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Abstract. The linear spaces generated by the eigenfunctions of a di�erential operator are
well-known in applied mathematics. In this paper we examine their interpolation properties,
connection with Sobolev spaces and apply these results to the solving of hyperbolic equation in
Sobolev spaces of fractional order.

1. Interpolation and function spaces

Let A1 and A2 be two Banach spaces, linearly and continuously embedded in a
topological linear space A. Such two spaces are called interpolation pair fA1; A2g.
The space A1 +A2 we de�ne as

A1 +A2 = f a 2 A : a = a1 + a2; aj 2 Aj ; j = 1; 2 g;

with the norm kakA1+A2
= infa=a1+a2; aj2Aj

(ka1kA1
+ ka2kA2

). Introduce the
function

K(t; a; A1; A2) = inf
a2A1+A2

a=a1+a2; aj2Aj

(ka1kA1
+ tka2kA2

):

This function is a norm in A1 +A2 equivalent to the standard norm kakA1+A2
.

For 0 < � < 1, 1 6 q < 1, the interpolation space (A1; A2)�;q obtained by
K-method of real interpolation is de�ned as the set of all elements a 2 A1 + A2

with the �nite norm

kak(A1;A2)�;q

�Z
1

0

[t��K(t; a; A1; A2)]
q dt

t

�1=q

(see [1]).

Proposition 1. Let fA1; A2g and fB1; B2g be two interpolation pairs such
that Bi � Ai, i = 1; 2 (with continuous injections). Then for 0 < � < 1, 1 6 q <1,
(B1; B2)�;q � (A1; A2)�;q (with continuous injection).

Proof. Using continuity of injections Bi � Ai, i = 1; 2, one obtains that
K(t; a; A1; A2) 6 K(t; a; B1; B2) (a 2 B1 +B2). The conclusion is obvious.
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Next, we shall present one more method of interpolation.

Let X and Y be two separable Hilbert spaces such that

X � Y; X dense in Y with continuos injection. (1)

For 0 6 � 6 1 de�ne the interpolation space as [X;Y ]� = D(�1��) (domain of
�1��), where � is a self-adjoint, lower-bounded operator in Y , with domain X
and which satis�es the relation (u; v)X = (�u;�v)Y (u; v 2 X). We shall take
kvk[X;Y ]� = k�1��vkY as the norm of this space. The space [X;Y ]� does not
depend on the choice of the operator �, although it is not unique (see [5]).

The next proposition improves the connection between two methods of inter-
polation we mentioned before (see [5]).

Proposition 2. Suppose X, Y be two separable Hilbert spaces which satisfy
(1). Then [X;Y ]� = (X;Y )�;2 (with equivalent norms).

This equivalence will be often used, but we shall not mention it explicitly.

Let Lq = Lq(0; 1) (1 6 q 6 1) be Lebesgue spaces of integrable functions,
Hs = Hs(0; 1) standard Sobolev spaces, D the space of in�nitely di�erentiable
functions with compact support in (0; 1) and Hs

0 the closure of D in Hs. ( ; ) and
k k will denote inner product and norm in L2, respectively.

For Sobolev spaces the following interpolation theorems are valid (see [5]):

Proposition 3. Suppose 0 < � < 1.

(i) If 0 6 s1; s2 <1, s1 6= s2 then (Hs1 ; Hs2)�;2 = H(1��)s1+�s2 .

(ii) If 0 6 s1; s2 <1, s1 6= s2 and s1, s2, (1� �)s1+ �s2 6= integer+ 1=2 then

(Hs1
0 ; Hs2

0 )�;2 = H
(1��)s1+�s2
0 :

2. The spaces V �

Let
a 2 L1; a > a0 > 0 in (0; 1) a.e. (2)

Let us de�ne a bounded linear operator L : H1
0 ! H�1 by Lv = �(av0)0. Then,

there exist 0 < �1 < �2 < � � � , limk �k = 1, such that L'k = �k'k (k 2 N); the
sequence of eigenfunctions ('k)k2N � H1

0 is an orthonormed topological basis of
L2 (see [3]). We introduce the spaces V � (� > 0) by

V � =

�
v 2 L2 j kvk

2
V � =

1X
k=1

��k ~v
2
k <1

�
;

where ~vk = (v; 'k) are Fourier coe�cients of v in the basis ('k)k2N. Obviously,
V 0 = L2. It is not hard to verify the following assertions:

1� V � is a separable Hilbert space;
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2� If � > � > 0, then V � � V � (with dense and continuous injection).

