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Abstract. In this paper we consider derivatives of higher order and certain “double” inte-
grals of the eigenfunctions and associated functions of the formal Sturm-Liouville operator

L(u)(z) = —(p(z) u' ()" + q(=) u(x)

defined on a finite or infinite interval G C R. We suppose that the complex-valued potential
q = q(x) belongs to the class Li°*(G) and that piecewise continuously differentiable coefficient
p = p(x) has a finite number of the discontinuity points in G.

Order-sharp upper estimates are obtained for the suprema of the moduli of the k-th order

derivatives (k = 2) of the eigenfunctions and associated functions {ﬂ)\ (z)]: = 0,1,...} of the
operator £ in terms of their norms in metric Ly on compact subsets of G (on the entire interval
G). Also, order-sharp upper estimates are established for the integrals (over closed intervals

[y1,y2] € G) ,
/ij(/l?’aA<s>d5)dy, / (/ (€4 )y

in terms of Ly-norms of the mentioned functions when G is finite.

The corresponding estimates for derivatives ﬂ’)\ (z) and integrals fyylz Ty (y) dy were proved in

[5]-[6]-
Introduction
1. Definitions. Consider the formal Sturm-Liouville operator

L(u)(@) = =(p(z) u'(x) +q(x) u(x), (1)

which is defined on an arbitrary interval G = (a,b) of the real axis R. Let g € G
be a point of discontinuity of the coefficient p. If we suppose that

[ m(z), z€(a,z0), o) — @ (z), =€ (a,m),
={ ot = {am rewm,
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30 N. Lazetié

then the following conditions are imposed on the coefficients:

1) pr(x) € CV(a,z0], and pa(z) € C Mz, b).

2) p1(z) > aqn > 0 everywhere on (a,xo], and pa(z) > as > 0 everywhere on
[0, D).

3) q(z) € L!*¢(G) is a complex-valued function.

DEFINITION 1. A complex-valued function Uy (z) # 0is called an eigenfunction
of the operator (1) corresponding to the (complex) eigenvalue A (A = Re A+iZm \)
if it satisfies the following conditions:

(a) ux(z) is absolutely continuous on any finite closed subinterval of G.

(b) &&(x) is absolutely continuous on any finite closed subinterval of the half-
open intervals (a, zo] and [z, b).

(c) u(z) satisfies the differential equation

—(p1 () uh(2))" + a1 (@) ur(2) = Aua(x) (2)
almost everywhere on (a, zp), and the differential equation

[¢]

—(p2(0) u\ (@) + g2 () ur (@) = Aa () (3)
almost everywhere on (zg,b).
() pa(wo) i (w0 — 0) = pa(wo) tth (wo +0).

DEFINITION 2. A complex-valued function &A(x) Z0(i=1,2,...) is called
an associated function (of the i-th order) of the operator (1) corresponding to the

eigenfunction 10L>\(x) and the eigenvalue X if it satisfies the following conditions:
(a*) Conditions (a), (b) and (d) of Definition 1 hold for &A(x)

(b*) &A(x) satisfies the differential equation

—(pr(@) W5 (@) + @1 (x) ur(x) = A () = ‘ux () (4)

almost everywhere on (a, o), and the differential equation

— (pa(a) W5 (2)) + g2(x) ur(x) = A () = ‘un () (5)
almost everywhere on (zo,b).

1.1. Let K be any compact set of positive measure lying strictly within G. We
will use the notation Kr = {z € G | p(x, K ) < R}, where R € (0, p(K,dG)), and
K is the intersection of all closed intervals containing K. (By p(4, B) we denote
the distance of a set A C R from a set B C R.)

If A =re, then VA < /Fe®/2, where ¢ € (—7/2,37/2].
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2. Main theorems. We present the following results.

THEOREM 1. (a) Suppose that qi(z) € C*=2)(a,x0],q2(x) € C*=2[xg,b),
pi(z) € C*V(a,z0],p2(x) € C*Vxg,b) (k > 2). Then the functions u(x)

(¢ =0,1,...) have derivatives %&A(x) (2 < j < k), continuous on the half-open
intervals (a,xo] and [xg,b), and for every compact set K C G there exist a number
R € (0,p(K,dG)) and constants r(Kgr,Tm V), Cij(Kr,p,q,Im V\) such that

&’
— uy(x)

— < Cii(Krypo ¢, Im V) || | 1y(xcp) (6)

sup
zEK

if0 < |ReVA| < r(Kg,Im\), and

i

sup wvuk(x) < Cij(I{Rvpquzm\/X) |\/X|J “/&)\ ”Lz(KR) (7)

zeEK

if [Re VA| > r(Kr,Im V).

(b) Let q(x) € Li1(G), and suppose that &A(x) € Ly(G) (1 =0,1,2,...) if
G is an infinite interval. If the functions pi(x), p2(x), ¢1(x), ¢2(z) are bounded
along with all their derivatives, then derivatives %jfu(x) (1=0,1,...;2<j<k)
are bounded on the half-open intervals (a,xo] and [xo,b), and there exist constants
r(G,Im V), Ci; (G, p,q, Tm V/X) such that
7 i
sup | d_] ’U,)\(l') | < Cij(G7p7Q7Im \/X) “ ux ||L2(G) (8)
zelG T

for 0 < |Re V| < 7(G,Im ), and

&l P
sup | 5 ()| < € (G, 0. T VE) [VAP i 1 9)

for |[Re V| > (G, ITmV\).

