
MATEMATIQKI VESNIK

46 (1994), 105{112
UDC 519.682

originalni nauqni rad

research paper

A SOLUTION TO THE PARTS EXPLOSION PROBLEM
IN (LISPKIT) LISP/SQL LANGUAGE

Nenad Miti�c

Abstract. In this paper a new approach to resolving the parts explosion problem [1] will be
presented. The parts explosion problem is well known as a problem that is beyond the capabilities
of classical relational algebra. This problem can not be solved in a natural way in an SQL system
by means of recursive calls, because SQL does not support recursion in a classical sense. Suggested
solution is recursive and it is based on a di�erent concept of a result of an SQL query embedded
in a programming language.

1. Introduction

The parts explosion problem is de�ned in a following way [1]: Let a database
contain a relation PARTS whose contents are a list of parts, de�ned as

CREATE TABLE PARTS

(P# NOT NULL,

. , | other related data

PRIMARY KEY (P#));

and an other relation PP, in which component relationships between parts from
the relation PARTS are stored. A pair of parts (Px, Py) appearing in a row of the
table PP denotes that the part Py is an immediate component of the part Px. Such
a relation would be de�ned as

CREATE TABLE PP

(MAJORP# . . . NOT NULL,

(MINORP# . . . NOT NULL,

. , | other related data

PRIMARY KEY (MAJORP#, MINORP#),

FOREIGN KEY (MAJORP#) REFERENCES PARTS . . . ,

FOREIGN KEY (MINORP#) REFERENCES PARTS . . .);

Parts from the PARTS table may have any number of immediate components.
All of them are represented by the relation PP. Further on, due to simplicity, other

105

106 N. Miti�c

attributes of the table PP, marked as "other related data", will not be considered
(e.g. QUANTITY attribute, indicating how many instances of a given MINORP#
are required as immediate components of a single instance of a given MAJORP#).
For instance, let the table PP have the following contents:

MAJORP# MINORP#
P1 P2

P1 P3

P1 P4

P2 P3

P2 P5

P3 P5

P3 P6

P4 P3

P4 P6

P7 P8

P7 P9

The parts explosion problem can be stated now as follows:

Find all the components of a given part (say part P1) to all levels.

Although the problem is stated in terms of parts and their components, it is of
much more general applicability. The parts-to-parts structure PP can be regarded
as a prototype for a wide class of such structures-family trees, organization charts,
entity type hierarchies, and so on.

2. Tree-structured relations

A relation such as the parts-to-parts relation PP can be regarded as a collection
of trees, in the following sense:

� Every part which is not an immediate component of another part is the root
of some tree;

� All the immediate component Py of a part Px are direct descendants of the
node Px.

� Only parts of the relation PP can be nodes and leaves in the tree;

For example, according to the sample contents, the relation PP can be regarded
as if it consisted of two such trees, one for part P1 and the other for part P7. Figure
1 shows the structure of the tree for the part P1.

Note that the tree on the Figure 1 is not necessarily a binary tree, and that
a tree for any given part could contain duplicate nodes, in general (like the node
P5).

A solution to the parts explosion problem . . . 107

Figure 1. The tree structure of the part P1 (relation PP)

It is well known that it is impossible to formulate a part explosion as a single
expression in the relational algebra or relational calculus. In many languages [2],
including in particular applicative SQL, it is possible but complicated to write a
program which does the same thing. This program traverses each tree in a pre-
order (top to bottom, left to right) way, and, for the tree on the Figure 1, displays
the following result:

P1, P2, P3, P5, P6, P5, P3, P5, P6, P4, P3, P5, P6, P6

The result obtained is much more readable if shown in a tabular form:

MAJORP# MINORP#

P1 P2

P1 P3

P1 P5

P1 P6

P1 P5

P1 P3

P1 P5

P1 P6

P1 P4

P1 P3

P1 P5

P1 P6

P1 P6

Such a table cannot be used e�ciently due to at least two reasons:

� it does not present a relation as it contains duplicate rows, and

108 N. Miti�c

� although it shows all the components of the part P1, it does not show its
structure (e.g. level on which components P2 and P3 take part is not known)

It follows that a program which solves the parts explosion problem successfully
should produce the result in a form of a table (that can be used in a relational
database) representing the complete structure of a given part.

3. Resolving parts explosion problem using SQL
embedded in imperative programming languages

Resolving the parts explosion problem in imperative programming languages
is reduced to resolving the tree traversal problem. As the algorithm of the tree
traversal is recursive by nature, the given code will be (implicitly or explicitly)
recursive too.

A natural way for resolving such a problem is designing a procedure whose
parameters are:

� the part whose components are to be found, and

� the level on which the part is located.

In this procedure the cursor should be de�ned for fetching the parts that are
immediate components of the parameter part. The same procedure is called, with
increasing level, for every immediate component fetched. The procedure ends when
the end of the list of immediate components of the part is reached. Parameters for
initial procedure call are the part whose structure is to be de�ned, and the number
0, as the starting level.

