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ON THE CONVERGENCE OF A MULTICOMPONENT
THREE LEVEL ALTERNATING DIRECTION
DIFFERENCE SCHEME

Bosko S. Jovanovié

Abstract. A multicomponent alternating direction finite difference scheme for solving the
wave equation with several variables is considered. Its stability and convergence are investigated
in the case when the solution of the initial-boundary value problem belongs to a Sobolev space.

We consider the first initial-boundary value problem (IBVP) for the wave
equation

0%u n

W:AU-Ff, (z,1) €@ =902x(0,T)=(0,1)" x (0, T),

ue O =uw(), 20w, sen, )
u(x, t) =0, xel=9002, te(0,T).

We assume that the generalized solution of IBVP (1) belongs to the Sobolev space
W5(Q), s> 2 [4]. In this case there exists a trace ul|,_, € W§71/2(Q) C Ly(02).
We also assume that the solution u can be oddly extended in space variables outside
the domain (2, preserving the Sobolev class.

Let @ be a uniform mesh in 2 with the step size h. Let us set w = @ N
2,7y =0\wand w; =wU{r = (21,...,2,) € v|2; = 0}. Let 6 be a
uniform mesh on [~7/2, T] with the step size 7 and # = § N (0, T'). Finally, let
Q,,, = w x A. For a function v defined on the mesh Q,. we introduce the finite—
difference operators v,,, vz, v; and vy in a usual manner [5]. Let us denote
v=uv(z,t), b=v(z,t+7) and v =v(z, t — 7).

Let Hj, be the set of discrete functions defined on the mesh @, which vanish
on 7. Let us denote

_vz-iiv TEw “
Aiv:{ ’ and Av:ZAiv.
0, TEY Py
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The unit operator on Hj will be denoted by I.
We introduce the following discrete inner product
(v, w)o =h" > v(z)w(z)
rEw
and norms
1/2 1/2
ol = (o) = (7 X 0%@) T and il = (7 3 @)
rEw TEW;

For a linear, selfadjoint and positive operator L on Hj, with |[v]|, we denote so

called "energy” norm
lolle = (Lo, v)}/*.

In particular

”v“/li = (Aivv v)i)/Q = ”vwi

w;

With T; and T; we denote the Steklov averaging operators in space variables
x; and time variable ¢ (see [2])

1 x,j+h/2
Tif(x,t):—/ floy, ... 2k, oo, t)dal
h zi—h/2
1 t+T/2
th(l',t):—/ f(l'l,...,l'n,t,)dt,.
T Jt—7/2

Finally, C' will stand for a positive generic constant, independent of h and 7.

We approximate IBVP (1) with the following alternating direction finite—
difference scheme (FDS) [1]

(I+0’T2Ai)vit_+z‘4jvj:fETl"'Tnthv t607
=1 (2)

vi|t:jFT/2:Tl...Tn(u():FO.STul), i=1,2,...,n

where o is a free weight parameter. FDS (2) represents a system of n unknown
mesh functions v*. They can be determined paralelly, contrary to the other variant
of the alternating direction method, such as the factorized scheme

(I+om?Ay) (I 40> Ap) v+ Av = f.
The errors defined as z* =Ty ---T,, u — v* satisfy the FDS

(I+JT2Ai)ztit—+ZAjzj:goi, ted,
i=1 (3)

Al p=n, 0BG+ __ =€ i=1,2....n
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where
¢ =Ty T [(na T ) + 2 (7 g n) ~ ]
0 =T T (g5

§ =05Ty---T, ( “|t:—7/2 -2 “|t:o + “|t:r/2) :

To prove the stability and the convergence of the FDS (2) we represent equation
(3) in matrix form

I+0mANzz+EAz=1, teb,

R (4)
zt|t:7T/2:b7 0.5(z+z)|t:7T/2:d
Where Z:(Z:l?"'?Zn)T? f:(Q‘Ql?"'?Q‘Qn)T? bz(n?"'?n)T7 d:(€7"'7£)T7
I=diag(l,...,I), A=diag(4;, ..., 4,) and
1 ... 1
1 ... 1
E=1. . . .
I 1 ... 1

Let us also define the inner product and norm of vector—functions
(2, w) = (2w, 2l = (2, 9)2.

