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ESTIMATES FOR DERIVATIVES AND INTEGRALS
OF EIGENFUNCTIONS AND ASSOCIATED FUNCTIONS
OF NONSELF-ADJOINT STURM-LIOUVILLE OPERATOR

WITH DISCONTINUOUS COEFFICIENTS (III)

Neboj�sa L. La�zeti�c

Abstract. In this paper we consider derivatives of higher order and certain \double" inte-
grals of the eigenfunctions and associated functions of the formal Sturm-Liouville operator

L(u)(x) = �
�
p(x)u0(x)

�
0

+ q(x)u(x)

de�ned on a �nite or in�nite interval G � R. We suppose that the complex-valued potential
q = q(x) belongs to the class Lloc

1 (G) and that piecewise continuously di�erentiable coe�cient
p = p(x) has a �nite number of the discontinuity points in G.

Order-sharp upper estimates are obtained for the suprema of the moduli of the k-th order

derivatives (k > 2) of the eigenfunctions and associated functions f
i
u�(x) j i = 0; 1; . . . g of the

operator L in terms of their norms in metric L2 on compact subsets of G (on the entire interval
G). Also, order-sharp upper estimates are established for the integrals (over closed intervals

[y1; y2] � G) Z
y2

y1

� Z
y

a

i
u�(�) d�

�
dy ;

Z
y2

y1

� Z
b

y

i
u�(�) d�

�
dy

in terms of L2-norms of the mentioned functions when G is �nite.

The corresponding estimates for derivatives
i
u0�(x) and integrals

R
y2
y1

i
u�(y) dy were proved in

[5]{[6].

Introduction

1. De�nitions. Consider the formal Sturm-Liouville operator

L(u)(x) = ��p(x)u0(x)�0 + q(x)u(x) ; (1)

which is de�ned on an arbitrary interval G = (a; b) of the real axis R. Let x0 2 G
be a point of discontinuity of the coe�cient p. If we suppose that

p(x) =

�
p1(x) ; x 2 (a; x0) ;

p2(x) ; x 2 (x0; b) ;
q(x) =

�
q1(x) ; x 2 (a; x0) ;

q2(x) ; x 2 (x0; b) ;
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then the following conditions are imposed on the coe�cients:

1) p1(x) 2 C(1)(a; x0], and p2(x) 2 C(1)[x0; b).
2) p1(x) > �1 > 0 everywhere on (a; x0], and p2(x) > �2 > 0 everywhere on

[x0; b).

3) q(x) 2 Lloc
1 (G) is a complex-valued function.

Definition 1. A complex-valued function
�
u�(x) 6� 0 is called an eigenfunction

of the operator (1) corresponding to the (complex ) eigenvalue � (� = Re �+ i Im�)
if it satis�es the following conditions:

(a)
�
u�(x) is absolutely continuous on any �nite closed subinterval of G.

(b)
�
u0�(x) is absolutely continuous on any �nite closed subinterval of the half-

open intervals (a; x0] and [x0; b).

(c)
�
u�(x) satis�es the di�erential equation

��p1(x) �u0�(x)�0 + q1(x)
�
u�(x) = �

�
u�(x) (2)

almost everywhere on (a; x0), and the di�erential equation

��p2(x) �u0�(x)�0 + q2(x)
�
u�(x) = �

�
u�(x) (3)

almost everywhere on (x0; b).

(d) p1(x0)
�
u0�(x0 � 0) = p2(x0)

�
u0�(x0 + 0).

Definition 2. A complex-valued function
i
u�(x) 6� 0 (i = 1; 2; . . . ) is called

an associated function (of the i-th order) of the operator (1) corresponding to the

eigenfunction
�
u�(x) and the eigenvalue � if it satis�es the following conditions:

(a?) Conditions (a); (b) and (d) of De�nition 1 hold for
i
u�(x).

(b?)
i
u�(x) satis�es the di�erential equation

��p1(x) i
u0�(x)

�0
+ q1(x)

i
u�(x) = �

i
u�(x)� i�1

u� (x) (4)

almost everywhere on (a; x0), and the di�erential equation

��p2(x) i
u0�(x)

�0
+ q2(x)

i
u�(x) = �

i
u�(x)� i�1

u� (x) (5)

almost everywhere on (x0; b).

1.1. Let K be any compact set of positive measure lying strictly within G. We
will use the notation KR = fx 2 G j �(x;K ) 6 R g, where R 2 (0; �(K; @G)), and
K is the intersection of all closed intervals containing K. (By �(A;B) we denote
the distance of a set A � R from a set B � R.)

If � = r ei', then
p
�

def
=
p
r ei'=2, where ' 2 (��=2; 3�=2].
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2. Main theorems. We present the following results.

Theorem 1. (a) Suppose that q1(x) 2 C(k�2)(a; x0] ; q2(x) 2 C(k�2)[x0; b);

p1(x) 2 C(k�1)(a; x0] ; p2(x) 2 C(k�1)[x0; b) (k > 2). Then the functions
i
u�(x)

(i = 0; 1; . . . ) have derivatives dj

dxj
i
u�(x) (2 6 j 6 k), continuous on the half-open

intervals (a; x0] and [x0; b), and for every compact set K � G there exist a number

R 2 (0; �(K; @G)) and constants r(KR; Im
p
� ) ; Cij(KR; p; q; Im

p
�) such that

sup
x2K

���� dj

dxj
i
u�(x)

���� 6 Cij(KR; p; q; Im
p
� ) k i

u� kL2(KR) (6)

if 0 6 j Re
p
� j 6 r(KR; Im

p
� ) , and

sup
x2K

���� dj

dxj
;
i
u�(x)

���� 6 Cij(KR; p; q; Im
p
� ) j

p
� jj k i

u� kL2(KR) (7)

if jRe
p
�j > r(KR; Im

p
� ).

