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ON P� AND WEAKLY-P� SPACES

M. Khan, T. Noiri and B. Ahmad

Abstract. In this paper, we point out that properties P� due to Wang [18] and strongly
s-regular due to Ganster [5] are equivalent to each other. We further study these spaces and
weakly-P� spaces de�ned by the second author [15].

1. Introduction

In 1981, Wang [18] de�ned a weak form of regularity called P�. In 1984, the
second author [13] de�ned the notion of weakly-P� spaces which is weaker than
that of P� spaces. Recently, Ganster [5] has introduced the class of strongly s-
regular spaces which lies strictly between the class of regular spaces and the class
of s-regular spaces in the sense of Maheshwari and Prasad [9]. In this paper, we
point out that P� and strongly s-regular are equivalent to each other. And we
further investigate the properties of P� and weakly-P� spaces. Pre-almost open,
pre-almost closed and regular-open functions are also de�ned and studied to obtain
some preservation theorems of P� and weakly-P� spaces.

2. Preliminaries

Throughout this paper, spaces always mean topological spaces on which no
separation axioms are assumed unless explicitly stated. Let X be a topological
space and A be a subset of X . The closure of A and the interior of A in X are
denoted by Cl(A) and Int(A), respectively. A subset A of X is said to be semi-
open [8] if there exists an open subset U of X such that U � A � Cl(U). The
complement of a semi-open set is said to be semi-closed. The semi-closure of A
is de�ned as the intersection of all semi-closed sets containing A and is denoted
by sCl(A). The semi-interior of A is de�ned as the union of all semi-open sets
contained in A and is denoted by sInt(A). A subset A is said to be semi-regular [3]
if it is semi-open and semi-closed. The family of all semi-open (resp. semi-regular)
subsets of X is denoted by SO(X) (resp. SR(X)). A subset A is said to be preopen
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[10] if A � Int(Cl(A)). A subset A is said to be regular open (resp. regular closed)
if A = Int(Cl(A)) (resp. A = Cl(Int(A))). The family of all regular open (resp.
regular closed) subsets of X is denoted by RO(X) (resp. RC(X)). A point x of X
is said to be in the �-semiclosure [6] (resp. �-closure [17]) of A, denoted by �-sCl(A)
(resp. Cl�(A)), if A \ Cl(U) 6= ; (resp. A \ U 6= ;), for every U 2 SO(X) (resp.
U 2 RO(X)) containing x. A subset A is said to be �-semiclosed [6] (resp. �-closed
[17]) if �-sCl(A) = A (resp. Cl�(A) = A).

Definition 1. A topological space X is said to be

(a) P� [18] if every open subset of X is the union of regular closed sets;

(b) weakly-P� [13] if every regular open subset of X is the union of regular
closed sets;

(c) s�-regular [7] if for any semi-regular set A and any point x 2 X �A, there
exist disjoint open sets U and V such that A � U and x 2 V ;

(d) s-regular [9] (resp. semi-regular [4]) if for each closed (resp. semi-closed)
set A and any point x 2 X � A, there exist disjoint semi-open sets U and V such
that A � U and x 2 V ;

(e) extremally disconnected (brie
y E.D.) if Cl(U) is open in X , for every open
set U in X ;

(f) almost regular [15] if for any regular closed set A and any point x 2 X�A,
there exist disjoint open sets U and V such that A � U and x 2 V ;

(g) strongly s-regular [5] if for each closed set A and any point x 2 X � A,
there exists an F 2 RC(X) such that x 2 F and F \ A = ;.

3. P� and weakly P� spaces

First of all, we point out that P� and strongly s-regular are equivalent to each
other.

Theorem 1. (Ganster [5]) The following are equivalent for a topological
space X:

(a) X is P�.

(b) For any open subset U of X and any point x 2 U there exists an F 2
RC(X) such that x 2 F � U .

(c) X is strongly s-regular.

