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ON SOME FUNCTION SPACES
THAT APPEAR IN APPLIED MATHEMATICS

Vladimir Jovanovié

Abstract. The linear spaces generated by the eigenfunctions of a differential operator are
well-known in applied mathematics. In this paper we examine their interpolation properties,
connection with Sobolev spaces and apply these results to the solving of hyperbolic equation in
Sobolev spaces of fractional order.

1. Interpolation and function spaces

Let A; and A, be two Banach spaces, linearly and continuously embedded in a
topological linear space A. Such two spaces are called interpolation pair {Ay, As}.
The space A1 + As we define as

A+ As={acA:a=a +az,a; € 4;,j=1,2},

with the norm ||al|a,44, = infa—a,4as,q;e4;(lla1]la, + [laz]la,). Introduce the
function
K(ha A )= nf (s, +laslla,).

a=ai1+az,a;EA;
This function is a norm in A; + Ay equivalent to the standard norm ||a||a,+4,-

For 0 < 8 < 1,1 < ¢ < oo, the interpolation space (A1, Az)p,q obtained by
K-method of real interpolation is defined as the set of all elements a € A; + As
with the finite norm

., dt\ '
ol ([ 00K 00 A1 20 )
0
(see [1]).

PROPOSITION 1. Let {4y, As} and {B1, B2} be two interpolation pairs such
that B; C A;, i = 1,2 (with continuous injections). Then for0 <6 < 1,1 < ¢ < oo,
(B1,B2)g,q C (A1, As)g 4 (with continuous injection,).

Proof. Using continuity of injections B; C A;, ¢ = 1,2, one obtains that
K(t,a, Ay, A2) < K(t,a,B1,B2) (a € By + Bs). The conclusion is obvious. m
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Next, we shall present one more method of interpolation.
Let X and Y be two separable Hilbert spaces such that

X CY, X densein Y with continuos injection. (1)

For 0 < # < 1 define the interpolation space as [X,Y]s = D(A'=?) (domain of
A'=%), where A is a self-adjoint, lower-bounded operator in Y, with domain X
and which satisfies the relation (u,v)x = (Aw,Av)y (u,v € X). We shall take
lvllix,y), = IIA*?v]ly as the norm of this space. The space [X,Y]y does not
depend on the choice of the operator A, although it is not unique (see [5]).

The next proposition improves the connection between two methods of inter-
polation we mentioned before (see [5]).

PROPOSITION 2. Suppose X, Y be two separable Hilbert spaces which satisfy
(1). Then [X,Y]p = (X,Y )2 (with equivalent norms). m
This equivalence will be often used, but we shall not mention it explicitly.

Let Ly = Ly(0,1) (1 < ¢ < 00) be Lebesgue spaces of integrable functions,
H* = H#%(0,1) standard Sobolev spaces, D the space of infinitely differentiable
functions with compact support in (0,1) and H{ the closure of D in H*. (, ) and
|l ]| will denote inner product and norm in L, respectively.

For Sobolev spaces the following interpolation theorems are valid (see [5]):
PROPOSITION 3. Suppose 0 < 6 < 1.

(1) If 0 < s1,82 <00, 81 # S2 then (H®,H®)g o = HO-0)s1+0s2

(ii) If 0 < 81,82 < 00, 81 # $2 and sy, S2, (1 —6)s1 + sy # integer + 1/2 then

(Hg*, Hi?)o, = Hy' 7000,

2. The spaces V¢

Let
a€ Ly, a>ay>0in (0,1) ae. (2)

Let us define a bounded linear operator L: H} — H~! by Lv = —(av’)’. Then,
there exist 0 < A\ < Ag < ---, limy A, = 00, such that Lor = Argr (kK € N); the
sequence of eigenfunctions (px)ren C Hg is an orthonormed topological basis of
Lo (see [3]). We introduce the spaces V* (a > 0) by

o0
Ve = {v €Ly | ollye =D Aptp < 00 }
k=1
where 0, = (v, ) are Fourier coefficients of v in the basis (¢k)ren. Obviously,

VO = L,. It is not hard to verify the following assertions:

1° V< is a separable Hilbert space;
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2° If a > 3 >0, then V¥ C VP (with dense and continuous injection).