(b) Let q(x) 2 L1(G), and suppose that
i
u�(x) 2 L2(G) (i = 0; 1; 2; . . . ) if

G is an in�nite interval. If the functions p1(x); p2(x); q1(x); q2(x) are bounded

along with all their derivatives, then derivatives dj

dxj
i
u�(x) (i = 0; 1; . . . ; 2 6 j 6 k)

are bounded on the half-open intervals (a; x0] and [x0; b), and there exist constants

r(G; Imp
� ) ; Cij(G; p; q; Im

p
�) such that

sup
x2G

j d
j

dxj
i
u�(x) j 6 Cij(G; p; q; Im

p
� ) k i

u� kL2(G) (8)

for 0 6 jRe
p
� j 6 r(G; Im

p
� ), and

sup
x2G

j d
j

dxj
i
u�(x) j 6 Cij(G; p; q; Im

p
� ) j

p
� jj k i

u� kL2(G) (9)

for jRe
p
�j > r(G; Im

p
� ).

Note here that talking about continuity of the function dj

dxj
i
u�(x) on the set

(a; x0] (on the set [x0; b)) by the value of this function at x0 we mean dj

dxj (x0 � 0)

( dj

dxj (x0 + 0)).

In the following theorem we will suppose additionally that the functions
i
u�(x)

are absolutely continuous on the whole closed interval G, and that the functions
i
u0�(x) are absolutely continuous on the closed intervals [a; x0] and [x0; b].

Theorem 2. Let q(x) 2 L1(G), where G is a �nite interval, and suppose that

p1(x) 2 C(1)[a; x0] ; p2(x) 2 C(1)[x0; b]. Then there exist a closed interval K � G and

constants r(G; Imp
� ) ; Di2(G;KR; p; q; Im

p
�) such that the following estimates

hold uniformly with respect to the numbers a 6 y1 < y2 6 b:
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(a) If
i
u0�(a) = 0(i = 0; 1; . . . ), then����

Z y2

y1

� Z y

a

i
u�(�) d�

�
dy

���� 6 Di2(G;KR; p; q; Im
p
� ) k i

u� kL2(KR) (10)

for every eigenvalue �, and����
Z y2

y1

� Z y

a

i
u�(�) d�

�
dy

���� 6 Di2(G;KR; p; q; Im
p
� )

1

j� j k
i
u� kL2(KR) (11)

for jRep�j > r(G; Imp
� ), where R 2 (0; �(K; @G)) is some �xed number.

(b) If
i
u0(b) = 0 (i = 0; 1; . . . ), then�����

Z y2

y1

� Z b

y

i
u�(�) d�

�
dy

����� 6 Di2(G;KR; p; q; Im
p
� ) k i

u� kL2(KR) (12)

for every eigenvalue �, and�����
Z y2

y1

� Z b

y

i
u�(�) d�

�
dy

����� 6 Di2(G;KR; p; q; Im
p
� )

1

j� j k
i
u� kL2(KR) (13)

for jRe
p
�j > r(G; Im

p
� ), where R 2 (0; �(K; @G)) is some �xed number.

2.1. For the sake of simplicity we have supposed that the coe�cient p(x)
has only one point of discontinuity. But all stated results remain valid when this
function has an arbitrary �nite number of such points.

2.2. Let us give a few comments on the theorems.

Remark 1. It is possible to replace k i
u� kL2(KR) in the estimates (6)-(7)

by maxx2KR0
j iu�(x) j, for a �xed number R0 2 (0; R). If G is a �nite interval,

then there exists a closed interval ~K � G such that we can replace k i
u� kL2(G) and

Cij(G; �) in the estimates (8)-(9) by maxx2 ~KR0
j iu�(x) j and Cij( ~KR0

; �) respectively.
Remark 2. The estimates (10) and (12) are actually valid without boundary

conditions imposed in the theorem.

It is possible to replace k i
u� kL2(KR) in estimates (10){(13) by maxx2K j iu�(x) j,

with constants Di2(�) changed correspondingly. As a consequence we obtain, by
virtue of estimates (24) and (16), that the estimates (10){(13) are valid for every

closed interval K � G (with corresponding constants Di2(G;KR; p; q; Im
p
� )).

The number r(G; Imp
� ) is the same in both Theorems 1 and 2.

Remark 3. Let �(L) be some set of eigenvalues of the operator (1). If there
exists a constant A not depending on numbers � 2 �(L) and such that

j Im
p
� j 6 A ; � 2 �(L) ; (14)
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then constants C0j(�); D02(�) and r(�) do not depend on the numbers �, which
means that it is possible to de�ne these constants uniformly with respect to the
parameter � 2 �(L).

If the numbers � 2 �(L) satisfy (14) and zero is not a limit point of the set

f jRep� j j� 2 �(L) g, then the other constants appearing in the estimates (6){(13)
do not depend on these numbers.

Remark 4. The constants Cij(�) and Di2(�)(i > 1) actually are the same
for all associated functions corresponding to the speci�c eigenfunction, i.e., these
constants do not depend on the order i of the associated function.

Remark 5. Theorems 1{2 include the case when the function p(x) is continu-
ous at the point x0 (and has the required di�erentiability properties at that point).
Especially, if p1(x) = p2(x) = 1 for x 2 G, then the operator (1) reduces to the
formal Schr�odinger operator

L(u)(x) = �u00(x) + ~q(x)u(x) : (15)

In that case the corresponding estimates for derivatives of eigenfunctions of an
arbitrary non-negative self-adjoint extension of the operator (15) were �rst derived

in [1]. If the extension is generated by the boundary conditions
i
u0�(a) = 0 =

i
u0�(b),

then the estimates that correspond to the estimates (10){(13) were proved and used
in [2].

The estimates for derivatives of eigenfunctions and associated functions of
nonself-adjoint operator (15) were �rst announced in [3].

Remark 6. The example exposed in Remark 6 of [5] shows that the estimates
(6){(9) are best possible with respect to the order of the parameter �. Also, consider
the following example.

