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ON TWO TENSOR FIELDS WHICH ARE ANALOGOUS

TO THE CURVATURE AND TORSION TENSOR FIELDS

Kostadin Tren�cevski

1. Introducing of two tensor �elds

Let Mn be a di�erentiable manifold, and let � = (E ; �;Mn) be a vector bundle

of rank k, endowed with a linear connection ~�. Apart from the linear connection
we suppose that Mn is endowed with a linear connection � on the tangent bundle.
So there exist two covariant derivations r and ~r, two curvature tensors

R(X;Y ) = [rX ;rY ]�r[X;Y ];

~R(X;Y ) = [ ~rX ; ~rY ]� ~r[X;Y ]

and one torsion tensor

T (X;Y ) = rYX �rXY + [X;Y ]:

We introduce the following notation

~r(X;Y ) = ~R(X;Y ) + ~rT (X;Y )

for X , Y 2 �(Mn). Now we de�ne a mapping R�(X;Y; P;Q) : ~�� ! ~�� for given
X , Y , P , Q 2 �(Mn) as follows

R�(X;Y; P;Q) = ~r(X;Y ) �
~r(P;Q) � ~r(P;Q) �

~r(X;Y ) � ~r[T (X;Y );T (P;Q)]

+ ~R(rT (P;Q)X;Y ) + ~R(X;rT (P;Q)Y )� ~R(rT (X;Y )P;Q)� ~R(P;rT (X;Y )Q)

+ ~R(R(P;Q)X;Y ) + ~R(X;R(P;Q)Y )� ~R(R(X;Y )P;Q)� ~R(P;R(X;Y )Q):
(1.1)

Hence it follows that R�(X;Y; P;Q) : ~�� ! ~�� is a linear mapping such that
R�(f1X; f2Y; f3P; f4Q) = f1f2f3f4R

�(X;Y; P;Q) for arbitrary functions fi 2

AMS Subject Classi�cation: 53 B05
Keywords and phrases: Curvature, torsion, forms
Communicated at the 11. Yugoslav Geometrical Seminar, Div�cibare 1996.



4 K. Tren�cevski

F(Mn) (1 6 i 6 4) and arbitrary vector �elds X , Y , P , Q 2 �(Mn), and thus
R� is a tensor �eld. Further we will �nd the components of the tensor �eld R� in
a local coordinate system.

Our convenience will be that the Latin indices take their values from the set
f1; . . . ; ng, and the Greek indices take their values from the set f1; . . . ; kg. Let
X = @=@xi, Y = @=@xj , P = @=@xr, Q = @=@xs. From (1.1) it follows that

(R�(X;Y; P;Q)s)� = R���ijrss
�;

for arbitrary section s in the vector bundle, where

R���ijrs =
~R�

ij

~R

�rs �

~R�

rs

~R

�ij +

~R�
�pjR

p
irs +

~R�
�ipR

p
jrs

� ~R�
�psR

p
rij +

~R�
�rpR

p
sij +

~R�
�rs;pT

p
ij �

~R�
�ij;pT

p
rs +

~R�
�pqT

p
ijT

q
rs: (1.2)

From the de�nition (1.1) we obtain the following properties

R�(X;Y; P;Q) = �R�(Y;X; P;Q);

R�(X;Y; P;Q) = �R�(X;Y;Q; P );

R�(X;Y; P;Q) = �R�(P;Q;X; Y ):

Analogously to (1.1) we can also de�ne the following tensor

~R�(X;Y; P;Q) = ~R(X;Y ) � ~R(P;Q)� ~R(P;Q) � ~R(X;Y ) (1.3)

which will be of special interest in the next sections. In local coordinate system,
the components of this tensor are

~R���ijrs = ~R�

ij

~R

�rs �

~R�

rs

~R

�ij : (1.4)

While the tensor R� depends on the linear connection of the vector bundle �, the
tensor ~R� depends on the connection of the vector bundle � only, and it can be
obtained from the tensor R� as a special case by putting T = 0 and R = 0.