Note here that talking about continuity of the function %&A(x) on the set

(a, o] (on the set [zo,b)) by the value of this function at zo we mean %(xo —0)
(457 (20 +0)).

In the following theorem we will suppose additionally that the functions ux ()
are absolutely continuous on the whole closed interval GG, and that the functions

) () are absolutely continuous on the closed intervals [a, x] and [xg, b].

THEOREM 2. Let q(x) € L1(G), where G is a finite interval, and suppose that
p1(z) € CWa, 0], p2(z) € CMxo,b]. Then there exist a closed interval K C G and
constants T(G7Im\/X)7Di2(G7KR7p,q7Im \/X) such that the following estimates
hold uniformly with respect to the numbers a < y1 < y2 < b:
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(a) If ik (a) = 0(i = 0,1,...), then

‘ / ( dg) \sDixG,fcR,p,q,me/X)||«3A||L2<KR> (10)

for every eigenvalue X\, and
. 1 i
‘ / < d€> ‘ < Di2(G7[&Rvp7Q7Im\/X) m || U ||L2(KR) (11)

for |Re \/X| > r(G,Im/X), where R € (0, p(K,dG)) is some fized number.

)If '(b)=0(:=0,1,...), then

‘ / dg) < Dar(G Ky p, 0, ImVA) [l sy (12)
for every eigenvalue X, and
‘ / d€> D‘LZ(G IXRvpquzm\/_) | | ||’U,)\ “Lz (Kr) (13)

for |[Rev/A| > r(G,Im\/X), where R € (0, p(K,0G)) is some fized number.

2.1. For the sake of simplicity we have supposed that the coefficient p(x)
has only one point of discontinuity. But all stated results remain valid when this
function has an arbitrary finite number of such points.

2.2. Let us give a few comments on the theorems.

REMARK 1. It is possible to replace ||’IZLA l|o(xcr) in the estimates (6)-(7)
by max,exp, |4y (z) |, for a fixed number Ry € (0,R). If G is a ﬁnite interval,

then there exists a closed interval K

2(@) and
C;;(G,-) in the estimates (8)-(9) by max, ¢ i | uA( )| and C;;(Kr,, ) respectlvely.

REMARK 2. The estimates (10) and (12) are actually valid without boundary
conditions imposed in the theorem

LK) in estimates (10)—~(13) by max, ¢ | ux(z) |,
with constants D;s(:) changed correspondingly. As a consequence we obtain, by
virtue of estimates (24) and (16), that the estimates (10)—(13) are valid for every
closed interval K C G (with corresponding constants Dy (G, Kg,p,q,Zmv\))

The number r(G,Zm /) ) is the same in both Theorems 1 and 2.

REMARK 3. Let o(L£) be some set of eigenvalues of the operator (1). If there
exists a constant A not depending on numbers A € o(£) and such that

| ZTmVX| < A,  Xeo(L), (14)
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then constants Co;(-), Do2(+) and r(-) do not depend on the numbers A, which
means that it is possible to define these constants uniformly with respect to the
parameter A € o(L).

If the numbers A € o(L) satisfy (14) and zero is not a limit point of the set
{|ReVX||X € 0(L)}, then the other constants appearing in the estimates (6)—(13)
do not depend on these numbers.

REMARK 4. The constants C;;(-) and D;s(-)(i > 1) actually are the same
for all associated functions corresponding to the specific eigenfunction, i.e., these
constants do not depend on the order ¢ of the associated function.

REMARK 5. Theorems 1-2 include the case when the function p(z) is continu-
ous at the point xy (and has the required differentiability properties at that point).
Especially, if p;(z) = p2(x) = 1 for x € G, then the operator (1) reduces to the
formal Schrodinger operator

L(u)(z) = —u"(x) + §(z) u(x). (15)

In that case the corresponding estimates for derivatives of eigenfunctions of an
arbitrary non-negative self-adjoint extension of the operator (15) were first derived

in [1]. If the extension is generated by the boundary conditions u} (a) = 0 = u}, (b),
then the estimates that correspond to the estimates (10)—(13) were proved and used
in [2].

The estimates for derivatives of eigenfunctions and associated functions of
nonself-adjoint operator (15) were first announced in [3].

REMARK 6. The example exposed in Remark 6 of [5] shows that the estimates
(6)—(9) are best possible with respect to the order of the parameter A. Also, consider
the following example.