PROPOSITION 4. If a> 3 >0 then [V, VP]y = V1=0)at05,
o =B

Proof. Let us define an operator in V# by Av = 3~ A, 2 Bnpk. It is easy to
k=1

verify that D(A) =V, Im(A) = V? and (u,v)ve = (Au, Av)ys (u,v € V). The
family of projectors in V# defined by

E(\Nv= > tkpx, (3)
M <A

a=@
where ur, = A, 2> (k € N), is a resolution of identity in V7 (see [6]). From
equalities

oo

oo o a=0
/ pdBE(pyo =Y mbeer = > N ° epr = Av (v €V,
H k=1 k

1 e—1

one concludes that (3) is the spectral decomposition of A (see also [6]). Using the
definition of the power of operator, we have

_ < — 10~ = (1-0)22
A0 Z/ p' =l dE(p)w = Zui “Bror = Z)‘k > Ok
H1 k=1 k=1

Hence,
[V, Vg = DIA") = {v e VI [ AP0}, < oo}

={v eV LA <o} = VOO,
k=1

Further, we want to improve the connection between V* and Sobolev spaces.
LEMMA 1. If v € Ly such that (Vo € D) | fol v dz| < C||o|l, then v € H*.

LEMMA 2. If v € H} is the solution of the variational problem

1 1
| avao= [ rear (oem) (4)
0 0
then
aGCl,fELz — ve H? and vl gz < CIfIl, (5)
aEC’Q,fGH1 — ve H® and lvllas < Cllfllae, (6)
acC3 feH? = ve H' and vl gs < Cllfllme2, (7)

The proofs of these lemmas one can find in [2].
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Let L(®y = E A2 or. Obviously, D(L(®/2)) = Ve and ||v[|y« = ||L(*/?v].

THEOREM 1. Suppose a € C® and (2) is satisfied. Then:

V! c Hg, (8)

V2=H?’nH} and LWv=1Lv (veV?), (9)
VicH?, (10)

VicH* and LPv=L% (veV?). (11)

Proof. We start by showing (9). Let S: Ly — H{ be the mapping which to
every f € Lo assigns the solution of (4). Obviously, Sy, = %kgok (k € N). Using

(5), one obtains that Sf € H> N H} and

1S f L= < ClISI- (12)

Suppose v € V2. Then the series Y. \;0p) converges in Lo. From this, using the
k=1

relation E Uk = <E Akvkgok> and (12), we conclude that Y ¥y converges
= k=1
in H2. Hence v € H? and, therefore, V2 C H?> N H}. Conversely, if v € H?> N H}

then Lv € Lo, and from self-evident equalities

[ee]

Lv = Z Lv,¢r)e Z (v, Lop)or = ZAkvk@ka (13)
k=1

k=1

one obtains that v € V2 and, therefore, H? N H} C V2. From (13), it follows that
Lv=LWy (veV?).

Let us prove (11). Using (9) one obtains
veVt = Lv=LWyeV? = L[?v =L,

Then from v € V! = Lv € V2 = H?> N H} and (7), we have v € H%, ie
V4 c HY.

Now, we are going to verify (8). Suppose v € V''. Then, there is a sequence
(Vn)nen C V2 tending to v, i.e. v, — v in V1. Obviously

1 1
(Lvy,vy) = —/ (av),) vy, dx:/ a(vl)? dv
0 0
= cllvallip < (Lon,vn) < Cllonllfn. (14)

Further, one has (L(1/?v,,, L1/?y,) = (LWv,,v,) = (Lv,,v,). From this, using
(14) one obtains
cllvnllar < lloallvr < Cllvallm- (15)
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This relation implies that (v,),en is a Cauchy sequence in H'. Hence, v,, — ¥ €
H' in H'. The relations v, — v in V! and v,, — @ in H' yield v,, — v and v,, — o
in Ly. Therefore,

v=7in L. (16)

For every ¢ € D, the implication

1 1
/ va' dr| = ‘/ v pdx
0 0

holds. According to Lemma 1 and the last inequality, we obtain that v € H'. The
equalities

1 1 1 1 1
/ vVipdr = / vo'dr = lim/ v do = lim/ v pdr = / v pdr,
0 0 mJo mJo 0

show that v = @' in L. This fact, together with (16) implies that v = o in H'.
Since v,, € H} and v,, — o in H', it follows that v € H. Hence, V! C H{.

At last, we shall prove (10). Suppose v € V3. Then Lv = LMy € V! C H*
and using (6) one obtains (10). m

1
< lonllllell = ‘/ ve' d| < |7l ol
0

LEMMA 3. Suppose a € C® and (2) is satisfied.

(i) If v e H?> N HL, then c|lv]|g2 < || Lv]| < C||v]lg2;

(i) If v € H*N H} satisfying Lv € HE, then c||v||ge < ||[L20|| < C|v| -
Proof. The upper estimates in (i) and (ii) are evident. Let us prove the lowers.