Let the operator L(u)(x) = �u00(x) be de�ned on the interval G = (0; 1), and
let the eigenfunctions and associated functions of this operator satisfy the boundary
conditions u(0) = u(1) ; u0(0) = 0. Then �(L) = f (2n�)2 jn = 0; 1; . . .g is the set

of all eigenvalues, the eigenfunctions have the form
�
u0(x) = 1 ;

�
un(x) = cos 2n�x

(n 2 N); the associated functions corresponding to the eigenfunction
�
u0(x) do not

exist, and the others have the form

1
un(x) = �x sin 2n�x

4n�
; n 2 N :

In this case the order of parameter � in the corresponding estimates (10){(13)
can not be improved.

3. Auxiliary estimates. In the proofs of Theorems 1{2 we will essentially
use a set of estimates for eigenfunctions and associated functions of the operator
(1), and for their �rst derivatives, too. Those estimates are stated in the following
lemmas.
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Lemma 1. (a) If q(x) 2 Lloc
1 (G), then for any compact set K � G there exist a

number R 2 (0; �(K; @G)) and constants Ci(KR; p; q; Im
p
� ) (i = 0; 1; 2; . . . ) such

that

max
x2K

j iu�(x) j 6 Ci(KR; p; q; Im
p
� ) k i

u� kL2(KR) : (16)

(b) Suppose that q(x) 2 L1(G), and that
i
u�(x) 2 L2(G) if G is an in�nite

interval. If p1(x) and p2(x) are bounded along with their �rst derivatives, then

there exist constants Ci(G; p; q; Im
p
� ) (i = 0; 1; 2; . . . ) such that

sup
x2G

j iu�(x) j 6 Ci(G; p; q; Im
p
� ) k i

u� kL2(G) : (17)

Lemma 2. (a) If q(x) 2 Lloc
1 (G), then for any compact set K � G there

exist a number R 2 (0; �(K; @G)) and constants Ai(KR; p; q; Im
p
� ) ; Ai(KR; p; q)

(i = 1; 2; . . . ) such that

max
x2K

j i�1
u� (x) j 6 Ai(KR; p; q; Im

p
� ) j

p
� j � max

x2KR

j iu�(x) j for � 6= 0 ;

max
x2K

j i�1
u� (x) j 6 Ai(KR; p; q) � max

x2KR

j iu�(x) j for � = 0 :
(18)

(b) Suppose that q(x) 2 L1(G), and that
i
u�(x) 2 L2(G) if G is an in�nite

interval. If p1(x) and p2(x) are bounded along with their �rst derivatives, then

there exist constants Ai(G; p; q; Im
p
� ); Ai(G; p; q) (i = 1; 2; . . . ) such that

sup
x2G

j i�1
u� (x) j 6 Ai(G; p; q; Im

p
� ) j

p
� j � sup

x2G
j iu�(x) j for � 6= 0 ;

sup
x2G

j i�1
u� (x) j 6 Ai(G; p; q) � sup

x2G
j iu�(x) j for � = 0 :

(19)

Lemma 3. (a) If q(x) 2 Lloc
1 (G), then for any compact set K � G there exist

a number R 2 (0; �(K; @G)) and constants r(KR; Im
p
� ); Ci1(KR; p; q; Im

p
� )

(i = 0; 1; 2; . . . ) such that

sup
x2K

j iu0�(x) j 6 Ci1(KR; p; q; Im
p
� ) k i

u� kL2(KR) (20)

for 0 6 j Rep� ) j 6 r(KR; Im
p
� ), and

sup
x2K

j iu0�(x) j 6 Ci1(KR; p; q; Im
p
� ) j

p
� j � k i

u� kL2(KR) (21)

for j Rep� j > r(KR; Im
p
� ).
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(b) Let q(x) 2 L1(G) and (when the interval G is in�nite)
i
u�(x) 2 L2(G). If

the functions p1(x) and p2(x) are bounded together with their �rst derivatives, then

there exist constants r(G; Im
p
� ); Ci1(G; p; q; Im

p
� ) (i = 0; 1; 2; . . . ) such that

sup
x2G

j iu0�(x) j 6 Ci1(G; p; q; Im
p
� ) k i

u� kL2(G) (22)

for 0 6 j Re
p
� j 6 r(G; Im

p
� ), and

sup
x2G

j iu0�(x) j 6 Ci1(G; p; q; Im
p
� ) j

p
� j � k i

u� kL2(G) (23)

for j Re
p
� j > r(G; Im

p
� ).

3.1. The estimates (16){(19) were established in [4], and estimates (20){(23)
in [5]{[6]. It was proved there that the constants appearing in those estimates do
not depend on numbers � 2 �(L) if �(L) satis�es conditions described in Remark
3. Also, the constants Ci(�); Ai(�) and Ci1(�) (i = 1; 2; . . . ) are independent of the
parameter i.

3.2. Global estimate (17) may be sharpened in the following way: If G
is a �nite interval, then for any closed interval K � G there exist constants
Ci(K; p; q; Imp

� ) such that

sup
x2G

j iu�(x) j 6 Ci(K; p; q; Im
p
� ) �max

x2K
j iu�(x) j : (24)

Further, if K � G is an closed interval, then maxx2KR
j iu�(x) j and Ai(KR; �)

in estimates (18) can be replaced by maxx2K j iu�(x) j and ~Ai(K; �) respectively.
3.3. The statements from Remark 1 are also valid in the case of estimates

(20){(23).