Now we will introduce the second tensor �eld, which is analogous to the torsion
tensor �eld. Let us de�ne a mapping T � : �(Mn) � �(Mn) � �(Mn) � �(Mn) !
�(Mn), by

T �(X;Y; P;Q) =

= T (rT (P;Q)X;Y ) + T (X;rT (P;Q)Y )� T (rT (X;Y )P;Q)� T (P;rT (X;Y )Q)

+ T (R(P;Q)X;Y ) + T (X;R(P;Q)Y )� T (R(X;Y )P;Q)� T (P;R(X;Y )Q):
(1.5)

T � is a linear mapping such that

T �(f1X; f2Y; f3P; f4Q) = f1f2f3f4T
�(X;Y; P;Q)

for arbitrary functions fi 2 F(Mn) (1 6 i 6 4) and arbitrary vector �elds X , Y ,
P , Q 2 �(Mn), and hence T � is a tensor �eld. This tensor depends on the linear
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connection � only. Similarly to the tensor �eld R�, the components of the tensor
�eld T � in local coordinates are given by

T �mijrs = Tmrs;pT
p
ij � Tmij;pT

p
rs + TmpqT

p
ijT

q
rs

+ TmpjR
p
irs + TmipR

p
jrs � TmpsR

p
rij � TmrpR

p
sij ; (1.6)

and it is obvious that

T �(X;Y; P;Q) = �T �(Y;X; P;Q);

T �(X;Y; P;Q) = �T �(X;Y;Q; P );

T �(X;Y; P;Q) = �T �(P;Q;X; Y ):

To the end of this section we will consider the Ricci identities, and we will
see that the tensors R� and T � naturally appear. Let A

�1...�p
�1...�q

be components of a

�-tensor �eld A in the vector bundle �. We introduce the following notations for
the antisymmetric covariant di�erentiation

A
�1...�p
�1...�q ;(r;s)

= A
�1...�p
�1...�q ;r;s

�A
�1...�p
�1...�q;s;r

; (1.7)

A
�1...�p
�1...�q ;((ij)(rs))

= A
�1...�p
�1...�q ;(ij);(rs)

�A
�1...�p
�1...�q;(rs);(ij)

: (1.8)

Indeed, ; (ij) is a di�erentiation and using the tensors R� and T �, the Ricci identity
is given by

A
�1...�p
�1...�q ;((ij)(rs))

= �

pX
u=1

A
�1...�...�p
�1...�q

R��u�ijrs

+

qX
u=1

A
�1...�p
�1...�...�q

R���uijrs � A
�1...�p
�1...�q ;u

T �uijrs: (1.9)

Although it is easy to obtain the formulas (1.2) and (1.6) starting from (1.9), it
is not so easy to obtain the formulas (1.1) and (1.5). In the next sections we will
consider the geometric interpretation and we will see that these two tensors satisfy
analogous formulas as the ordinary curvature and torsion tensors.

2. Geometrical interpretation

In this section a geometrical interpretation of the tensor T �, antisymmetric
di�erentiation (1.8) and the tensor R� will be given.

Let X , Y , P , Q 2 TO(Mn) and let �
(1)
1 (t) (0 6 t 6 �u), �

(1)
2 (t) (0 6 t 6

�v),�
(1)
3 (t) (0 6 t 6 �u) and �

(1)
4 (t) (0 6 t 6 �v) be geodesics which connect the

points O and B, B and C, C and D, D and E respectively (�g. 1), such that

(d�
(1)
1 (t)=dt)t=0 = X; (d�

(1)
2 (t)=dt)t=0 = YB ;

(d�
(1)
3 (t)=dt)t=0 = �XC ; (d�

(1)
4 (t)=dt)t=0 = �YD;
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Fig. 1

where YB is vector at B obtained by a parallel displacement along the curve �
(1)
1

using the linear connection �, and analogously XC and YD are de�ned.

If A 2 C2 is a tensor �eld in a neighborhood of O and if X = @=@xp and
Y = @=@xs, then

A
�1...�p
�1...�q ;(rs)

= � lim
�U;�v!0

1

�u�v

h
'OE(A

�1...�p
�1...�q

)� (A
�1...�p
�1...�q

)O

i
; (2.1)

and it gives the geometrical interpretation of the diferentiation (1.7).

Now we will give similar geometrical interpretation of the di�erentiation (1.8).
We transport the vectors P and Q parallelly to the point E through the points B,

C, D, and using the vectors PE and QE similarly we construct geodesics �
(2)
1 (t)

(0 6 t 6 �u0), �
(2)
2 (t) (0 6 t 6 �v0), �

(2)
3 (t) (0 6 t 6 �u0), �

(2)
4 (t) (0 6 t 6 �v0),

and obtain a point F . Similarly, using the parallelly transported vectors �XF and

�YF we can construct geodesics �
(3)
1 , �

(3)
2 , �

(3)
3 and �

(3)
4 and obtain a point G, and

�nally, using the vectors �PG and �QG we �nd a point H . Further we are going to
�nd the di�erence (xt)H� (xt)O of the coordinates of the points H and O at fourth
order approximation, neglecting all the terms of order higher than four everywhere.