This procedure is only theoretically correct because the SQL does not support
the recursive cursor (e.g., it is not allowed to open more than one instance of the
same cursor at the same time). In the SQL language, by de�nition, every attempt
to open the cursor that is already opened fails with the SQLCODE that denotes an
error. For that reason Date [1] elaborates two ideas as a possible manner to resolve
such a problem:

� extending the cursor mechanism of embedded SQL (introducing "reopenable
cursor"), and

� extending the function of SQL SELECT operation (introducing "tuple values"
and treating the SQL SELECT as a tuple value)

Both ideas are only theoretical ones because of the way of using the SQL
language in imperative programming languages.

Instead of it, it is possible to solve the problem by using the cursor which is
closed every time an immediate component of some part is fetched. The cursor
de�nition includes ordering by immediate components. It enables the cursor after
reopening to skip all immediate components previously processed. For immediate
component obtained the same procedure is called recursively with increasing level.
The procedure that contains such a cursor �nishes when the end of the list of
immediate components of the part is reached. The argument for initial procedure
call is the part whose structure is to be de�ned, and the number 0, as the starting

A solution to the parts explosion problem . . . 109

level. The procedure is very ine�cient: during the execution of this procedure, for
every node X that has n descendants (there are n branches from the node X), such
a cursor is opened and closed n+ 1 times.

4. Resolving parts explosion problem using Lisp/SQL

By using the embedded SQL in a functional programming language Lispkit
Lisp, it will be possible to solve the parts explosion problem in simple and e�-
cient way. The pure functional programming language Lispkit Lisp/SQL [3] repre-
sents the extension of the Lispkit Lisp language by the interface to DB2 Relational
DataBase Management System. The interface constructed enables the usage of
SQL relational query language. It has been implemented in Lispkit Lisp and PL/I
languages, and presents a connection to DB2. It runs under MVS/ESA operating
system on IBM/3090 machine.

As a basis for the interface constructed the mechanism for dynamic execution of
SQL queries [4] is used. The usage of the dynamic instead of the static SQL, enables
easier implementation of a number of SQL statements in the interface. Moreover,
all the SQL statements that are supported by the dynamic SQL are implemented,
except parameter markers. No di�erences exist in syntax of the implemented and
SQL/DB2 versions. The host variables can be used in the same manner as in all
the other host DB2 languages. Every host variable must have ':' as a pre�x with
no exception. The only condition that must be ful�lled is that a host variable name
is equal to a name of some argument of Lispkit Lisp function in which that SQL
query appears.

SQL query is present in a Lispkit Lisp program as an argument of the function
EXECSQL. The value of this function is evaluated as follows:

� In case that given query does contain select statement, all rows from the result
table will be placed (with necessary conversions) into the list that becomes the
value of the function EXECSQL. Such a list consists of sublists which are the
elements of the table that is generated by the execution of the query

� In case that given query does not contain select statement or the resulting
table is empty, the value of the function EXECSQL is an empty list (NIL)

� In case that execution of the given query produces an error, a message will be
generated and the result of the EXECSQL function will be set to an empty
list (NIL).

As we deal with a pure functional programming language, host variables can
not be used as locations in which the values obtained by a given query will be
placed. Because SQL query is de�ned this way, and holding results is managed
appropriately, there is no need for introducing the concept of cursor in Lispkit
Lisp/SQL. Practically, designed SQL interface represents a mixture between an
interactive SQL and SQL embedded in imperative programming languages. As in
interactive SQL, the result of the SELECT operation could be the whole table. On
the other side, data from such a table can be manipulated with in a program in the
same manner as it is done in imperative programming languages. This new quality

110 N. Miti�c

and the fact that Lispkit Lisp (as any other functional language) supports recursion,
enables relatively simple coding of the program that solves parts explosion problem
in a natural way.

The following Lispkit Lisp/SQL program, for a given part name as an argu-
ment, produces the table which shows its structure in detail:

(LETREC PP0

(PP0 LAMBDA(PART)

(LET (IF (EQ NIL QUERY)

(PRINTNL (QUOTE (PART has no components))

(TABLE PRINT (PP1 PART QUERY 1))

)

(QUERY EXECSQL SELECT MINORP#

FROM PP

WHERE MAJORP# =:PART)))

(PP1 LAMBDA(PART LIST LEVEL)

(IF (EQ LIST NIL)

NIL

(APPEND (PP2 PART (CAR (CAR LIST)) LEVEL)

(PP1 PART (CDR LIST) LEVEL))))

(PP2 LAMBDA(PART SUBPART LEVEL)

(LET (IF (EQ NIL QUERY)

(CONS (CONS (KEY) (CONS PART (CONS SUBPART (CONS LEVEL NIL))))

NIL)

(CONS (CONS (KEY) (CONS PART (CONS SUBPART (CONS LEVEL NIL))))

(PP1 PART QUERY (ADD LEVEL 1))))

(QUERY EXECSQL SELECT MINORP#

FROM PP

WHERE MAJORP# =:SUBPART))))

The function PRINTNL prints the argument in a new line, while
TABLE PRINT prints (especially structured) list in a form of the table. The value
of the KEY function is an integer equal to the number of callings (executions) of
the KEY function in the program.