Let the operator £(u)(z) = —u"(x) be defined on the interval G = (0, 1), and
let the eigenfunctions and associated functions of this operator satisfy the boundary
conditions u(0) = u(1),%'(0) = 0. Then (L) = {(2n7)?|n =0,1,...} is the set
of all eigenvalues, the eigenfunctions have the form ug(z) = 1,un(z) = cos2nrz
(n € N); the associated functions corresponding to the eigenfunction &O(x) do not
exist, and the others have the form

1 sin 2nmwx
Up(x) = —0 —— | n€N.
dnm

In this case the order of parameter A in the corresponding estimates (10)—(13)
can not be improved.

3. Auxiliary estimates. In the proofs of Theorems 1-2 we will essentially
use a set of estimates for eigenfunctions and associated functions of the operator
(1), and for their first derivatives, too. Those estimates are stated in the following
lemmas.
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LeMmMaA 1. (a) If g(z) € Li°°(G), then for any compact set K C G there exist a
number R € (0, p(K,dG)) and constants Ci(Kgr,p,q,ImvX) (i =0,1,2,...) such
that

ineaj}{( |111,)\(1') | < Ci(I{Rvpv%Im \/X) ” &A ”Lz(KR) : (16)

(b) Suppose that q(z) € Li(G), and that ﬁk(x) € Ly(G) if G is an infinite
interval. If p1(x) and pa(x) are bounded along with their first derivatives, then
there exist constants Ci(G,p,q,ImV/X) (i =0,1,2,...) such that

sup lux(2)| < Ci(G,p, ¢, Tm V) [Jun |16 - (17)

LEMMA 2. (a) If q(x) € Li°¢(G), then for any compact set K C G there
exist a number R € (0, p(K,dG)) and constants A;(Kr,p, ¢, ImvX), Ai(Kgr,p,q)
(i =1,2,...) such that

max | i (2) | < Ad(Kr,p, ¢, Im VX) | V|- max |ux(z)|  for A#0,
zeK zEKR (18)

1—1 . 7
max | uy (2)| < Ai(Kr,p.q) - max Jur(z)|  for A=0.

(b) Suppose that q(x) € Li(G), and that &A(x) € L2(G) if G is an infinite
interval. If p1(x) and pa(x) are bounded along with their first derivatives, then
there exist constants A;(G,p,q,Tm ), Ai(G,p,q) (i =1,2,...) such that

sup | ()| < A(G,p,q, Tm V) |[VA|-sup |ur(z)|  for A#0,
zeG zeG (19)

1—1 7
sup | (1) < Ai(Gyprq) - sup |in(@)|  for A=0.
zeG zeG

LeMMA 3. (a) If g(z) € L¥°¢(G), then for any compact set K C G there exist
a number R € (0,p(K,0G)) and constants r(Kgr,Zm ), Ci(Kg,p,q,Imv/'\)
(1=0,1,2,...) such that

Su?{ |1Zj”)\(x) | < Cil(I{Rvpv qum\/x) “ &A ”Lz(KR) (20)
e

for 0 <|RevVA)| < r(Kgr,Im+\), and

sup |ul(2) | < Cit (Kpyp, ¢, I V) [ V] - [ || o (50m) (21)
zEK

for |[ReVX| > r(Kg,ITmV\).
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(b) Let g(x) € L1(G) and (when the interval G is infinite) &A(x) € Ly(G). If
the functions pi(x) and p2(x) are bounded together with their first derivatives, then
there ezist constants (G, Zmv'X), Ci1(G,p,q¢,ImVX) (i =0,1,2,...) such that

sup | d)\(2) | < Caa (G p g, Im V) [ [| o) (22)
TE

for 0 <|RevVA| < r(G,ImVX), and

sup |\ (2) | < Cia(Gop, 0, Im V) [V - [t |2y (23)
zE

for |[ReVX| > r(G,Tm VX).

3.1. The estimates (16)—(19) were established in [4], and estimates (20)—(23)
in [5]-[6]. It was proved there that the constants appearing in those estimates do
not depend on numbers A € o(L) if o(L) satisfies conditions described in Remark
3. Also, the constants C;(+), A;(-) and C;1(+) (i = 1,2,...) are independent of the
parameter i.

3.2. Global estimate (17) may be sharpened in the following way: If G
is a finite interval, then for any closed interval K C G there exist constants
Ci(K,p,q,Zm /) such that

sup |d(2) | < Ci(K,p.q. Zm VX) - max | i (2)] (24)
zeG T

Further, if K C G is an closed interval, then max,er, |’lll,)\(1') | and A;(Kr,-)
in estimates (18) can be replaced by max,cx | ux(z) | and A;(K,-) respectively.

3.3. The statements from Remark 1 are also valid in the case of estimates
(20)—(23).

3.4. Theorems 1-2 are results of independent interest; along with Lemas 1-3
and the two theorems proved in [5]-[6] they provide for a complete and definitive
picture of estimates of the considered type. But they may also play an impor-
tant role in study of uniform convergence on G (or on compact subsets of G) of
derivatives of partial sum of spectral expansion (for an absolutely continuous func-
tion) generated by an arbitrary complete and minimal system of eigenfunctions and
associated functions of the operators (1) and (15).