3.4. Theorems 1{2 are results of independent interest; along with Lemas 1{3
and the two theorems proved in [5]{[6] they provide for a complete and de�nitive
picture of estimates of the considered type. But they may also play an impor-
tant role in study of uniform convergence on G (or on compact subsets of G) of
derivatives of partial sum of spectral expansion (for an absolutely continuous func-
tion) generated by an arbitrary complete and minimal system of eigenfunctions and
associated functions of the operators (1) and (15).

x1. Local estimates of the second derivative

1. On the di�erential equations (2){(5). Everything in the proof of
Theorem 1 is based on the di�erential equations (2){(5) and the estimates (16){
(23). We will �rst prove the following assertions: If q(x) 2 C(G n fx0g), then

1) the eigenfunctions and associated functions of the operator (1) have contin-
uous second derivative on the set G n fx0g;

2) there exist the �nite one-side derivatives
i
u00�(x0�0);

i
u00�(x0+0) (i = 0; 1; . . . );
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3) the eigenfunctions and associated functions satisfy the corresponding di�er-
ential equation everywhere on the interval (a; x0) or (x0; b).

1.1. Let
i
u�(x) be an associated function of the operator (1) corresponding

to the eigenfunction
�
u�(x) and the eigenvalue �. Let [c; d] be an arbitrary closed

subinterval of the interval (a; x0). The function f1(x)
def
= p1(x)

i
u0�(x) is absolutely

continuous on [c; d]. Thus for every x 2 (c; d) we have f1(x) = f1(c) +
R x
c
f 01(�) d�

or, by virtue of the di�erential equation (2), the equality

f1(x) = f1(c) +

Z x

c

�
q1(�)

i
u�(�) � �

i
u�(�) +

i�1
u� (�)

�
d� : (25)

By the continuity of q1(x) on (a; x0) the integral (25) has continuous �rst
derivative on (c; d). Therefore, we obtain from (25) that f1(x) is continuously
di�erentiable on (c; d) and satis�es the di�erential equation

f 01(x) = q1(x)
i
u�(x)� �

i
u�(x) +

i�1
u� (x) (26)

everywhere on the interval (c; d) and, consequently, on the whole interval (a; x0).

Now, it results from the continuous di�erentiability of p1(x) and f1(x) that

the function
i
u0�(x) has continuous �rst derivative on (a; x0).

1.2. Analogously, using the di�erential equation (3) instead of (2), we can

prove that the function f2(x)
def
= p2(x)

i
u0�(x) is continuously di�erentiable on (x0; b)

and satis�es the di�erential equation

f 02(x) = q2(x)
i
u�(x)� �

�
u�(x) +

i�1
u� (x) (27)

everywhere on this interval, and that the function
i
u0�(x) has continuous �rst deriv-

ative on the whole interval (x0; b).

1.3. Let us examine the behaviour of function
i
u00�(x) in a neighborhood of the

point x0. We know that
i
u0�(x) is (absolutely) continuous on every closed interval

[c; x0] � (a; x0] (on every closed interval [x0; d] � [x0; b)). Hence, using (26){(27),

we obtain that the �nite one-side derivatives
i
u00�(x0 � 0) and

i
u00�(x0 + 0) exist;

i
u00�(x0 � 0) = lim

x!x0�0

i
u00�(x) =

=
1

p1(x0)

�
q1(x0)

i
u�(x0)� �

i
u�(x0) +

i�1
u� (x0)� p01(x0 � 0)

i
u0�(x0 � 0)

�
; (28)

i
u00�(x0 + 0) = lim

x!x0+0

i
u00�(x) =

=
1

p2(x0)

�
q2(x0)

i
u�(x0)� �

i
u�(x0) +

i�1
u� (x0)� p02(x0 + 0)

i
u0�(x0 + 0)

�
: (29)

In that sense, the function
i
u00�(x) is continuous on the half-open intervals (a; x0]

and [x0; b).
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2. Local estimates (6){(7). Let us prove now estimates (6){(7) in the case

j = 2. We will �rst consider the second derivative of an associated function
i
u�(x)

corresponding to the eigenfunction
�
u�(x) and the eigenvalue �.

2.1. Let K � G be an arbitrary compact set (of strictly positive measure).
(The most complicated case is when x0 2 K, and it will be considered only.)
According to Lemmas 1 and 3, there exist a number R 2 (0; �(K; @G)) and con-

stants r(KR; Im
p
� ); Ci(KR; p; q; Im

p
� ); Ci1(KR; p; q; Im

p
� ) such that esti-

mates (16), (20){(21) hold with i > 0. (Without loss of generality we can sup-
pose that the number R is the same in both Lemmas. In fact, that is the case!
Furthermore, r(KR; Im

p
� ) > 1.) Also, by Lemma 2 and 3.2 in Introduction,

there is a constant ~Ai(K; p; q; Im
p
� ) such that the �rst estimate (18) is valid,

with maxx2KR
j iu�(x) j replaced by maxx2K j iu�(x) j. Using that estimate, the

corresponding estimates (16) and (21), and the di�erential equations (26){(27), we
obtain that the following holds for every x 2 K n fx0g:

j iu00�(x) j 6
1

�2

�
0(K; p) � sup

�2K
j iu0�(�) j+ (K; q) �max

�2K
j iu�(�) j+

+ j� j �max
�2K

j iu�(�) j+max
�2K

j i�1
u� (�) j

�

6
1

�2

�
0(K; p)Ci1(KR; p; q; Im

p
� )j

p
� j+� (K; q)+ j� j �Ci(KR; p; q; Im

p
� )+

+ ~Ai(K; p; q; Im
p
� )Ci(KR; p; q; Im

p
� ) j

p
� j
�
� k i

u� kL2(KR) : (30)

By these inequalities one can get the estimate

sup
x2Knfx0g

j iu00�(x) j 6

6
1

�2

�
0(K; p)Ci1(KR; p; q; Im

p
� ) +

�
(K; q) + 1

�
Ci(KR; p; q; Im

p
� )+

+ ~Ai(K; p; q; Im
p
� )Ci(KR; p; q; Im

p
� )

�
j� j � k i

u� kL2(KR) ; (31)

where j Rep� j > r(KR; Im
p
� ). Here the following notations are used:

�
def
= min fp�1;

p
�2 g ; 0(K; p)

def
= max

�
max
x2K�

j p01(x) j ; max
x2K+

j p02(x) j
�
;

(K; q)
def
= max

�
max
x2K�

j q1(x) j ; max
x2K+

j q2(x) j
�
;

with K� def
= fx 2 K jx 6 x0 g ;K+ def

= fx 2 K jx0 6 x g.
If x = x0, then by virtue of the mentioned estimates (from Lemmas 1{3) and

equalities (28){(29) we conclude that for max
� j iu00�(x0�0) j; j iu00�(x0+0) j	 the �rst
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inequality (30) holds, too. Hence, it results that the estimate

sup
x2K

j iu00�(x) j 6 Ci2(KR; p; q; Im
p
� ) j� j � k i

u� kL2(KR) (32)

is valid if j Re
p
� j > r(KR; Im

p
� ), where Ci2(�) denotes the constant from esti-

mate (31).