We notice that

(xt)E � (xt)O = T trsX
rY s�u�v + #3(X;Y ) + #4(X;Y ); (2.2)

(xt)F � (xt)E = (T trs)E(P
r)E(Q

s)E�u
0�v0 + #3(PE ; QE) + #4(PE ; QE);

(2.3)

where #i (i = 3; 4) are the terms of i-th order of approximation, and (T trs)E are
the components of the torsion tensor at the point E. At the second order of
approximation it holds

(T trs)E = T trs + (@T trs=@x
j)T jpqX

pY q�u�v; (2.4)



Fields analogous to curvature and torsion tensor �elds 7

and from (2.1) at the same order of approximation it holds

(P r)E = P r � P i(Rr
ipq + �rijT

j
pq)X

pY q�u�v; (2.5)

(Qs)E = Qs �Qi(Rs
ipq + �sijT

j
pq)X

pY q�u�v: (2.6)

By adding the equalities (2.2) and (2.3), and using the equalities (2.4), (2.5) and
(2.6), we obtain

(xt)F � (xt)O = T trsX
rY s�u�v + T trsP

rQs�u0�v0

+ U t
ijrsX

iY jP rQs�u�v�u0�v0 + #3(X;Y ) + #4(X;Y ) + #3(P;Q) + #4(P;Q);

where

U t
ijrs = @T trs=@x

p � T pij � T trp(R
p
sij + �psqT

q
ij)� T tps(R

p
rij + �prqT

q
ij):

In the same way as the point F was obtained using vectors X , Y , P and Q,
another point F 0 can be obtained using vectors P , Q, X and Y . Moreover, at the
fourth order of approximation it holds

(xt)H � (xt)O = [(xt)F � (xt)O ]� [(xt)F 0 � (xt)O]:

Hence and using the following equality

(xt)F 0 � (xt)O = T trsP
rQs�u0�v0 + T trsX

rY s�u�v

+ U t
ijrsP

iQjXrY s�u�v�u0�v0 + #3(P;Q) + #4(P;Q) + #3(X;Y ) + #4(X;Y );

one can prove that

(xt)H � (xt)O = T �tijrsX
iY jP rQs�u�v�u0�v0; (2.7)

which gives a geometrical interpretation of the tensor T �. Especially, if X = @=@xi,
Y = @=@xj , P = @=@xr and Q = @=@xs, we obtain

(xt)H � (xt)O = T �tijrs�u�v�u
0�v0: (2.8)

Further we will obtain the geometrical interpretation of the di�erentiation
(1.8). In a neighborhood of the point O we choose a �-vector �eld A� of class C4.
We parallelly transport the vector A� from the point O to the point E along the
previously mentioned geodesic lines, using the connection ~�. Then the fourth order
of approximation leads to the following transported vector

(A�)E = A� �A�(R�
�pq +���tT

t
pq)X

pY q�u�v + #3(X;Y;A) + #4(X;Y;A): (2.9)

Similarly to (2.9) the parallelly transported vector (A�)E from E to F is

(A�)F = (A�)E � (A�)E [(R
�
�rs)E + (���j)E(T

j
rs)E ](P

r)E(Q
s)E�u

0�v0

+ #3(P;Q;A) + #4(P;Q;A);
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where

(R�
�rs)E = R�

�rs + @R�
�rs=@x

a � T apqX
pY q�u�v;

(���j)E = ���j + @���j=@x
a � T apqX

pY q�u�v;

(T jrs)E = T jrs + @T jrs=@x
a � T apqX

pY q�u�v;