(i) If v € H> N H} then Lv = f € Ly. (5) and fact that (4) has the unique
solution v € H imply
L]l > cllv]l g (17)

(ii) Relation Lv € H}, (7) and (17) yield |L?v|| = ||L(Lv)|| > c||Lv|/z: >
cl|v)|gs. m

PROPOSITION 5. Suppose a € C* and (2) is satisfied. Then
cllollm: < llollve < Clloll (v €V, (18)
for1=1,2.3,4.

Proof. The cases i = 2,4 are immediate consequences of Lemma 3. Since V?
is dense in V! then, according to (15), we conclude that for i = 1 Proposition 5
holds (see the proof of Theorem 1). Applying (6) and (17) when 7 = 1, one can
easily obtain (18) fori = 3. m

THEOREM 2. Suppose a € C® and (2) is satisfied. Then:

Hy cV' (19), HZCV? (20), H2CV3 (21), Hf cVv* (22).
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Proof. (20) is obvious. Firstly, let us prove (22). Since V* = {v € V? |
LWy € V2} and LWy = Lv (v € V2 = H? N H}), then, obviously, (22) holds.
From H; C V* C V3 C V2 C V!, it follows that

DcVh (23)

To verify (19), we shall prove that V! is complete in the norm of the space
H!. Indeed, let (v,),en C V! be a Cauchy sequence in H'. Then according to
(15) we conclude that it is also a Cauchy sequence in V!. Hence, v,, — v € V! in
V1. From this, thanks to (8), we obtain v, — v in H', i.e. V! is complete in the
norm of the space H'. Combining this fact with (23), one obtainss (19). (21) may
be easily verified in the same manner. m

REMARK 1. The relations (8) and (19) show that V! = H} under hypothesis
cited in the last proposition.

REMARK 2. Applying technics used in the proving of (19)7_0ne may verify
that V* (i = 1,2,3,4) are closed subspaces of Sobolev spaces H* (i = 1,2,3,4),
respectively.

PROPOSITION 6. Suppose a € C3 and (2) is satisfied. Then:

(i) Ve C H® for 1 < a < 4, with continuous injection.

(ii) Hy CcV* for 1 < a <4, a # integer + 1/2, with continuous injection.

Proof. (i) follows from Propositions 1, 3(i) and injections (8), (11). Similarly,
(ii) follows from Propositions 1, 3(ii) and injections (19), (22). m

3. Solving hyperbolic equation

For a Banach space B, let C'(B) denote the space of continuous functions de-

fined on [0, T] with values in B, furnished with the norm ||v||¢(p) = Hf(?)zc“] llo(®)|l 5.

Similaurly7 Ll( ) denotes the space of strong integrable functions with the norm
ol sy =y ()]s dt.

Con51der initial boundary value problem (IBVP) for homogeneous hyperbolic
equation in the domain @ = (0,1) x (0,T:

0?2 0 0
a—tg:% <a’(x)va_1; ) (I,t)EQ
w(0,t) =u(1,¢) =0, ¢€10,T]

Ju
ox
The weak solution of this problem (see [4]) is a function v € C(V'!) satisfying
conditions u(z,0) = ug(z), du/dt € C(VP) and the integral equality

ou 0On T 1 ou ony
‘/0 <Bt 8t> dt+/0 ( a 8 > dt = (11,17170)7

u(x,0) = uo(x), (2,0) =uq(z), x€(0,1).
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for every n € L1(V'!) such that on/dt € L1 (V') and n|;—7 = 0, where 19 = n|s—o-

For ug € V!, u; € VO there is the unique weak soluton of (IBVP). Furthermore, if
ug € VEFIFL oy € VF+ then the following inequality holds (see [7]):

alflu al+1u

H ott+1

ol
£ < C(lluollyrsrer + flut|fyrsr)

ot (vh)

+\
)

C(vi+? C(vE+1) ‘

(here k,l € Z, k> 0,1 > 1).

Similarly to the last inequality, one can easily obtain (see the proof of Proposi-
iton 1.3 in [7]) that if ug € V', ug € V=1 then

< Cllluollve + [luallve-1), (24)

c(ve-)

P
ot

for every real @ > 1, where [ € Z, 0 < | < a. According to (24) and Proposition 6
we finally have

THEOREM 3. Suppose a € C® and (2) is satisfied. Let u be the unique weak
solution of (IBVP).

(i) If up eV, uy € Vel then 8lu/atl c C(Hafz) and

where l <a<4,l€Z,0<I<a.
(ii) If uo € HE, uy € HY™" then 0'u/ot' € C(H*™Y) and

o

o < Clluollys + o).

C(H~=1)

< Cllluollme + llurll 1),

H d'u
c(He)

ot

where 1 < a <4, a #integer+1/2,1€Z,0< < a. »
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