2.2. If 0 6 j Rep� j 6 r(KR; Im
p
� ), then we have the estimate

sup
x2K

j iu00�(x) j 6 ~Ci2(KR; p; q; Im
p
� ) � k i

u� kL2(KR) ; (33)

with the constant

~Ci2(KR; p; q; Im
p
� )

def
=

1

�2

�
0(K; p)Ci1(KR; p; q; Im

p
� )+

+
�
(K; q) +

�
r(KR; Im

p
� )

�2
+
� Imp

�
�2 �

Ci(KR; p; q; Im
p
� )+

+ ~Ai(K; p; q; Im
p
� )Ci(KR; p; q; Im

p
� )

q�
r(KR; Im

p
� )

�2
+
� Imp

�
�2 �

:

This assertion directly follows from the �rst inequality (30).

Note that using max if necessary we can obtain the same constant in both
estimates (6) and (7), as it is stated in the proposition (a) of Theorem 1.

2.3. By the above considerations we can conclude that the estimates (32){

(33) are also valid for the function
�
u00�(x), with constants C02(KR; �); ~C02(KR; �)

obtained from the constants Ci2(�) and ~Ci2(�) by replacement i 7�! 0 and removing

the ~Ai(�)-term.

x2. Global estimates of the second derivative

1. Global estimates (8){(9). Let us prove now the estimates (8){(9) in
case j = 2. We will �rst consider the second derivative of an associated function
i
u�(x) corresponding to the eigenfunction

�
u�(x) and the eigenvalue �.

1.1. According to Lemmas 1{3, there exist a number r(G; Imp
� ) >

1 and constants Ci(G; p; q; Im
p
� ); Ai(G; p; q; Im

p
� ); Ci1(G; p; q; Im

p
� ) such

that the estimates (17), (19) and (22){(23) hold. Using those estimates and di�er-
ential equations (4){(5), for every x 2 G n fx0g we obtain the inequalities

j iu00�(x) j 6
1

�2

�
max

�
sup

�2(a;x0]
jp01(�) j; sup

�2[x0;b)
j p02(�) j

�
� sup
�2G

j iu0�(�) j+

+

�
max

�
sup

�2(a;x0]
j q1(�) j; sup

�2[x0;b)
j q2(�) j

�
+ j� j

�
� sup
�2G

j iu�(�) j+sup
�2G

j i�1
u� (�) j

�

6
1

�2

�
0(G; p)Ci1(G; p; q; Im

p
� ) j

p
� j+ �

(G; q) + j� j �Ci(G; p; q; Im
p
� )+

+Ai(G; p; q; Im
p
� )Ci(G; p; q; Im

p
� ) j

p
� j

�
� k i

u� kL2(G) ; (34)
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wherefrom it follows the estimate

sup
x2Gnfx0g

j iu00�(x) j 6

6
1

�2

�
0(G; p)Ci1(G; p; q; Im

p
� ) +

�
(G; q) + 1

�
Ci(G; p; q; Im

p
� )+

+Ai(G; p; q; Im
p
� )Ci(G; p; q; Im

p
� )

�
j� j � k i

u� kL2(G) (35)

if j Rep� j > r(G; Imp
� ); here 0(G; p); (G; q) have the obvious meaning.

By (28){(29) it follows that max
� j iu00�(x0 � 0) j; j iu00�(x0 + 0) j	 satis�es the

estimate (35), too. Thus, we get the estimate

sup
x2G

j iu00�(x) j 6 Ci2(G; p; q; Im
p
� ) j� j � k i

u� kL2(G) (36)

if j Re
p
� j > r(G; Im

p
� ), where Ci2(�) is the constant from estimate (35).

1.2. If 0 6 j Re
p
� j 6 r(G; Im

p
� ), then using equations (4){(5), equalities

(28){(29) and applying the mentioned above estimates (from Lemmas 1{3) to the
right-hand side of the �rst inequality (34), we obtaine the estimate

sup
x2G

j iu00�(x) j 6 ~Ci2(G; p; q; Im
p
� ) � k i

u� kL2(G) ; (37)

where the constant has the form

~Ci2(G; p; q; Im
p
� )

def
=

1

�2

�
0(G; p)Ci1(G; p; q; Im

p
� )+

+
�
(G; q) +

�
r(G; Im

p
� )

�2
+
� Imp

�
�2 �

Ci(G; p; q; Im
p
� )+

+Ai(G; p; q; Im
p
� )Ci(G; p; q; Im

p
� )

q�
r(G; Im

p
� )

�2
+
� Imp

�
�2 �

:

Using max if necessary, we can get the same constant in both estimates (36)
and (37), as it is stated in the proposition (b) of Theorem 1.

1.3. The global estimates for
�
u00�(x) can be obtained in the same way as in the

case of local estimates (see 2.3 x 1 ).
2. On Remarks 1 and 3{4. Analysing the �rst inequalities (31) and (34),

and having in mind Remark 2 from [5], we see that Remark 1 holds true in the case
j = 2.