Proposition 4. If � > � > 0 then [V �; V � ]� = V (1��)�+��.

Proof. Let us de�ne an operator in V � by �v =
1P
k=1

�
���
2

k ~vk'k. It is easy to

verify that D(�) = V �, Im(�) = V � and (u; v)V � = (�u;�v)V � (u; v 2 V �). The
family of projectors in V � de�ned by

E(�)v =
X
�k6�

~vk'k; (3)

where �k = �
���
2

k (k 2 N), is a resolution of identity in V � (see [6]). From
equalities

Z
1

�1

� dE(�)v =

1X
k=1

�k~vk'k =

1X
k=1

�

���
2

k ~vk'k = �v (v 2 V a);

one concludes that (3) is the spectral decomposition of � (see also [6]). Using the
de�nition of the power of operator, we have

�1��v =

Z
1

�1

�1�� dE(�)v =

1X
k=1

�1��k ~vk'k =

1X
k=1

�
(1� �)���2
k ~vk'k :

Hence,

[V �; V �]� = D(�1��) = f v 2 V � j k�1��vk2V � <1g

= f v 2 V � j
1P
k=1

�
(1��)�+��
k ~v2k <1g = V (1��)�+��:

Further, we want to improve the connection between V � and Sobolev spaces.

Lemma 1. If v 2 L2 such that (8' 2 D) j
R 1

0
v'0 dxj 6 Ck'k, then v 2 H1.

Lemma 2. If v 2 H1
0 is the solution of the variational problem

Z 1

0

av0'0 dx =

Z 1

0

f' dx (' 2 H1
0 ); (4)

then

a 2 C1; f 2 L2 =) v 2 H2 and kvkH2 6 Ckfk; (5)

a 2 C2; f 2 H1 =) v 2 H3 and kvkH3 6 CkfkH1 ; (6)

a 2 C3; f 2 H2 =) v 2 H4 and kvkH4 6 CkfkH2 ; (7)

The proofs of these lemmas one can �nd in [2].
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Let L(�)v =
1P
k=1

��k ~vk'k. Obviously, D(L(�=2)) = V � and kvkV � = kL(�=2)vk.

Theorem 1. Suppose a 2 C3 and (2) is satis�ed. Then:

V 1 � H1
0 ; (8)

V 2 = H2 \H1
0 and L(1)v = Lv (v 2 V 2); (9)

V 3 � H3; (10)

V 4 � H4 and L(2)v = L2v (v 2 V 4): (11)

Proof. We start by showing (9). Let S : L2 ! H1
0 be the mapping which to

every f 2 L2 assigns the solution of (4). Obviously, S'k = 1
�k
'k (k 2 N). Using

(5), one obtains that Sf 2 H2 \H1
0 and

kSfkH2 6 Ckfk: (12)

Suppose v 2 V 2. Then the series
1P
k=1

�k~vk'k converges in L2. From this, using the

relation
1P
k=1

~vk'k = S

�
1P
k=1

�k~vk'k

�
and (12), we conclude that

1P
k=1

~vk'k converges

in H2. Hence, v 2 H2 and, therefore, V 2 � H2 \H1
0 . Conversely, if v 2 H2 \H1

0

then Lv 2 L2, and from self-evident equalities

Lv =

1X
k=1

(Lv; 'k)'k =

1X
k=1

(v; L'k)'k =

1X
k=1

�k~vk'k; (13)

one obtains that v 2 V 2 and, therefore, H2 \H1
0 � V 2. From (13), it follows that

Lv = L(1)v (v 2 V 2).

