Example 2. Since tr �

�
�x(y=x)r; for r 2 (0; 1),

x(y=x)r; for r 2 R n [0; 1],
x, y > 0, putting

xi = bqi , yi = api and r = 1=p, 1 � r = 1=q in proposition 3, we obtain H�older's
inequality

nP
i=1

aibi 6

�
nP
i=1

api

�1=p� nP
i=1

bqi

�1=q

;
1

p
+

1

q
= 1; p; q > 1; and

nP
i=1

aibi >

�
nP
i=1

api

�1=p� nP
i=1

bqi

�1=q

;
1

p
+

1

q
= 1; p < 1; or q < 1:

Example 3. Since ln sin t � �x ln sin y=x, using proposition 3 with xi = 1,
i = 1; 2; . . . ; n we have

nQ
i=1

sin yi 6 sinn
�
1

n

nP
i=1

yi

�
; yi 2 (0; �):

For the n-dimensional case of locally subadditive functions we give the following
de�nition: A function f 2 LSC if

f(x1 + y1; x2 + y2; . . . ; xn + yn) 6 f(x1; x2; . . . ; xn) + f(y1; y2; . . . ; yn) (4)

for each (x1; x2; . . . ; xn), (y1; y2; . . . ; yn) 2 C, where C is a cone in Rn.

Now we have the following

Proposition 4. A function g(t), convex for t 2 (a; b), produces a locally

subadditive function f( � ) on C � Rn by

f(x1; x2; . . . ; xn) =

�
nP
i=1

Aixi

�
g

�
nP

i=1
Bixi

�
nP

i=1
Aixi

�
;

where

C =

�
(x1; x2; . . . ; xn)

���� nP
i=1

Aixi > 0; a <
nP

i=1
Bixi

�
nP

i=1
Aixi < b

�
;

and Ai, Bi are arbitrary constants, not all equal to zero.

Proof is similar to that of proposition 2. Since (x1; x2; . . . ; xn), (y1; y2; . . . ; yn) 2
C imply that (x1 + y1; x2 + y2; . . . ; xn + yn) 2 C, putting

p =

nP
i=1

Aixi

nP
i=1

Ai(xi + yi)
; q =

nP
i=1

Aiyi

nP
i=1

Ai(xi + yi)
; r =

nP
i=1

Bixi

nP
i=1

Aixi

; s =

nP
i=1

Biyi

nP
i=1

Aiyi

in (3), we obtain (4), i.e. that f 2 LSC .

It is obvious that propositions 1 and 3 could be easily transformed to Rn.

Authors are indebted to Prof. D. Adamovi�c for help in preparing this article.
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