2.1. If �(L) is a set of eigenvalues of the operator (1) satisfying conditions
described in Remark 3, then every constant from Lemmas 1{3 appearing in the
"local" and "global" constants Ci2(�); ~Ci2(�) (i = 0; 1; . . . ) does not depend on the

numbers � 2 �(L) (see 3.1 in Introduction). Replace Imp
� by A in all the terms in

constants Ci2(�); ~Ci2(�) containing Im
p
� explicitly. Therefore we obtain constants

Ci2(�; p; q; A); ~Ci2(�; p; q; A) not depending on � 2 �(L).
2.2. The assertion stated in Remark 4 follows from the fact that all the

constants from Lemmas 1{3 appearing in the constants Ci2(�); ~Ci2(�) (i = 1; 2; � � � )
do not depend on the order i of the associated function (see 3.1 in Introduction).
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x3. Estimates for derivatives of higher order

1. Existence of the derivatives. We continue the proof of Theorem 1
by considering those parts of propositions (a){(b) concerning the existence and
continuity of higher order derivatives of eigenfunctions and associated functions.

The starting point is the fact that the functions
i
u�(x) (i = 0; 1; 2; . . . ) are solutions

of the corresponding di�erential equations (2){(5) everywhere on (a; x0) or (x0; b)
if q(x) 2 C(G n fx0g). Therefore, in that case those equalities are identities with
respect to x.

1.1. Suppose j = 3 and consider, for example, the identity (4):

p1(x)
i
u00�(x) = �p01(x)

i
u0�(x) + q1(x)

i
u�(x)� �

i
u�(x) +

i�1
u� (x)

where x 2 (a; x0) and i > 1. By virtue of condition p1(x) > �1 > 0 it follows from

this identity that the function
i
u00�(x) has continuous �rst derivative on (a; x0), and

for every x 2 (a; x0) we have

p1(x)
i
u
(3)
� (x) = �p01(x)

i
u00�(x)�

�
p01(x)

i
u0�(x)

�0
+

+
�
q1(x)

i
u�(x)

�0 � �
i
u0�(x) +

i�1
u�

0(x) : (38)

Analogously, using identity (5), one can prove existence of continuous third

derivative of
i
u�(x) on the interval (x0; b), and establish the identity

p2(x)
i
u
(3)
� (x) = �p02(x)

i
u00�(x)�

�
p02(x)

i
u0�(x)

�0
+

+
�
q2(x)

i
u�(x)

�0 � �
i
u0�(x) +

i�1
u�

0(x) (39)

on this interval.

By continuity of
i
u00�(x) on the half-open intervals (a; x0] and [x0; b) (see 1.3

x 1 ), and by existence of the �nite limits limx!x0�0
i
u
(3)
� (x) and limx!x0+0

i
u
(3)
� (x),

which follows from (38){(39), we can conclude that the �nite one-side derivatives
i
u
(3)
� (x0 � 0) ;

i
u
(3)
� (x0 + 0) exist and that

i
u
(3)
� (x) is continuous on the half-open

intervals mentioned above.

1.2. The case of the eigenfunction function
�
u�(x) is simpler; instead of iden-

tities (38){(39) we have to use two identities of analogous form:
i�1
u� (x) is removed,

and
i
u�(x) is replaced by

�
u�(x).

1.3. Now, we have everything necessary for completion of the proof of the
�rst statements in propositions (a){(b) of Theorem 1. This should be done by the
mathematical induction. We omit the details.

2. Estimates of the derivatives. The proof of estimates (6){(7) and (8){(9)
in general case should be completed by the mathematical induction, too. The �rst
step is getting identities of form (38){(39) for the functions

pk(x)
dj

dxj
i
u�(x) ( k = 1; 2 ; i = 0; 1; 2; . . . )
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in case of arbitrary j 2 N; this can be done by starting from identities (38){(39)
and their analogues for i = 0. Then, by the obtained identities, one can derive the
desired estimates, as it was done in the case of the second derivatives.

3. On Remarks 1 and 3{4. It is not di�cult to verify that the assertions
from Remarks 1, 3 and 4 concerning the estimates of derivatives and the corre-
sponding constants are valid in general case. The proof is based directly on the
mentioned above identities.

x4. Proof of theorem 2.

1. The estimate (11). Let
i
u�(x) be an associated function of the operator

(1) corresponding to the eigenfunction
�
u�(x) and the eigenvalue � 6= 0. Suppose

i
u0�(a) = 0 and establish the estimate (11).

1.1. If y 2 [a; x0), then the following equality holds:

Z y

a

i
u�(�) d� =

p
p1(a)

i
u�(a)

sin
p
� �2(a; y � a)p

�
�

� 1p
�

Z y

a

p01(�)

2
p
p1(�)

i
u�(�) sin

p
� (�2(a; � � a)� �2(a; y � a)) d�+

+
1p
�

Z �2(a;y�a)

0

� Z a+�2(a;t)

a

q(�)
i
u�(�) sin

p
� (�2(a; � � a)� t) d�

�
dt�

� 1p
�

Z �2(a;y�a)

0

� Z a+�2(a;t)

a

i�1
u� (�) sin

p
� (�2(a; � � a)� t) d�

�
dt :

(40)

This equality formally follows from the equalities (20) and (29) in [6], by putting
there y1 = a ; y2 = y ; j1 = 1. Actually, it can be derived by applying the procedure
from 1.2{1.4 x 1 and 1.1{1.2 x 2 in [6] to the closed interval [a; y], instead of [y1; y2].

1.2. If y 2 (x0; b], then we have that

Z y

a

i
u�(�) d� =

p
p1(a)

i
u�(a)

sin
p
� �2(a; y � a)p

�
�

��pp2(x0)�
p
p1(x0)

� i
u�(x0)

sin
p
� (�2(a; x0 � a)� �2(a; y � a))p

�
�

� 1p
�

Z y

a

p0j(�)

2
p
pj(�)

i
u�(�) sin

p
� (�2(a; � � a)� �2(a; y � a)) d�+

+
1p
�

Z �2(a;y�a)

0

� Z a+�2(a;t)

a

q(�)
i
u�(�) sin

p
� (�2(a; � � a)� t) d�

�
dt�

� 1p
�

Z �2(a;y�a)

0

� Z a+�2(a;t)

a

i�1
u� (�) sin

p
� (�2(a; � � a)� t) d�

�
dt

(41)

(see equalities (19) and (28) in [6]).
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Note that all terms appearing in (40){(41) are continuous functions with re-
spect to the variable y 2 [a; b], and, consequently, integrable on any closed interval
[y1; y2] � [a; b].