Applying A to (4) we obtain a FDS in canonical form (see [5])
Cztt_+AZZg7 (5)

where A=AEA=A">0, C=A+072A2=C* >0 and g = Af. According
to Samarski’s stability theory [5] the FDS (5) is stable when

C—-02572A>0.

For o > n/4 we have

((C—O.25T2A)Z z) =(Az,z)+07° (Az, Az) —0.257° (EAz, Az)

ZAZ z -l-O'TQZAZ Az o —0.2572 HZAZ
=1

n n

Z 121, + (0 —n/4) 7 Z||A21||2+025T2ZZ||A12 - A; 2%

=1 1=2 j=1

> Z I12°11%, = llzIl3
=1
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which means that

C-02572A>A>0,
and, consequently, FDS (5) is stable.

Using energy method, multiplying (5) by z — Zz, we obtain a priori estimate

Tg} N(z) < N(Z)|t:77/2 + TZ lgll(c—o.25-2 A)-1 » (6)
teo
where -
5 . 2 z+z
N*(z) = |2l g 52 a 2 la-

Other standard a priori estimates (see [5]) do not hold because operators A and C
do not comute.

Further

2 2
L2 =y + |2

2 —“ .
w 27

z+ 7|2

2

2 z+ 7z
z) = “Zt“cfo.zs#A 5

- 2 N 4
=2 Il + H 2 A
=1 =1
2 2 2 _ . 2 = ) 2
N(2)] < IBIE+ Il = 3 [l e+ || 22 i
1=1 =1

n . 1/2
el e o rears < lellam = lEl = (3 1)
=1

From here and (6), for 7 ~ h (i.e. C1h <7 < Csh), we obtain

n
max llzlle <3 (|lnel, + el +7 X ek,
=1

teo

N?(

E

i
2t

) (7)

To prove the convergence of FDS (2) we must estimate the terms cp;l, , Mz; and
&z.5, - That can be done using the Bramble-Hilbert lemma, in the same way as in
[2]. For 7 ~ h in such a way we obtain the following convergence rate estimate

ma [l2l, < OB Jullwe), 35 <5, (8)

REMARK. In some cases the assumption 7 ~ h can be omited. For example,
for s =5 terms cp;l, , Me; and &;,z, can be represented in integral form, wherefrom
directly follows

max [zll2 < C (1 +7) ullwg(o)-

Another group of convergence rate estimates can be obtained in the following
way. Applying A; (I +o7A;)"t to (3), after summation on 7 we obtain
th+AZ:’l/}, t€0,

” 9
R R )
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where

n

z:A—leizi, A:zn;Ai:Zn;Ai(I+arAi)_17 w:/l_lzn;AisOi.

i=1

For o >n/[4(1—a)], 0<a<1, wehave 0 <al <I-02572A<1, so
the FDS (9) is absolutelly stable.

The operators A and A satisfy the relations I < (I —0.25724)7! < a7'T1
and A < A . In the case when 7 ~ h we also have A< A, 0< < 1. Using
these relations and the energy method [5] we obtain the a priori estimate

=)
A

Il = mage (]2 + |
ey el = g (=1 + 55

<C (Inlls + 3 lgwll,, +7 3 S Il -
=1

teo i=1
Similarly, applying operator A*~! (k = 2,3, ...) to (9) and repeating the same
procedure, we obtain

(10)

_ 2 2+ 22 \1/2
g e =g (ol + [ 50)
o (1)
<€ (Wl + €l +7 30 D leillans)
teh i=1

In such a way, the problem of deriving the convergence rate estimate for the
FDS (9), or (2), is now reduced to estimation of the right hand side terms in (10)
and (11). Using the Bramble-Hilbert lemma, in the same manner as in the previous
case, from (10-11) we obtain

max |zl < CRSFL lullwsq) E+1<s<k+3; k=1,2,... (12)
te

Analogous results for the parabolic case are obtained in [3].
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