61. Local estimates of the second derivative

1. On the differential equations (2)—(5). Everything in the proof of
Theorem 1 is based on the differential equations (2)—(5) and the estimates (16)—
(23). We will first prove the following assertions: If ¢(z) € C(G \ {zo}), then

1) the eigenfunctions and associated functions of the operator (1) have contin-
uous second derivative on the set G\ {zo};

2) there exist the finite one-side derivatives u (xo—0), u¥(xo+0) (i =0,1,...);
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3) the eigenfunctions and associated functions satisfy the corresponding differ-
ential equation everywhere on the interval (a,zy) or (zo,b).

1.1. Let &A(x) be an associated function of the operator (1) corresponding
to the eigenfunction u,(z) and the eigenvalue \. Let [¢,d] be an arbitrary closed

subinterval of the interval (a,zp). The function fi(z) Lef p1(z) wh (2) is absolutely
continuous on [c,d]. Thus for every x € (c,d) we have fi(z) = fi(c) + [ fi(£) d¢
or, by virtue of the differential equation (2), the equality

i1

fi(2) = fi(0) + / [0u(€) () = Min(€) + 0 ()] de. (25)

By the continuity of ¢i(x) on (a,xo) the integral (25) has continuous first
derivative on (c,d). Therefore, we obtain from (25) that fi(z) is continuously
differentiable on (¢, d) and satisfies the differential equation

fi(e) = qu(@) (@) = Nia (@) + U (2) (26)
everywhere on the interval (¢,d) and, consequently, on the whole interval (a, o).
Now, it results from the continuous differentiability of p;(z) and fi(z) that
the function 13& (z) has continuous first derivative on (a,xp).
1.2. Analogously, using the differential equation (3) instead of (2), we can

prove that the function fo(x) €ef pa(z) )y (x) is continuously differentiable on (¢, b)
and satisfies the differential equation

(@) = g2(x) wr () = Aaa(2) + un (x) (27)

everywhere on this interval, and that the function ) () has continuous first deriv-
ative on the whole interval (zg,b).
1.3. Let us examine the behaviour of function 4 (z) in a neighborhood of the

point zy. We know that &&(x) is (absolutely) continuous on every closed interval
[e, o] C (a,xo] (on every closed interval [xg,d] C [zo,b)). Hence, using (26)—(27),

we obtain that the finite one-side derivatives u(xo — 0) and u¥ (o + 0) exist;

iy iy

uy(xo —0) = z_l)izr?_o W (z) =
= s [ (wo) (o) = Mia(m0) + i (30) ~ pi (a0~ 0) (0 —0) |~ (25)
= pz(lfto) [‘b(a?o)liu(xo) - Aliw\(xo) +iu_xl(xo) —pg(xo + O)ZL')\(xo +0)] . (29)

In that sense, the function u/(z) is continuous on the half-open intervals (a, zo]
and [xg,b).
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2. Local estimates (6)—(7). Let us prove now estimates (6)—(7) in the case
j = 2. We will first consider the second derivative of an associated function wy(x)
corresponding to the eigenfunction uy(z) and the eigenvalue .

2.1. Let K C G be an arbitrary compact set (of strictly positive measure).
(The most complicated case is when zp € K, and it will be considered only.)
According to Lemmas 1 and 3, there exist a number R € (0, p(K,9G)) and con-
stants r(Kgr,Zmv\), Ci(Kr,p,¢,ImV/\), Ci1(Kgr,p,q,Zm+/X) such that esti-
mates (16),(20)—(21) hold with 4 > 0. (Without loss of generality we can sup-
pose that the number R is the same in both Lemmas. In fact, that is the case!
Furthermore, r(BR7Im\/_) > 1.) Also, by Lemma 2 and 3.2 in Introduction,
there is a constant A;(X, p,q,Zm\/_) such that the first estimate (18) is valid,
with max,ex, |U)\( )| replaced by max, |uA( )|. Using that estimate, the
corresponding estimates (16) and (21), and the differential equations (26)—(27), we
obtain that the following holds for every z € K\ {z¢}:

i 1
[50)1 < o7 [ /() sup [0 +2(K.0) - g [ ()| +
EEK
7 1—1
+|>\|'f§nealg<|ux(§)|+ffﬂe%|UA(§)|
1
< ? |:7’(I{7p)0i1(I(Rvpvqum\/xﬂ \/X|+ (7(‘[(7 q)+|)‘ | )Ci(I(Rvpquzm\/X)+

+ ‘Zli(Kvpv%Im\/X) Ci(I{Rvpquzm\/X) | \/X| : ” /&A ”Lz(KR) : (30)

By these inequalities one can get the estimate

sup |i(2) | <
zEI(\{zO}
1
< ? 71(1{71)) Cil(I(Rvpv qum\/x) + (W(I{7Q) + ]-) Ci(I{Rvpv qum\/x)+

+ Ai(vaquzm\/X)Ci(I{Rvp7Q7Im\/X):| |)‘| : || /&A ||L2(KR) ’ (31)

where | Re VA| > 7(Kg,Zm /X ). Here the following notations are used:

eEK— eKt

def . - def
o min {Var, vaz ),  A(Kp) L max{ max |p}(2)], max |p(r >|},
(K,q) ¥ max{ max |q(z)] max | () |
v ,q) = cEk— qi1{T 9 cKT q2(T 9

with K~ {2 e K|z <o}, KT E {2 e K|zg <}

If & = xg, then by virtue of the mentioned estimates (from Lemmas 1-3) and
equalities (28)—(29) we conclude that for max { |4 (w0 —0) |, | 4! (w0 +0) | } the first
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inequality (30) holds, too. Hence, it results that the estimate

Su? |’b’,>((x) | < Ci2(I{Rvp7Q7Im \/X) | A | ’ “ ’b’A “Lz(KR) (32)
zeK

is valid if | Re vVX| > 7(Kr,Zm /X ), where Ciy(-) denotes the constant from esti-
mate (31).