Theorem 2. The following are equivalent for a topological space X:

(a) X is weakly-P�.

(b) For any regular open subset U of X and any point x 2 U , there exists an
F 2 RC(X) such that x 2 F � U .

(c) Every regular closed set in X is the intersection of regular open sets.

(d) �-sCl(A) � Cl�(A) for every subset A of X.

(e) Every �-closed set of X is �-semiclosed in X.
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Proof. The proof is quite similar to that of [5, Theorem 1] and is thus omitted.

In [5, Theorem 2], Ganster showed that strong s-regularity is open hereditary.
We shall improve this result in the following theorem.

Theorem 3. If X is a P� spaces and Y is preopen in X, then the subspace
Y is P�.

Proof. Let U be an arbitrary open susbet of Y . Then there exists an open
subset V of X such that U = V \ Y . Since X is a P� space, we have V =

S
fV� :

� 2 rg, where V� 2 RC(X) for each � 2 r. It is easily checked that a subset is
regular closed in X if and only if it is closed and semi-open in X . Therefore, V�\Y
is closed in Y for each � 2 r. By [14, Lemma 2.2], we obtain V� \Y 2 SO(Y ) and
hence V� \ Y 2 RC(Y ) for each � 2 r and U =

S
fV� \ Y : � 2 rg. This shows

that the subspace Y is P�.

Corollary 1. (Ganster [5]) Strong s-regularity is open hereditary.

Theorem 4. If X is a weakly-P� space and Y is open in X, then the subspace
Y is weakly-P�.

Proof. Let U be an arbitrary regular open subset of Y . It is shown in [11,
Lemma 3] that IntY (ClY (A)) = Y \ Int(Cl(A)) for any open subset Y of X and
any subset A of Y . Therefore, there exists a regular open subset V of X such that
U = Y \ V . Since X is a weakly-P� space, we have V =

S
fV� : � 2 rg, where

V� 2 RC(X) for each � 2 r. Similarly to the proof of Theorem 3, we obtain V�\Y
is regular closed in Y for each � 2 r and U =

S
fV� \ Y : � 2 rg. This shows

that the subspace Y is weakly-P�.

Theorem 5. If a space X is s-regular and s�-regular, then it is regular.

Proof. Let U be any open subset of X and x 2 U . Since X is s-regular, there
exists G 2 SO(X) such that x 2 G � sCl(G) � U [9, Theorem 2]. It follows from
Proposition 2.2 of [3] that sCl(G) 2 SR(X). Since X is s�-regular, there exists
an open subset O of X such that x 2 O � Cl(O) � sCl(G) [7, Theorem 1]; hence
x 2 O � Cl(O) � U . This shows that X is regular.

Since RC(X) � SR(X), every s�-regular space is almost regular. Ganster
showed that there exists a Hausdor� strongly s-regular space which is not almost
regular [5, Example 4]. By these results and Example 1 (stated below), we obtain
the following property.

Remark 1. s�-regularity is independent of strong s-regularity and also s-
regularity.

Example 1. Let X = fa; b; cg and � = f;; fag; fcg; fa; cg; fb; cg; Xg. Then
(X; �) is an s�-regular space. And it is not s-regular since a subset fa; bg is closed
and not semi-open in (X; �).

Theorem 6. A topological space X is s�-regular if and only if it is E.D.
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Proof. Necessity. Let X be s�-regular and V a nonempty open set in X .
Then we have Cl(V ) 2 RC(X) and RC(X) � SR(X). For each x 2 Cl(V ),
there exists an open set Ux, such that x 2 Ux � Cl(Ux) � Cl(V ). Therefore,
Cl(V ) =

S
fUx : x 2 Cl(V ) g is open in X . This shows that X is E.D.

Su�ciency. Let X be E.D. and A be any semi-regular set in X . Since A is
semi-open, by [3, Proposition 2.4] we have sCl(A) = Cl(A) and hence A = sCl(A) =
Cl(A) = Cl(Int(A)). This shows that A is open and closed in X . Therefore, X is
s�-regular.

