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A BASIS PROPERTY OF FAMILIES
OF THE MITTAG-LEFFLER FUNCTIONS

Milutin Dostanié

Abstract. In this paper we study basis properties of the Mittag-Leffler functions {y(z, Ax)}
where

y(z, ) = |2|*/?Ey(izh; 1+ w/2), we(-1,1),

E1(Z§C¥) - kgo F(a —+ k)

system is reduced to the exponential system.

and {\.} is a sequence of complex numbers. In the case w = 0 this

1. Introduction

In [3] necessary and sufficient conditions for the system {z® 1E;(i\,z;a)}
to form an unconditional basis in L?(0,1) are obtained. The same conditions are
obtained in [9] as a consequence of a more general result. These conditions are
expressed in terms of the Muckenhoupt condition which should be satisfied by an
entire function with zeros {\;}. Conditions that the system {e"*»*} is a Riesz basis
of L?(—m, ) can also be expressed in terms of the Muckenhoupt condition [8].

These conditions are not always easy to check. In [5] some sufficient conditions
that the exponential system is a Riesz basis in L?(—m,7) are given. In this paper
we give some sufficient conditions that the system of the Mittag-Leffler functions
is a Riesz basis in L?(—m, 7).

2. Preliminaries
Given f,g: X — Ry we write f(z) < g(z) (x € X) if there exist constants
Cy, Cy > 0 such that C; < f(z)/g(z) < C (z € X).

DEFINITION. [1] An entire function F of exponential type is said to be of sine
type if
1) the zeros of F' lie in { z € C | [¥z| < h } for some h > 0.
2) there is yo € R such that |F(x +iyp)| < 1 (z € R) holds.
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If f is an entire function of exponential type, then by hs(f) we denote the
indicator function )
— In|f(re”)]

= lim ——~—.
hs(0) im .

T— 00

By W, (w) we denote the class of entire functions of exponential type o < 7 such
that [*°_|z]“|f(2)[? dz < oo for some w € (—1,1). A characterization of this class
is given by the following theorem:

THEOREM 1. [4]

We(w) = {f ‘ f\) = /_: E; (i)\t; 1+ %) t|“/2p(t) dt and ¢ € L*(—m, ) } .

The function p is almost everywhere determined by the formula
w

oo —itv __ 1T sen v 2 t; te(— ) )
[ e () = [ 2O )
or dt | o, —iv 0;  t¢(-mm

The next theorem gives some sufficient conditions for the exponential system
to be a Riesz basis in L?(—m, 7).

THEOREM 2. [7], [8] Let S be an entire function of sine type with zeros { A\, }nez
such that hs(£m/2) = 7 and inf,2p, [An — | > 0. Then the system of functions
{en®)oe __ is a Riesz basis in L?(—m, 7).

3. Main result

Let the sequence {\,}>, satisfies the conditions of Theorem 2 and ¢(z) =
|z|“/2 By (ix; 1 + w/2).

THEOREM 3. Ifw € (—1,1), then the system of functions {p(xA,)}>, is a
Riesz basis in L?(—7, 7).

First we prove the following lemma.

LEMMA. If f € Wi(w) (w € (=1,1)), {\,}>°, is the sequence of zeros of a
sine type function S which satisfies the conditions of Theorem 2, then

o0

S PO = /R 2| (@) ? (1)

n=-—oo

Proof. Let LY(R) be the set of functions in L?(R) such that their Fourier
transformations vanish a.e. on R\ [—7, 7]. Since % is an entire function

of exponential type and S is a sine type function, then
SN

S )N =) € Wr(w), we(-11).
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From the Theorem of B. Y. Levin and V. D. Golovin [5] it follows that the system
of functions {e?*»®}*°_is a Riesz basis in L*(—x, 7).

Since % € L?(R) and it is an entire function of exponential type,
from the Paley-Wiener theorem it follows that there exists a function ¥, €

L?(—m,7) such that

1 T AT ) _ S()‘)

From (2) it follows that the system of functions {(27)~%,}> is biorthogonal to

—o0
the system {e**»®}22 . Since the system {e"*»*}*>__ is a Riesz basis in L?(—x, ),
we conclude that the system {¢,,}>_ is also a Riesz basis in L?(—n, 7). Hence, the
system of functions {1, (—x)}°°_ is also a Riesz basis in L?(—m, ).

Now we shall prove that the system {%} is a Riesz basis in
LY(R). -

It is enough to show ([2]) that this system is complete in L3(R) and that for
arbitrary constants C, there holds

e R @

But this follows directly from the Parseval relation, (2) and the fact that the system
{¥n(z)} is a Riesz basis in L?(—m, ).