2.2. If0< |Re\/X| < 7(Kgr,Zm+/X), then we have the estimate

sup |{LI)((x) | < éiQ(I(R7p7Q7Im \/X) : || {LA | Ly(KRr)» (33)

zEK

with the constant

def 1

éi2(I{R7pv Q7Im \/X) ag |: ’YI(I(v p) Cil (I{Rvpv qum \/X )+

+[ (K, q) + (7‘(KR,Im\/X))2 + (Im \/X)2] Ci(Kr,p,q,ImVX)+

+/L(?7p,q7zm\/X)C’i(KR,]Lq,Im\/X) \/(1‘([&'1{,1171\/X))2 + (Im\/X)2 .

This assertion directly follows from the first inequality (30).

Note that using max if necessary we can obtain the same constant in both
estimates (6) and (7), as it is stated in the proposition (a) of Theorem 1.

2.3. By the above considerations we can conclude that the estimates (32)-
(33) are also valid for the function fL’A’(av)7 with constants Coa(Kr,-), Coa(Kr,-)
obtained from the constants Cj»(+) and Cis(+) by replacement i — 0 and removing
the A;(-)-term.

62. Global estimates of the second derivative
1. Global estimates (8)—(9). Let us prove now the estimates (8)—(9) in
case j = 2. We will first consider the second derivative of an associated function

tx(z) corresponding to the eigenfunction y(z) and the eigenvalue .

1.1. According to Lemmas 1-3, there exist a number 7(G,Zmv\) >
1 and constants C;(G,p,q,Im V), Ai(G,p,q,ITmX), Ci1(G,p,q,Zm/\) such
that the estimates (17), (19) and (22)—(23) hold. Using those estimates and differ-
ential equations (4)—(5), for every x € G \ {zo} we obtain the inequalities

i 1 i
|u&'<x>|<—2[max{ sup [F(E)], sup |p;<§>|}-sup|u;<§>|+
« £€(a,zo] £€lzo,b) £eq

+(max{ swp |a(©)], sup |q2<§>|}+|x|)-sup|éx<s>|+sup|"u£<§>|
(=€) fed@

£€(a,xo] £€lzo,b) 3
1 '
< = [7 (G,p) Ct(G,p, ¢, ImVX) [ VX| + (%(G,q) + |\ ]) Ci(G,p, ¢, Im VX )+

a2

4G,y 0, T VX)) GG pr g, T V) | VA } M sy (34)
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wherefrom it follows the estimate
sup | uj(z)| <
zEG\{zO}

<1
\a2

’yl(va) Cil(G7p7Q7Im\/X) + (W(qu) + ]-) Cz(G7p7Q7Im\/X)+

+ Az(vaquzm\/X) Cz(vaquzm\/X) :| |)‘| : || /&A ||L2(G) (35)

if [RevA| > r(G,Im/)\); here v'(G,p), v(G, ¢) have the obvious meaning.

By (28)—(29) it follows that max { |’lll,’)f($0 -0)], |13’>\’(:r0 +0)|} satisfies the
estimate (35), too. Thus, we get the estimate

Sug |{L’Al(x)| < Ci?(vaquIm\/X) | >‘| ! || {L)\ | L2(G) (36)
TE

if | RevA| > r(G,Tmv/X), where Cj5(-) is the constant from estimate (35).

1.2. If 0 < | Re VA | < (G, Tm V/X), then using equations (4)—(5), equalities
(28)—(29) and applying the mentioned above estimates (from Lemmas 1-3) to the
right-hand side of the first inequality (34), we obtaine the estimate

SUIG) |/&’A,(x) | < CN’iZ(vav qum\/x) : || /&A ||L2(G) ) (37)
Te

where the constant has the form

def 1
a2

+[(G,q) + (r(G,Im\/X))2 + (Im\/X)Q] Ci(G,p, ¢, ITm V) +

éz?(G7p7qum\/X) |:,}/I(G7p) Czl(va7qum\/X)+

+A4:(G,p, ¢, ITm V) Ci(G, p,q, Tm V\) \/(T(G,Im\/X))2 + (Zm\/X)2 .

Using max if necessary, we can get the same constant in both estimates (36)
and (37), as it is stated in the proposition (b) of Theorem 1.