(P r)E , (Q
s)E and (A�)E are given by (2.5), (2.6) and (2.9). Hence, at the fourth

order of approximation we obtain

(A�)F = A� �A�(R�
�pq + ���jT

j
pq)X

pY q�u�v

�A�(R�
�pq + ���jT

j
pq)P

pQq�u0�v0 +A�V �
�ijrsX

iY jP rQs�u�v�u0�v0

+ #3(X;Y;A) + #4(X;Y;A) + #3(P;Q;A) + #4(P;Q;A);

where

V �
�ijrs = R�


rsR


�ij +R�


rs�


�pT

p
ij +R


�ij�
�

pT

p
rs + �
�p�

�

qT

p
ijT

q
rs +R�

�psR
p
rij

+ ���pT
p
qsR

q
rij +R�

�ps�
p
rqT

q
ij + ���pT

p
qs�

q
rtT

t
ij +R�

�rpR
p
sij + ���pT

p
rqR

q
sij

+R�
�rp�

p
sqT

q
ij+�

�
�pT

p
rq�

q
stT

t
ij�@R

�
�rs=@x

p�T pij��
�
�p@T

p
rs=@x

q�T qij�@�
�
�p=@x

q�T prsT
q
ij :

Symmetrically, it holds

(A�)F 0 = A� �A�(R�
�pq + ���jT

j
pq)P

pQq�u0�v0

�A�(R�
�pq + ���jT

j
pq)X

pY q�u�v +A�V �
�ijrsP

iQjXrY s�u�v�u0�v0

+ #3(P;Q;A) + #4(P;Q;A) + #3(X;Y;A) + #4(X;Y;A):

Thus, at the fourth order of approximation we obtain

(A�)H = (A�)O+[(A�)F �(A�)F 0 ] = A�(V �
�ijrs�V

�
�rsij)X

iY jP rQs�u�v�u0�v0:

According to (2.8), the �-vector �eld A� at the point H has coordinates

A� + @A�=@xp � T �pijrsX
iY jP rQs�u�v�u0�v0:

Subtracting the parallelly transported vector (A�)H from this vector, we obtain
the following vector

(A�;pT
�p
ijrs +A�R���ijrs)X

iY jP rQs�u�v�u0�v0 =

= �A�;((ij)(rs))X
iY jP rQs�u�v�u0�v0:

Especially, if X = @=@xi, Y = @=@xj , P = @=@xr and Q = @=@xs, we obtain

A�;((ij)(rs)) = � lim
�u;�v;�u0;�v0

!0

1

�u�v�u0�v0
[(A�)H � 'OH(A

�)]; (2.10)

where 'OH denotes the parallel displacement from O to H with respect to the

connection ~�, and (A�)H denotes the vector of the �eld A� at the point H . Now
(2.10) represents the geometrical interpretation of the di�erentiation (1.8). Note
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that (2.10) also holds if the vector �eld A is substituted by an arbitrary �-tensor
�eld.

Further we will give geometrical interpretation of the tensor ~R�. Let X , Y , P ,
Q 2 TO(Mn), and let � 0 and � 00 be two in�nitesimal parallelograms with adjacent
edges �u �X and �v �Y for � 0, and �u0 �P and �v0 �Q for � 00. Let A be an arbitrary
�-tensor �eld in a neighborhood of O. We will denote by '(A) the �-tensor at the
point O which is obtained by parallel displacement of the �-tensor AO along the
curve � 0 � � 00 � (� 0)�1 � (� 00)�1 using the connection ~�. It is easy to verify that at the
fourth order of approximation, it holds

('(A))
�1 ...�p
�1 ...�q

�A
�1...�p
�1...�q

=

�
�

pX
w=1

A
�1...
...�p
�1...�q

~R��w
ijrs

+

qX
w=1

A
�1...�p
�1...
...�q

~R�
�wijrs

�
X iY jP rQs�u�v�u0�v0; (2.11)

which gives the required geometrical interpretation.

3. Structure equation and Bianchi identity

Further we will not use the linear connection � and the tensors R� and T �,
and so our convenience will be to use the notations �, r, R and R� instead of ~�,
~r, ~R and ~R�.

First we will obtain the structure equation and the Bianchi identity for the
curvature tensor R� in the case of the vector bundle (E ; �;Mn), and further we
will consider the general case when a connection is given in a principal bundle
(E ; �; E=G).

Like in the non-commutative di�erential geometry [1], the need of introducing
of di�erential forms of the following kind naturally appears here. Di�erential r-
form is a correspondence of an element of �r(T 0x(Mn)) to each point x 2 Mn,
where T 0x(Mn) is the vector space of bivectors on Tx(Mn), i.e.