1.3. Let [y1; y2] � [a; b] be an arbitrary closed interval. In order to prove
estimate (11) we have to integrate equality (40) (with respect to variable y) if
[y1; y2] � [a; x0], and the equality (41) if x0 < y2. It follows from (40){(41) that
the second case is the more complicated one; we will consider in detail that case
only. Thus, we have

Z y2

y1

� Z y

a

i
u�(�) d�

�
dy =

p
p1(a)

i
u�(a)p
�

Z y2

y1

sin
p
� �2(a; y � a) dy�

� �p
p2(x0)�

p
p1(x0)

� i
u�(x0)p

�

Z y2

y1

sin
p
� (�2(a; x0 � a)� �2(a; y � a)) dy�

� 1p
�

Z y2

y1

� Z y

a

p0j(�)

2
p
pj(�)

i
u�(�) sin

p
� (�2(a; � � a)� �2(a; y � a)) d�

�
dy+

+
1p
�

Z y2

y1

� Z �2(a;y�a)

0

� Z a+�2(a;t)

a

q(�)
i
u�(�) sin

p
� (�2(a; ��a)�t) d�

�
dt

�
dy�

� 1p
�

Z y2

y1

� Z �2(a;y�a)

0

� Z a+�2(a;t)

a

i�1
u� (�) sin

p
� (�2(a; � � a)� t) d�

�
dt

�
dy :
(42)

Consider the integral
R y2
y1

sin
p
� �2(a; y � a) dy. Introducing a new variable

t = �2(a; y � a), and using then the integration by parts, we obtain an expression
for that integral, wherefrom it results the following estimate:

����
Z y2

y1

sin
p
� �2(a; y � a) dy

���� 6
�
4 (G; p)

r
1 + sh2

� b� a

�
Im

p
�
�
+

+
b� a

�
0(G; p)

q
1 + sh2(Im

p
�)

�
1

j p� j :

Here constants (G; p); 0(G; p) have the meaning analogous to the meaning of

constants (K; q) and 0(K; p) introduced in 2.1 x 1. Denote by ~C(G; p; Im
p
� )

the constant from the above estimate. (That estimate is valid also if sin is replaced
by cos.) That is why we have the estimate

����
p
p1(a)

i
u�(a)p
�

Z y2

y1

sin
p
� �2(a; y � a) dy

���� 6
6 (G; p) ~C(G; p; Im

p
� )

1

j� j � supx2G
j iu�(x) j : (43)

1.4. Transforming the second integral on the right-hand side of (42) by the
corresponding trigonometrical identity, we can obtain, analogously to the previous
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case, the estimate

����
Z y2

y1

sin
p
� (�2(a; x0 � a)� �2(a; y � a)) dy

����6

6 2 ~C(G; p; Im
p
� )

r
1 + sh2

� b� a

�
Im

p
�
� 1

j
p
� j : (44)

Denote by C(G; p; Im
p
� ) the constant from this estimate. Now, using (44), we

get that

���� �
p
p2(x0)�

p
p1(x0)

� i
u�(x0)p

�

Z y2

y1

sin
p
� (�2(a; x0 � a)� �2(a; y � a)) dy

���� 6
6 2 (G; p)C(G; p; Im

p
� )

1

j� j � supx2G
j iu�(x) j : (45)

1.5. Applying �rst the Fubini's theorem to the third integral on the right-hand
side of (42), and then the estimate (44) to the obtained interior integrals, we have
the estimate����

Z y2

y1

� Z y

a

p0j(�)

2
p
pj(�)

i
u�(�) sin

p
� (�2(a; � � a)� �2(a; y � a)) d�

�
dy

���� 6
6

2 (b� a)

�
0(G; p; Im

p
� )C(G; p; Im

p
� )

1

j p� j � supx2G
j iu�(x) j :

(46)

1.6. It remains to estimate the last two integrals on the right-hand side of
(42). For the �rst one we use the Fubini's theorem again:

Z �2(a;y�a)

0

� Z a+�2(a;t)

a

q(�)
i
u�(�) sin

p
� (�2(a; � � a)� t) d�

�
dt =

=
1p
�

Z y

a

q(�)
i
u�(�)

�
cos

p
� (�2(a; � � a)� �2(a; y � a))� 1 ] d� :

By virtue of this equality we get the estimate

����
Z y2

y1

� Z �2(a;y�a)

0

� Z a+�2(a;t)

a

q(�)
i
u�(�) sin

p
� (�2(a; � � a)� t) d�

�
dt

�
dy

���� 6

6
(b� a)2

�
k q kL1(G) �

r
2 + sh2

� b� a

�
Im

p
�
� 1

j p� j � supx2G
j iu�(x) j :

(47)

1.7. Denote by R(40)(a; y;�;
i
u�) (by R(41)(a; y;�;

i
u�) ) the sum of all the terms

(with corresponding signs) on the right-hand side of equality (40) (of equality (41)),

excluding the last integral. Also, denote by D0
i2(G; p; q; Im

p
� ) the biggest of the
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constants appearing in estimates (43), (45), (46) and (47). Then it results from
those estimates and (42) that the following estimate is valid:

max

� ����
Z y2

y1

R(40)(a; y;�;
i
u�) dy

���� ;
����
Z y2

y1

R(41)(a; y;�;
i
u�) dy

����
�
6

6 4D0
02(G; p; q; Im

p
� )

1

j� j � supx2G
j iu�(x) j : (48)