Let us prove (11). Using (9) one obtains

v 2 V 4 =) Lv = L(1)v 2 V 2 =) L2v = L(2)v:

Then from v 2 V 4 =) Lv 2 V 2 = H2 \ H1
0 and (7), we have v 2 H4, i.e.

V 4 � H4.

Now, we are going to verify (8). Suppose v 2 V 1. Then, there is a sequence
(vn)n2N � V 2 tending to v, i.e. vn ! v in V 1. Obviously

(Lvn; vn) = �

Z 1

0

(av0n)
0vn dx =

Z 1

0

a(v0n)
2 dx

=) ckvnk
2
H1 6 (Lvn; vn) 6 Ckvnk

2
H1 : (14)

Further, one has (L(1=2)vn; L
(1=2)vn) = (L(1)vn; vn) = (Lvn; vn). From this, using

(14) one obtains
ckvnkH1 6 kvnkV 1 6 CkvnkH1 : (15)
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This relation implies that (vn)n2N is a Cauchy sequence in H1. Hence, vn ! �v 2
H1 in H1. The relations vn ! v in V 1 and vn ! �v in H1 yield vn ! v and vn ! �v
in L2. Therefore,

v = �v in L2: (16)

For every ' 2 D, the implication

����
Z 1

0

vn'
0 dx

���� =
����
Z 1

0

v0n'dx

���� 6 kv0nk k'k =)

����
Z 1

0

v'0 dx

���� 6 k�v0k k'k

holds. According to Lemma 1 and the last inequality, we obtain that v 2 H1. The
equalities

Z 1

0

v0'dx =

Z 1

0

v'0 dx = lim
n

Z 1

0

vn'
0 dx = lim

n

Z 1

0

v0n'dx =

Z 1

0

�v0'dx;

show that v0 = �v0 in L2. This fact, together with (16) implies that v = �v in H1.
Since vn 2 H1

0 and vn ! �v in H1, it follows that v 2 H1
0 . Hence, V

1 � H1
0 .

At last, we shall prove (10). Suppose v 2 V 3. Then Lv = L(1)v 2 V 1 � H1

and using (6) one obtains (10).

Lemma 3. Suppose a 2 C3 and (2) is satis�ed.

(i) If v 2 H2 \H1
0 , then ckvkH2 6 kLvk 6 CkvkH2 ;

(ii) If v 2 H4 \H1
0 satisfying Lv 2 H1

0 , then ckvkH4 6 kL2vk 6 CkvkH4 .

Proof. The upper estimates in (i) and (ii) are evident. Let us prove the lowers.

(i) If v 2 H2 \ H1
0 then Lv = f 2 L2. (5) and fact that (4) has the unique

solution v 2 H1
0 imply

kLvk > ckvkH2 : (17)

(ii) Relation Lv 2 H1
0 , (7) and (17) yield kL2vk = kL(Lv)k > ckLvkH2 >

ckvkH4 .

Proposition 5. Suppose a 2 C3 and (2) is satis�ed. Then

ckvkHi 6 kvkV i 6 CkvkHi (v 2 V i); (18)

for i = 1; 2; 3; 4.

Proof. The cases i = 2; 4 are immediate consequences of Lemma 3. Since V 2

is dense in V 1 then, according to (15), we conclude that for i = 1 Proposition 5
holds (see the proof of Theorem 1). Applying (6) and (17) when i = 1, one can
easily obtain (18) for i = 3.

Theorem 2. Suppose a 2 C3 and (2) is satis�ed. Then:

H1
0 � V 1 (19); H2

0 � V 2 (20); H2
0 � V 3 (21); H4

0 � V 4 (22):
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Proof. (20) is obvious. Firstly, let us prove (22). Since V 4 = f v 2 V 2 j
L(1)v 2 V 2 g and L(1)v = Lv (v 2 V 2 = H2 \ H1

0 ), then, obviously, (22) holds.
From H4

0 � V 4 � V 3 � V 2 � V 1, it follows that

D � V 1: (23)

To verify (19), we shall prove that V 1 is complete in the norm of the space
H1. Indeed, let (vn)n2N � V 1 be a Cauchy sequence in H1. Then according to
(15) we conclude that it is also a Cauchy sequence in V 1. Hence, vn ! v 2 V 1 in
V 1. From this, thanks to (8), we obtain vn ! v in H1, i.e. V 1 is complete in the
norm of the space H1. Combining this fact with (23), one obtainss (19). (21) may
be easily veri�ed in the same manner.