T 0x(Mn) =

�
aij
��

@

@xi

�
x

^

�
@

@xj

�
x

�
: aij 2 R

�
:

For example, an arbitrary di�erential 3-form in local coordinates has the following
form

w = fi1j1i2j2i3j3(dx
i1 ^ dxj1) ^ (dxi2 ^ dxj2 ) ^ (dxi3 ^ dxj3):

For the sake of simplicity our convenience is to write the di�erential forms as in
the following form w = fi1j1i2j2i3j3dx

i1j1 ^ dxi2j2 ^ dxi3j3 . Note that

dxij
�

@

@xi
^

@

@xj

�
= �ip�

j
q � �ip�

j
q :

The need of consideration of di�erential forms with values in the vector bundle T pq �
also appears. Using the tensor R�

�ij we obtain the following di�erential 1-form


�� =
1

2
R�
�ij dx

ij (3.1)

with values in End � = �� 
 �.
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Now we de�ne an operator D� as follows. If � is a di�erential r-form with
values in T pq �, then D�� is a di�erential (r + 1)-form with values in the tensor
bundle T pq � and

(D��)
�1...�p
�1...�q

=

pX
s=1


�s� ^ �
�1...�...�p
�1...�q

�

qX
s=1


��s ^ �
�1 ...�p
�1...�...�q

: (3.2)

The connection between the operator D� and the di�erential operator D is given
as follows. If

 
�1...�p
�1...�q

= A
�1...�p
�1...�qs1...sr

dxs1 ^ � � � ^ dxsr

is an ordinary r-form (i.e. an element of �r(T (Mn))) with values in T pq �, then it is
well known that

(D )
�1 ...�p
�1...�q

=

�
@A

�1...�p
�1...�qs1...sr

=@xu +

pX
s=1

��s�uA
�1...�...�p
�1...�qs1...sr

�

qX
s=1

���su�
�1...�p
�1...�...�qs1...sr

�
dxu ^ dxs1 ^ � � � ^ dxsr : (3.3)

It can be veri�ed that

(DD )
�1 ...�p
�1...�q

=

pX
s=1


�s� ^  
�1...�...�p
�1...�q

�

qX
s=1


��s ^  
�1...�p
�1...�...�q

; (3.4)

where 
�� is the di�erential 2-form of curvature. According to (3.2) and (3.4) it

seems to be that D2 = D�, but it is not because D2 acts on the elements of
�r(T (Mn)) but D

� acts on the elements of �r(T 0(Mn)).

The de�nition (3.2) of D� gives the following properties:

(i) If p = q = 0, then D�� = 0.

(ii) The operator D� commutes with the contraction.

(iii) If �1 is a di�erential r-form with values in T pq � and �2 is a di�erential
s-form with values in T uv �, then

D�(�1 ^ �2) = (D��1) ^ �2 + (�1)r�1 ^ (D��2):

The operator D2 satis�es the properties (i) and (ii) also, and instead of (iii) it
satis�es

D2(�1 ^ �2) = (D2�1) ^ �2 + �1 ^ (D2�2):

So D� is more convenient than D2. Using the tensor R� we obtain a di�erential
2-form with values in End � = �� 
 �, as follows


��� =
1

2
R���ijrsdx

ij ^ dxrs: (3.5)

From (3.1), (3.5) and (1.4) it is easy to obtain


��� = 
�
 ^ 

� (3.6)
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and

��� = D�(
�� ): (3.7)

The equation (3.7) is the structural equation for the form of curvature 
�. Note
that if 
�� was considered as a di�erential 2- form (an element of �2(T (Mn))) we

would obtain DD(
��) = 0. That shows the need of consideration of new class of

di�erential forms as elements of �r(T 0(Mn)).

From (3.2) and (3.6) it follows that

D�
��b = 0 (3.8)

which is the Bianchi identity for the curvature form 
�.

If � is a di�erential r-form, then (3.2) and (3.6) imply the following identity

(D�D� )
�1...�p
�1...�q

=

pX
s=1


��s� ^  
�1...�...�p
�1...�q

�

qX
s=1


���s ^  
�1...�p
�1...�...�q

; (3.9)

which has the same form as the operator D �D. So we can introduce a new class
of di�erential forms which correspond an element of �r(T 00x (Mn)) to each point
x 2Mn, where T

00

x = T 0x(T
0

x(Mn)). Thus


��� =
1

2
R���ijrsdx

ijrs (3.10)

is a di�erential 1-form with values in End � and for arbitrary r-form � with values
in T pq �, we de�ne the following di�erentiation

(D���)
�1...�p
�1...�q

=
1

2

� pX
s=1


��s� ^ �
�1...�...�p
�1...�q

�

qX
s=1


���s ^ �
�1...�p
�1...�...�q

�
: (3.11)

This procedure can be further continued, and the corresponding structural equa-
tions and the Bianchi identities can be obtained.