1.3. The global estimates for u{(z) can be obtained in the same way as in the
case of local estimates (see 2.3 §1).

2. On Remarks 1 and 3—4. Analysing the first inequalities (31) and (34),
and having in mind Remark 2 from [5], we see that Remark 1 holds true in the case
j=2.

2.1. If (L) is a set of eigenvalues of the operator (1) satisfying conditions
described in Remark 3, then every constant from Lemmas 1-3 appearing in the
"local” and "global” constants Cyy(-), Ciz(-) (i =0,1,...) does not depend on the
numbers A € o(£) (see 3.1 in Introduction). Replace Zm v/ by A in all the terms in
constants Cjz(+), Ciz(+) containing Zm v/X explicitly. Therefore we obtain constants
Cia(-,p,q, A), Cia(-, p,q, A) not depending on X € o(L).

2.2. The assertion stated in Remark 4 follows from the fact that all the
constants from Lemmas 1-3 appearing in the constants Cja(+), Cia(:) (i = 1,2,---)
do not depend on the order i of the associated function (see 3.1 in Introduction).
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63. Estimates for derivatives of higher order

1. Existence of the derivatives. We continue the proof of Theorem 1
by considering those parts of propositions (a)—(b) concerning the existence and
continuity of higher order derivatives of eigenfunctions and associated functions.

The starting point is the fact that the functions wx(z) (i = 0,1,2,...) are solutions
of the corresponding differential equations (2)—(5) everywhere on (a,zq) or (zg,b)
if g(x) € C(G'\ {zo}). Therefore, in that case those equalities are identities with
respect to x.

1.1. Suppose j = 3 and consider, for example, the identity (4):

i i i i i1
pi(@) ul () = —pj(z) u)\(2) + q1 (2) ur(2) — Aur(2) + ur (v)
where = € (a,z) and ¢ > 1. By virtue of condition p;(z) > a; > 0 it follows from

this identity that the function %/ (z) has continuous first derivative on (a, o), and
for every z € (a,zp) we have

pi(x) WD (2) = —pi () W () — (9} () ) () +
+ (@) ua (@) = Aih (@) + ur'(z) . (38)

Analogously, using identity (5), one can prove existence of continuous third
derivative of &A(x) on the interval (zo,b), and establish the identity
pa(@)u (@) = —ph () 4§ (x) — (p) (@) ¥ (@) "+
+ (2(2) i () = M4 () + () (39)
on this interval.

By continuity of &K(x) on the half-open intervals (a,zo] and [xg,b) (see 1.3
§1), and by existence of the finite limits lim, .., ﬂg\B)(x) and limg ;40 ﬁ&S)(x),
which follows from (38)—(39), we can conclude that the finite one-side derivatives
&&3)(500 - 0) 713&3)(330 + 0) exist and that &&3)(50) is continuous on the half-open
intervals mentioned above.

1.2. The case of the eigenfunction function uy(z) is simpler; instead of iden-
tities (38)—(39) we have to use two identities of analogous form: Z;(x) is removed,
and &A(x) is replaced by u ().

1.3. Now, we have everything necessary for completion of the proof of the

first statements in propositions (a)—(b) of Theorem 1. This should be done by the
mathematical induction. We omit the details.

2. Estimates of the derivatives. The proof of estimates (6)—(7) and (8)—(9)
in general case should be completed by the mathematical induction, too. The first
step is getting identities of form (38)—(39) for the functions

&7 .
pk(x)wux(x) (k=1,2;i=0,1,2,...)
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in case of arbitrary 7 € N; this can be done by starting from identities (38)—(39)
and their analogues for ¢ = 0. Then, by the obtained identities, one can derive the
desired estimates, as it was domne in the case of the second derivatives.

3. On Remarks 1 and 3—4. It is not difficult to verify that the assertions
from Remarks 1, 3 and 4 concerning the estimates of derivatives and the corre-
sponding constants are valid in general case. The proof is based directly on the
mentioned above identities.

84. Proof of theorem 2.

1. The estimate (11). Let ﬁA(x) be an associated function of the operator
(1) corresponding to the eigenfunction fw\(x) and the eigenvalue A\ # 0. Suppose

) (a) = 0 and establish the estimate (11).
1.1. If y € [a,zp), then the following equality holds:

/ Y in(©) d = /i) () 2 ﬁﬁj};’ v=o)_
(v pi)

75 | T O s VAo € — ) = Bey — a)) de+
P2(a,y—a) atp2(a,t) .
b= [ ([T @@ sn VA Gatas - 0 - g i

p2(a,y—a) a+pa(a,t) .
_% o (/ NG Sin\/x(ﬁz(aaf—a)—t)c%)dt.

This equality formally follows from the equalities (20) and (29) in [6], by putting
there y; = a,ys =y, j1 = 1. Actually, it can be derived by applying the procedure
from 1.2-1.4 §1 and 1.1-1.2 § 2 in [6] to the closed interval [a, y], instead of [y, y2].