Corollary 2. (Ganster [5]) The following are equivalent for an E.D. space X:

(a) X is regular.

(b) X is strongly s-regular.

(c) X is s-regular.

Proof. The proof follows immediately from Theorems 5 and 6.

We have the following diagram related to separation axioms de�ned in x2.

extremally disconnected regular semi-regular
"# # #

s�-regular strongly s-regular ! s-regular
# #

almost regular ! weakly-P�

Remark 2. None of implications in the above diagram is reversible as shown
by the following:

(a) Dorsett [4] pointed out that semi-regularity is independent of regularity
and is strictly stronger than s-regularity.

(b) In Examples 1 and 2 of [5], Ganster showed that strong s-regularity lies
strictly between regularity and s-regularity. We should note that the term \semi-
regular" in [5, Example 2] is di�erent from \semi-regular" in the sense of Dorsett [4].

(c) By [5, Example 4] and Example 1, the both notions of almost regular and
strongly s-regular are strictly stronger than that of weakly-P�.

(d) The real numbers with the usual topology is a regular space which is not
E.D. Therefore, by Example 1 \E.D." and \regular" are independent of each other.
And also almost regularity does not always imply s�-regularity.

In [5, Theorem 3], Ganster showed that strong s-regularity is productive. We
obtain the similar result about weakly-P� spaces.

Theorem 7. If (X�; ��) is a weakly-P� space for each � 2 r, then the product
space (X; �) =

Q
f (X�; ��) : � 2 rg is weakly-P�.

Proof. Let W be an arbitrary regular open set in (X; �) and x 2 W . Then we
have x 2

Q
fU� : � 2 rg � W , where U� is open in (X�; ��) for each � 2 r

and there exists a �nite subset r0 of r such that U� = X� whenever � 2 r�r0.
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Therefore, we have x 2
Q
f Int(Cl(U�)) : � 2 rg �W . For each � 2 r0, we have

x� 2 Int(Cl(U�)) and hence x� 2 F� � Int(Cl(U�)) for some F� 2 RC(X�; ��).
Now, let F =

Q
fF� : � 2 r0 g �

Q
fX� : � 2 r � r0 g. Then, we obtain

F 2 RC(X; �) and x 2 F �
Q
f Int(Cl(U�)) : � 2 rg � W . This shows that

(X; �) is weakly-P�.

4. Preservation theorems

We shall recall de�nitions of some functions used in the sequel to obtain several
preservation theorems.

Definition 2. A function f : X ! Y is said to be:

(a) almost-continuous [16] if f1(V ) is open in X for every V 2 RO(Y );

(b) completely-continuous [1] (resp. R-map [2]) if f1(V ) 2 RO(X) for every
open subset V of Y (resp. V 2 RO(Y ));

(c) almost-open [16] if f(U) is open in Y for every U 2 RO(X).

Definition 3. A function f : X ! Y is said to be:

(a) pre-almost open (resp. regular open) if f(U) 2 RO(Y ) for everyU 2 RO(X)
(resp. open set U in X);

(b) pre-almost closed if f(U) 2 RC(Y ) for every U 2 RC(X).

Lemma 1. (Noiri [12]) Every almost-continuous almost-open function is an
R-map.

Theorem 8. If f : X ! Y is an almost-continuous and open (resp. almost-
open) injection and Y is P�, then X is P� (resp. weakly-P�).

Proof. Let U be an arbitrary open (resp. regular open) subset of X . Then
f(U) is open in Y and f(U) =

S
fV� : � 2 rg, where V� 2 RC(Y ) for each

� 2 r. Since f is injective, we have U =
S
f f1(V�) : � 2 rg. By Lemma 1, f is

an R-map and hence f1(V�) 2 RC(X) for each � 2 r. Therefore, X is P� (resp.
weakly-P�).