According to the content of 3.2 in Introduction, for any closed interval K � G
there exists a constant Ci(K; p; q; Im

p
� ) such that estimate (24) holds. By the

proposition (a) of Lemma 1 there exist a number R 2 (0; �(K; @G)) and a constant

Ci(KR; p; q; Im
p
� ) such that estimate (16) is valid. Now, using the mentioned

estimates, we obtain from (48) the estimate

max

� ����
Z y2

y1

R(40)(a; y;�;
i
u�) dy

���� ;
����
Z y2

y1

R(41)(a; y;�;
i
u�) dy

����
�
6

6 4D0
i2(G; p; q; Im

p
� )Ci(K; p; q; Im

p
� )Ci(KR; p; q; Im

p
� )

1

j� j k
i
u� kL2(KR):

(49)

1.8. Let us �nally estimate the last integral on the right-hand side of (42). By
the Fubini's theorem that integral can be transformed in the following one:

Z y2

y1

� Z y

a

i�1
u� (�)

�
cos

p
� (�2(a; � � a)� �2(a; y � a))� 1

�
d�

�
dy =

=

Z y2

y1

� Z y

a

i�1
u� (�) cos

p
� (�2(a; ��a)��2(a; y�a)) d�

�
dy�

Z y2

y1

� Z y

a

i�1
u� (�) d�

�
dy :
(50)

Using the Fubini's theorem again, and applying then the estimate (44) (with
sin replaced by cos), the estimate (24) and the estimate (16), we obtain that for
every closed interval K � G the following estimate holds:����

Z y2

y1

� Z y

a

i�1
u� (�) cos

p
� (�2(a; � � a)� �2(a; y � a)) d�

�
dy

���� 6
6 2 (b� a)C(G; p; Im

p
� )Ai(G; p; q; Im

p
� )Ci(K; p; q; Im

p
� )�

� Ci(KR; p; q; Im
p
� ) � k i

u� kL2(KR) : (51)

1.9. In order to obtain the appropriate estimate for the second integral on the
right-hand side of (50), we have to refer to the paper [6]. A careful analysis of 1.4
x 2 and 1.7 x 1 in that paper shows that the following estimate is valid for every
number y 2 [y1; y2]:����

Z y

a

i�1
u� (�) d�

���� 6 ~Di1(G; ~KR0
; p; q; Im

p
� )

1

j p� j � max
x2 ~KR0

j i�1
u� (x) j ;
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where ~K � G is some �xed closed interval, and R0 2 (0; �( ~K; @G)) is a �xed

number. This estimate is valid if j Rep� j > r(G; Imp
� ), with r(G; Imp

� )
de�ned in 1.2 x 3 in [5].

By virtue of the modi�ed �rst estimate (18) (see 3.2 in Introduction), and by
estimate (16) we conclude that����

Z y2

y1

� Z y

a

i�1
u� (�) d�

�
dy

���� 6 (b� a) ~Di1(G; ~KR0
; p; q; Im

p
� )�

� ~Ai( ~KR0
; p; q; Im

p
� )Ci(K; p; q; Im

p
� ) � k i

u� kL2(KR) ; (52)

where K
def
= ~KR0

, and R 2 (R0; �( ~K; @G)) is a �xed number.

1.10. Let us now summarize the content of 1.1{1.9: There exist a closed
interval K � G and a constant r(G; Imp

� ) such that the estimate����
Z y2

y1

� Z y

a

i
u�(�) d�

�
dy

���� 6 Di2(G;KR; p; q; Im
p
� )

1

j� j � k
i
u� kL2(KR) (53)

holds uniformly with respect to the numbers a 6 y1 < y2 6 b if � satis�es condi-
tion j Rep� j > r(G; Imp

� ). This estimate follows from (42) and (49){(52); the
constant Di2(�) is de�ned as sum of the constant from (49) and the maximum of
the constants appearing in estimates (51){(52).

1.11. The above proof \works" in the case of the eigenfunction
�
u�(x), too.

One should start from the equalities (40){(41) in which
i
u�(x) is replaced by

�
u�(x)

and the last integral (containing
i�1
u� (�) ) is removed.

2. The estimate (10). Proof of the estimate (10) is simpler. By virtue of
estimates (24) and (16) we get directly the inequalities����

Z y2

y1

� Z y

a

i
u�(�) d�

�
dy

���� 6 (b� a)2 � sup
x2G

j iu�(x) j 6

6 (b� a)2 C0(K; p; q; Im
p
� )C0(KR; p; q; Im

p
� ) � k i

u� kL2(KR) ;

or the estimate����
Z y2

y1

� Z y

a

i
u�(�) d�

�
dy

���� 6 ~D02(G;KR; p; q; Im
p
� ) k i

u� kL2(KR) ; (54)

where K � G is an arbitrary closed interval, R 2 (0; �(K; @G)) is a �xed number,
and i = 0; 1; . . . .

2.1. We see that this estimate is actually valid independently of the boundary

condition
i
u0�(a) = 0; also, � is an arbitrary eigenvalue.

2.2. Using max if necessary, we can obtain the same constant in both estimates
(53) and (54), as it is stated in the proposition (a) of Theorem 2.

3. The estimates (12){(13). The proof of these estimates is completely
analogous to the one of estimates (10){(11).
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4. On Remarks 2{3. Analysing the content of 1.7{1.9 and 2, we see that
the second statement in Remark 2 holds true.

4.1. The constants Di2(�) and ~Di2(�) can be de�ned independently of the
spectral parameter � 2 �(L) if the set �(L) satis�es the conditions described in
Remark 3. The general principle is the same as in the case of constants Cij(�) ;
under the mentioned conditions the constants from Lemmas 1{3 have the property
of independency, whereas Imp

� should be replaced by A in other terms appearing
in Di2(�) (and ~Di2(�) ) and containing Imp

�.

4.2. The independency of constants Di2(�) and ~Di2(�) of the parameter i is
based on the same property of constants (from Lemmas 1{3) entering into the

structure of Di2(�) and ~Di2(�).
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