1.2. If y € (x0,b], then we have that

/ " (©) de = Vpr(@) i (o) SV AP0y @)

(40)

VA
i sin VA (pa(a, 70 — a) = py(a,y — a))
_(\/pz(xo) - \/pl(xo) )Ux(xo) N -
_ L[ G VA By — @)~ Balay — ) de+ (a)

VA Ja 24/p;()
pa(a,y—a) a+pa(a,t) ]
+% /0 (/ (&) ur(€) sin VX (B, (a, € — a) —t)dﬁ)dt—

P2(a,y—a) atpa(at) .
_%/0 </ w(¢) Sin\/x(ﬁz(&f-@—t)dﬁ)dt

(see equalities (19) and (28) in [6]).
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Note that all terms appearing in (40)—(41) are continuous functions with re-
spect to the variable y € [a, )], and, consequently, integrable on any closed interval
[ylv y2] g [av b]

1.3. Let [y1,y2] C [a,b] be an arbitrary closed interval. In order to prove
estimate (11) we have to integrate equality (40) (with respect to variable y) if
[y1,y2] C [a,z0], and the equality (41) if g < yo. It follows from (40)—(41) that
the second case is the more complicated one; we will consider in detail that case
only. Thus, we have

/yyz ( /y A (€) d£> 4y — V@) (o) /y sin VA7, (a,y — a) dy—

1 \/X Y1
— (Vpa(wa) - V/pr(a)) “\ﬁx) [ VR Gatasro = ) = Balary - )y~
—% / (/ %&A@) smx/m(a,g—a)—ma,y—a))dg)dy+

+% /: (/Opz(a,ya) </aa+pz(a,t) q(é)&A(E) sin VA (B (a, E—a)—t) d§> dt) dy—

_ % /yy < /OPZ(G’M) < /a”pzm’t) 2 (6) sin VA (o(a, € — a) — t) d§> dt)(ilé).

Consider the integral fyyf sin VA B,(a,y — a)dy. Introducing a new variable
t = py(a,y — a), and using then the integration by parts, we obtain an expression
for that integral, wherefrom it results the following estimate:

aaIm\/X)+

Y2
‘/ Sinﬁﬁz(my—a)dy‘ < <47(G,p)\/1+3h2(
Y1

- %7'(6’4}) \/1+sh2(Zm V) ) ﬁ )

Here constants (G, p), 7' (G,p) have the meaning analogous to the meaning of
constants v(K,¢) and 7/(K,p) introduced in 2.1 §1. Denote by C(G,p,ZTm v/X\)
the constant from the above estimate. (That estimate is valid also if sin is replaced
by cos.) That is why we have the estimate

pi@) ux(a) [ .~
‘T/yl sin VA Dy (a,y —a)dy | <
<4(G.) GG TmV3) o5 - sup (o). (43)

1.4. Transforming the second integral on the right-hand side of (42) by the
corresponding trigonometrical identity, we can obtain, analogously to the previous
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case, the estimate

Y2
[ VA = ) - e - w)di|<
Y1

QCN'(G,]LIm\/X)\/l—l-ShQ(b—Im\/_) (44)

[VA]

Denote by C(G,p,Zm v/X) the constant from this estimate. Now, using (44), we
get that

(Via@o) — /(@) ) “\ﬁx) / sinx/w?(a,xo —a) = palayy — @) dy
27(G,p) C(Gp, Tm VA ) — | sggwmn. (45)

>

1.5. Applying first the Fubini’s theorem to the third integral on the right-hand
side of (42), and then the estimate (44) to the obtained interior integrals, we have
the estimate

‘/ ( / %&A(a) sin VA (By(a, € = a) = Py(a,y - a)>d£> dy‘ <

¥ (G,p, Im VX) C(G, p7Im\/_)|\/—| sup | ux(z) |-

zel

(46)

< 2(b—a)
a

1.6. It remains to estimate the last two integrals on the right-hand side of
(42). For the first one we use the Fubini’s theorem again:

/ e ( / T O dn(©) sin VA (By(ar — a) =1 de ) at -
f/ ) [cos VA (Ba(a,€ — @) — Pola,y — a)) — 1] d€..

By virtue of this equality we get the estimate

Y2 Pa(a,y—a) a+p2(a,t) )
‘/ </0 </ (&) ur(€) sin\/X(ﬁQ(a,g—a)—t)d§>dt>dy‘<

b—a)? b—
<O g 2

«Q

“Tm f)lfl sup | (@) .

1.7. Denote by R4o)(a; y; A; ﬁk) (by Riany(a;y; A ﬁk) ) the sum of all the terms
(with corresponding signs) on the right-hand side of equality (40) (of equality (41)),
excluding the last integral. Also, denote by D, (G,p,q, Tm/X) the biggest of the
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constants appearing in estimates (43), (45), (46) and (47). Then it results from
those estimates and (42) that the following estimate is valid:

Y2

Y2 .
maX{ ‘/ R0y (a;y; \sun) dy |,
Y1

R4y (a;y; A;fu)d@/‘ } <

Y1

<4 Dpy(G, p7q,Imf)ﬁ Suglfu(w)l- (48)
TE

According to the content of 3.2 in Introduction, for any closed interval K C G
there exists a constant C;(K,p,q,Zm/A) such that estimate (24) holds. By the
proposition (a) of Lemma 1 there exist a number R € (0, p(K,9G)) and a constant
Ci(Kgr,p,q,IZm~/\) such that estimate (16) is valid. Now, using the mentioned
estimates, we obtain from (48) the estimate