T w/2
. 'LE sgn v
Let f € Wi(w). From Theorem 1 it follows that f(v) <|v|e ) €

L(R),

i3 sgnw % _ S(z)
f(z) <|x|e ) = Zy:dum (4)

and

Slaf = [ llfapa (5)

(because the system {% }oo is a Riesz basis in LY(R)).

Since S is a sine type function, then (see [7]) |S'(An)] = ¢ > 0 for each
n € Z. Let § = inf,zn A — Ap] and D = JJ2__{A | A= A\)| < §/3}. The
series 3.7 |A — A,| 72 converges uniformly on compact subsets of C\ D (because
S(A,) = 0 and the function S is of exponential type).

2
From the maximum modulus principle we get that the series Y™ W(;)*A)Z

converges uniformly on compact subsets of C. Then from (5) it follows that the se-
ries » d,,% converges uniformly on compact subsets of C and represents

an entire function.
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The convergence in (4) is convergence in the subspace L3(R). Since the func-

- w/Q
iZsgnx
tion f(z) { |z|e 2 ) is continuous for x > 0 and the series ) d,,%
converges uniformly on compact subsets, then from (4) it follows
iy sgnz 2 S(x)
=N 0. 6
1@ (1) = Sty «> ©

From (6), by the uniqueness theorem, we get

3 g, SO

ITW

et FINA

W€

S (AN =)’

w @ln\
(here A% =e? "
gives

,In A =1In|\| +iarg\, —m < arg A < 7). The previous relation

| = 1) A2, (7)
From (5) and (7) it follows (1). m

Proof of Theorem 3. It is well known [2] that a minimal system {e,}>_ is a
Riesz basis in a Hilbert space H if and only if Y, |(f,ex)|? < || f||* for each f € H
(with (-, -) we denote the scalar product in H). Now we shall prove that the system
of functions {¢(z\,)} is minimal in L?(—7, 7).

S(A)
27257 (M) (A Aw)
exist functions ¢, € L?(—n, ) such that

Really, the functions are in Wy (w) and by Theorem 1 there

_ SN
B |)‘n|w/25’()‘n)()‘ - )‘n)'

/ﬂ B (z’)\t;1+ %) 12 (1) dt ®)

-7

From (8) it follows (@(2Am),¥n)r2(—n,x) = Onm Which proves the minimality of

{o(zAn)}.
Let e, (x) = |[A\z|“/2Fy (i\,2;1 + w/2) and h € L*(—n, 7). To prove Theorem
3 it is enough to show that

>l en)” < [IR]> (9)

Since 32, [(h,en)” = 22, [(en, h)|* = 322, [An]“1f(An)]? where

F\) = /_: B (Mt;1+ g) |t|%h(t) dt (€ Waw)),

the relation (9) follows from the Lemma. m

Notice that the basis property of {@(z),)} (in L?(—m, 7)) does not follow
from the basis property of {E1(i\,z;1+w/2)} in L?(0,7) because Ei (21 + 22; a) #
Ei(z1;0a) - E1(22; ).
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THEOREM 4. If {)\,}>, is a complex sequence such that sup,cgz |\, — n| =
g <1/8 and —1 < w < 1 — 8¢, then the system {p(xzA,)}>*, is a Riesz basis in
L?(—m, 7).

Proof. Let G(A) = (A — o) ﬁ <1 - )\)\ ) (1 - %) If we prove
n=1 -n n
G
) = A
b) |G'(A\n)| = C(1+ |An])~¢ (C > 0 and does not depend on n and £ < 1/2),

€ Wr(w),

the assertion of the Theorem will follow directly by the method used in the proof
of Theorem 3.

Since ¢ < 1/8 and —1 < w < 1—8¢ we have |G(z)| < C1(1+]|z])*? (C; does not
depend on z, see [6]) and hence the function m satisfies the condition a).
The function G satisfies the condition b) and in that case ¢ = 4¢ (< 1/2). In the
proof we used the fact (see [6]) that if argA =6, RA > 0, |A\|] > 1/2 and N is a
natural number defined by N — 1 < [A|secf < N + 1, then

|>\N _ )\|e7r|§)\\
(L4 A= N+ [A])*

|G| > Co (10)

where the constant Cy does not depend on A and N. Let D,, = {A | |]A = A, <
§ <1—8¢}. Since for A € 0D, the inequality N — < |[A[secf < N + 1 holds for
N = n, applying (10) we obtain

e7r|%M

VT

‘GQ)
X — A

(11)

where C), does not depend on A € dD,, and n.

From (11) by the minimum modulus principle we get |G'(\,,)| = C(1+|\,|) "%
where the constant C' does not depend on n. Similarly we prove that the last
inequality holds forn = -1, =2, ... m
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