Remark 1. The relations (8) and (19) show that V 1 = H1
0 under hypothesis

cited in the last proposition.

Remark 2. Applying technics used in the proving of (19), one may verify
that V i (i = 1; 2; 3; 4) are closed subspaces of Sobolev spaces H i (i = 1; 2; 3; 4),
respectively.

Proposition 6. Suppose a 2 C3 and (2) is satis�ed. Then:

(i) V � � H� for 1 6 � 6 4, with continuous injection.

(ii) H�
0 � V � for 1 6 � 6 4, � 6= integer + 1=2, with continuous injection.

Proof. (i) follows from Propositions 1, 3(i) and injections (8), (11). Similarly,
(ii) follows from Propositions 1, 3(ii) and injections (19), (22).

3. Solving hyperbolic equation

For a Banach space B, let C(B) denote the space of continuous functions de-
�ned on [0; T ] with values in B, furnished with the norm kvkC(B) = max

t2[0;T ]
kv(t)kB .

Similarly, L1(B) denotes the space of strong integrable functions with the norm

kvkL1(B) =
R T
0 kv(t)kB dt.

Consider initial boundary value problem (IBVP) for homogeneous hyperbolic
equation in the domain Q = (0; 1)� (0; T ]:

@2u

@t2
=

@

@x

�
a(x);

@u

@x

�
; (x; t) 2 Q

u(0; t) = u(1; t) = 0; t 2 [0; T ]

u(x; 0) = u0(x);
@u

@x
(x; 0) = u1(x); x 2 (0; 1):

The weak solution of this problem (see [4]) is a function u 2 C(V 1) satisfying
conditions u(x; 0) = u0(x), @u=@t 2 C(V 0) and the integral equality

Z T

0

�
@u

@t
;
@�

@t

�
dt+

Z T

0

�
a
@u

@x
;
@�

@x

�
dt = (u1; �0);
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for every � 2 L1(V
1) such that @�=@t 2 L1(V

1) and �jt=T = 0, where �0 = �jt=0.
For u0 2 V 1, u1 2 V 0 there is the unique weak soluton of (IBVP). Furthermore, if
u0 2 V k+l+1, u1 2 V k+l then the following inequality holds (see [7]):





@
l�1u

@tl�1






C(V k+2)

+





@
lu

@tl






C(V k+1)

+





@
l+1u

@tl+1






C(V k)

6 C(ku0kV k+l+1 + ku1kV k+l)

(here k; l 2 Z, k > 0, l > 1).

Similarly to the last inequality, one can easily obtain (see the proof of Proposi-
iton 1.3 in [7]) that if u0 2 V �, u1 2 V ��1 then





@
lu

@tl






C(V ��l)

6 C(ku0kV � + ku1kV ��1); (24)

for every real � > 1, where l 2 Z, 0 6 l 6 �. According to (24) and Proposition 6
we �nally have

Theorem 3. Suppose a 2 C3 and (2) is satis�ed. Let u be the unique weak
solution of (IBVP).

(i) If u0 2 V �, u1 2 V ��1 then @lu=@tl 2 C(H��l) and





@
lu

@tl






C(H��l)

6 C(ku0kV � + ku1kV ��1);

where 1 6 � 6 4, l 2 Z, 0 6 l 6 �.

(ii) If u0 2 H�
0 , u1 2 H��1

0 then @lu=@tl 2 C(H��l) and





@
lu

@tl






C(H��l)

6 C(ku0kH� + ku1kH��1);

where 1 6 � 6 4, � 6= integer + 1=2, l 2 Z, 0 6 l 6 �.
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