Theorem 9. If f : X ! Y is an almost-continuous and pre-almost open (resp.
regular open) injection and Y is weakly-P�, then X is weakly-P� (resp. P�).

Proof. Let U be an arbitrary regular open (resp. open) set in X . Then f(U)
is regular open in Y and f(U) =

S
fV� : � 2 rg, where V� 2 RC(Y ) for each

� 2 r. Since f is injective, we have U =
S
f f1(V�) : � 2 rg. Every regular

open function is pre-almost open and every pre-almost open function is almost
open. Therefore, by Lemma 1, f is an R-map and hence f1(V�) 2 RC(X) for each
� 2 r. This shows that X is weakly-P� (resp. P�).

Theorem 10. If f : X ! Y is a continuous (resp. completely continuous) and
pre-almost closed surjection and X is P� (resp. weakly-P�), then Y is P�.
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Proof. Let V be an arbitrary open subset of Y . Then f1(V ) is open (resp.
regular open) in X . Since X is P� (resp. weakly-P�), f

1(V ) =
S
fU� : � 2 rg,

where U� 2 RC(X) for each � 2 r. Since f is surjective, we have V =
S
f f(U�) :

� 2 rg. Since f is pre-almost closed, f(U�) 2 RC(Y ) for each � 2 r. This shows
that Y is P�.

Theorem 11. If f : X ! Y is an R-map (resp. almost-continuous) and pre-
almost closed surjection and X is weakly-P� (resp. P�), then Y is weakly-P�.

Proof. Let V be an arbitrary regular open set in Y . Then f1(V ) is regular open
(resp. open) in X . Since X is weakly-P� (resp. P�), f

1(V ) =
S
fU� : � 2 rg,

where U� 2 RC(X) for each � 2 r. Since f is a pre-almost closed surjection, we
have V =

S
f f(U�) : � 2 rg and f(U�) 2 RC(Y ) for each � 2 r. This shows

that Y is weakly-P�.

Lemma 2. If f : X ! Y is a pre-almost open function, then for any point y
of Y and any A 2 RC(X) containing f1(y), there exists a B 2 RC(Y ) containing
y such that f1(B) � A.

Proof. Let B = Y � f(X � A). Then, since f1(y) � A, it follows that y 2 B

and B 2 RC(Y ) because f is pre-almost open. By a straightforward calculation,
we have f1(B) � A.

A subset S of a space X is said to be S-closed relative to X [13] if for every
cover fU� : � 2 rg of S by semi-open sets of X there exists a �nite subset r0 of
r such that S �

S
fCl(U�) : � 2 r0 g. It is obvious that a subset S of a space

X is S-closed relative to X if and only if every cover of S by regular closed sets in
X has a �nite subcover.

Theorem 12. Let f : X ! Y be a continuous and pre-almost open surjection
such that f1(y) is S-closed relative to X for each point y of Y . If X is P� (resp.
weakly-P�), then Y is P� (resp. weakly-P�).

Proof. Let V be an arbitrary open (resp. regular open) set in Y and y 2 V .
Then, since pre-almost open sets are almost open, by Lemma 1 f1(V ) is open
(resp. regular open) in X . Since X is P� (resp. weakly-P�) and f1(y) � f1(V ),
for each x 2 f1(y), there exists R(x) 2 RC(X) such that x 2 R(x) � f1(V ). Since
the family fR(X) : x 2 f1(y) g is a regular closed cover of f1(y) and f1(y) is
S-closed relative to X , there exists a �nite number of points, say x1, x2, . . . , xn,
such that f1(y) �

S
fR(xi) : 1 6 i 6 n g. The �nite union of regular closed sets is

regular closed. Therefore, by Lemma 2 there exists R 2 RC(Y ) containing y such
that f1(R) �

S
fR(xi) : 1 6 i 6 n g, where each R(xi) is contained in f1(V ).

Therefore, we obtain that y 2 R � V and Y is P� (resp. weakly-P�).
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