Y2

Y2 .
maX{ ‘/ R0y (a;y; \sun) dy |,
Y1

R4y (a;y; A;fu)dy‘ } <

Y1

< 4D (G, p, ¢, Im VN )Ci(K,p, ¢, Tm V) Ci(K g, p,q, Tm VX )

| | " (49)

1.8. Let us finally estimate the last integral on the right-hand side of (42). By
the Fubini’s theorem that integral can be transformed in the following one:

/ym(/ayluxl(ﬁ) [cosﬁ(@(a,g—a)_pz(a,y_a))_1]d5> dy =

- /:2 < 1/; o (€) cos VA (By(a, E—a)—pa(a, y—a)) d£> dy—/:2 ( /ay iw1(£)d€>(ggé).

Using the Fubini’s theorem again, and applying then the estimate (44) (with
sin replaced by cos), the estimate (24) and the estimate (16), we obtain that for
every closed interval K C G the following estimate holds:

‘/ ( €) cos VA (7alar€ — a) - ﬁg(a7y—a))d£>dy‘<
2(b—a)C(G, p,Im\/_ (G,p7q,Im\/X)C’i(K,p7q,Im\/X)><
X Ci(Kryp, ¢, Im V) - x| sy - (51)

1.9. In order to obtain the appropriate estimate for the second integral on the
right-hand side of (50), we have to refer to the paper [6]. A careful analysis of 1.4
62 and 1.7 §1 in that paper shows that the following estimate is valid for every
number y € [y1, y2]:

‘/ U/)\ d&‘ G [&R07p7Q7Im\/_ T~ mE}X |ZUT)\1(‘CC)|7

| Al zekg,
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where K C G is some fixed closed interval, and Ry € (0,p(K,8G)) is a fixed
number. This estimate is valid if |ReVX| > #(G,Zm~/\), with r(G,Zmv/X)
defined in 1.2 § 3 in [5].

By virtue of the modified first estimate (18) (see 3.2 in Introduction), and by
estimate (16) we conclude that

‘/( dg) ‘ (b —a) Dir(G, Kry,p g, Tm VA ) %

X Ai([;rR07p7Q7Im\/X)Ci(l(vp7q71m\/x) . | i (Rr) > (52)

where K % Kr,, and R € (Ry, p(K,dG)) is a fixed number.

1.10. Let us now summarize the content of 1.1-1.9: There exist a closed
interval K C G and a constant 7(G,Zm v/A) such that the estimate

‘/ ( dg) ‘ 12(GBR7P7Q,Im\/_)—|

| )\| I{R) (53)

tion | Re V| > r(G,Zm+/X). This estimate follows from (42) and (49)—(52); the
constant D;2(+) is defined as sum of the constant from (49) and the maximum of
the constants appearing in estimates (51)—(52).

holds uniformly with respect to the numbers a < y; < y» < b if A satisfies condi-
(4
)

1.11. The above proof “works” in the case of the eigenfunction ﬂk(x), too.
One should start from the equahtles (40)—(41) in which w,(z) is replaced by wy(z)

and the last integral (containing uA( )) is removed.

2. The estimate (10). Proof of the estimate (10) is simpler. By virtue of
estimates (24) and (16) we get directly the inequalities

‘/( df) ‘ (b= ) sup [ir(2)] <

< (b - (L)2 CO([(,]LQ,I’ITL\/X) CO(KR7p7qum\/X)

or the estimate

Y2 v . i
/ ( / m(g)dg)dy‘<Dm(az«'m,wmm||uA||L2<KR), (54)
% a

1

2(Kr)

where K' C G is an arbitrary closed interval, R € (0, p(K,9G)) is a fixed number,
and i =0,1,....

2.1. We see that this estimate is actually valid independently of the boundary
condition &&(a) = 0; also, A is an arbitrary eigenvalue.

2.2. Using max if necessary, we can obtain the same constant in both estimates

(53) and (54), as it is stated in the proposition (a) of Theorem 2.

3. The estimates (12)—(13). The proof of these estimates is completely
analogous to the one of estimates (10)—(11).
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4. On Remarks 2—3. Analysing the content of 1.7-1.9 and 2, we see that
the second statement in Remark 2 holds true.

4.1. The constants D;»(-) and Dig(') can be defined independently of the
spectral parameter A € o(L) if the set o(L£) satisfies the conditions described in
Remark 3. The general principle is the same as in the case of constants Cj;(+);
under the mentioned conditions the constants from Lemmas 1-3 have the property
of independency, whereas Zm /A should be replaced by A in other terms appearing
in Djs(-) (and Dj»(-)) and containing Zm v/X.

4.2. The independency of constants D;s(-) and Dm(') of the parameter ¢ is
based on the same property of constants (from Lemmas 1-3) entering into the
structure of D;o(+) and Djs(+).
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