By execution of the SQL query in the function PP0, the list of all immediate
components of the part that is an initial argument of the function is produced. The
initial part, the list obtained, and a number 1 (denoting the �rst level) represent
input arguments of the function PP1. The function PP1 calls the function PP2
for each element of the list (second input argument). The function PP2 evaluates

A solution to the parts explosion problem . . . 111

immediate components of the element. In case an argument of the function PP2 has
its own immediate components, the function PP1 is called recursively. Otherwise,
the value evaluated becomes the value of the function and execution stops.

The result of the execution of the previous program with P1 as an input argu-
ment is:

Numb Majorp# Minorp# Level

13 P1 P4 1

12 P1 P6 2

11 P1 P3 2

10 P1 P6 3

9 P1 P5 3

8 P1 P3 1

7 P1 P6 2

6 P1 P5 2

5 P1 P2 1

4 P1 P5 2

3 P1 P3 2

2 P1 P6 3

1 P1 P5 3

5. Comments on the functional solution

The solution obtained by the previous Lisp/SQL program satis�es the listed
conditions entirely:

� it shows the complete structure of the part desired on all levels. The meaning
of column Level is the level on which the part Minorp# is the component of
the part Majorp#

� it represents a relation that can be used further on in a relational database.
Adding the column Numb enables de�ning a primary key of the relation and
keeping obtained data in the database.

Moreover, by analyzing the result obtained (the contents of the table), struc-
ture of a tree de�ned by the original relation PP can be reconstructed entirely. The
tree is formed using the following algorithm:

� De�ne the depth of the tree as the value of the attribute Level in the row with
the smallest value of Numb (in the previous example the depth is 3)

� Process rows in an increasing order of values of the attribute Numb

� Associate data (Minorp#) contained in the row with the smallest value of the
attribute Numb, with the "low-left" leaf in the tree

� Processing row by row, place other nodes at the appropriate level in the tree
(determined by value of the Level attribute in that row). Associate such a
node with value of Minorp# attribute in the processed row. If the value of the

112 N. Miti�c

Level attribute decreased (with respect to the value of the Level attribute in
the previously processed row), connect that node with all unconnected nodes
placed one level deeper (in the previous example such a row is "3 P1 P3 2",
and previously processed rows are "1 P1 P5 3" and "2 P1 P6 3"). Then, if
necessary repeat this step in the algorithm.

� When the value 1 for the Level attribute in a row is reached, it denotes that
construction of a subtree is completed. The Minorp# value in the row is an
immediate component of the given part. The remaining data (if exist) form
other subtrees.

� Associate a root of the overall tree with value of the Majorp# and connect it
with all the subtrees previously constructed.

In the Lisp/SQL program, the SQL query is executed exactly once for each
node in the tree. It represents a great decrease of demand for resources with respect
to the method described in [2]. The program is simple to use by the end user. It
runs both in interactive and batch mode. Although it is based on dynamic SQL,
no problem with performance has been noticed while the program has been tested.

6. Summary

This paper proposes a method for solving parts explosion problem. An algo-
rithm is designed and implemented in SQL integrated in a pure functional pro-
gramming language Lispkit Lisp. It solves the given problem e�ciently and in a
natural way. It is simple and easy to use by end user. The e�ciency and simplicity
of the solution are reached due to the way of integrating SQL into Lispkit Lisp
language. The integration is done by using the dynamic SQL, and the language
obtained possesses attractive features of both interactive SQL and SQL embedded
in imperative programming languages. The fact that integrated system does not
need the concept of a cursor for processing tables, enables the recursion to be used
as a natural way for solving the problem.

7. Acknowledgments

I would like to thank Gordana Pavlovi�c-La�zeti�c who have read and commented
on previous draft of this paper.

REFERENCES

[1] C. J. Date, A Note on the Parts Explosion Problem, in Relational Database: Selected Writings,
Addison-Wesley 1986

[2] C. J. Date with Colin J. White, A Guide to DB2 (3 ed.), Addison-Wesley 1989

[3] Nenad Miti�c, Integracija SQL/DB2 u Lispkit Lisp jeziku, XXXVII konferencija ETAN-a,
Beograd 1993, sveska 8, pp. 103-108

[4] IBM, DB2 V2 Release 2: Application Programming and SQL Guide, SC26{4377{1

(received 18.10.1994.)

Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Beograd, Yugoslavia

xpmfm23@yubgss21.bg.ac.yu