Now we will generalize the previous considerations to the case of a principal G-
bundle (E ; �; E=G). Let ! be the form of connection and 
 be the form of curvature.
Then it is known that the tensorial forms of type AdG can be identi�ed by �[Ad]-
valued forms onMn = E=G, where �[Ad] is the associated vector bundle ([3]). Thus
we will use the tensorial forms of type AdG on E , instead of �[Ad]-valued forms
on Mn.

Let  be an ordinary tensorial r-form of type AdG, in sense that at each point
u 2 E we have an element of �r(Tu(E)). Then it is well known that

D = d + [!;  ]: (3.12)

From the de�nition of the operation [ ], the following identities can be veri�ed

d[ 1;  2] = [d 1;  2]� [ 1; d 2] (3.13)

and

[ 1; [ 1;  2]] =
1

2
[[ 1;  1];  2]; (3.14)
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where  1 is a di�erential 1-form and  2 is a di�erential r-form. Using the formulas
(3.12), (3.13) and (3.14), if � is an arbitrary r-form of type AdG, we obtain

(D �D) = D(d + [!;  ]) = d[!;  ] + [!; d + [!;  ]]

= [d!;  ]� [!; d ] + [!; [!;  ]] + [!; d ]

= [d!;  ] +
1

2
[[!; !];  ] = [
;  ]: (3.15)

Further we are going to de�ne tensorial forms of type AdG in sense that for
each point u 2 E we have an element of �r(T 0u(E)). So we �rst de�ne that the
bivector S is horizontal, if it can be represented in the following form

S =

nX
i=1

nX
j=1

aijXi ^Xj ;

where X1, . . . , Xn are horizontal vectors. Besides, it is naturally to de�ne

(R�)�(Y1 ^ Y2) = (R�)�Y1 ^ (R�)�Y2;

where Y1, Y2 2 Tu(E). Now we de�ne a new class of tensorial r-forms of type AdG
as g-valued di�erential r-forms, which correspond to each point u 2 E an element
of �r(T 0u(E)) such that:

(i) R�a� = (Ad a�1)� for each a 2 G, and

(ii) �(S1; . . . ; Sr) = 0, if at least one of the bivectors S1, . . . , Sr is not hori-
zontal.

Now the tensorial form of the curvature can be interpreted as a tensorial 1-
form 
0 of type AdG in the sense of the previous de�nition, if we suppose that

0(X ^ Y ) = 
(X;Y ). Thus, if � is a tensorial r-form of type AdG in the sense of
the previous de�nition, then the formula (3.15) leads us to introduce an operator
D� by

D�� = [
0; �] (3.16)

and now D�� is a tensorial (r + 1)-form of type AdG. From the de�nition of the
operation [ ] one can verify that

D�(�1 ^ �2) = (D��1) ^ �2 + (�1)r�1 ^ (D��2);

where �1 is a tensorial r-form and �2 is a tensorial s-form of type AdG.

Further we de�ne tensorial 2-form of curvature 
� by 
� = [
0;
0], i.e.


� = D�(
0): (3.17)

The formula (3.17) represents the structural equation. It is easy to verify that

D�(
�) = 0; (3.18)

which is the Bianchi identity.
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The equality (3.14) implies

(D� �D�)� =
1

2
[
�; �]: (3.19)

This formula leads us to introduce a new operator, if we consider 
� as a tensorial 1-
form of type AdG. This procedure can be continued further, and the corresponding
structural equations and the Bianchi identities can be obtained.

4. Holonomy group

Let �0(u) be the restricted holonomy group for the considered principal bundle
(E ; �; E=G) at point u 2 E , and we will denote by f(u) the corresponding Lie
algebra. We suppose that E=G is a connected manifold. We will prove the following
proposition.

Proposition. Suppose that there exists a point v 2 E such that f(v) is gener-

ated by the elements of the form 
v(A;B) where A, B 2 Hv are arbitrary horizontal

vectors at the point v. If 
� iz zero form on E, then �0(u) is a commutative group

for each u 2 E.

Conversely, if �0(u) is a commutative group, then 
� iz a zero form on E.

Proof. Let f(v) is generated by the elements 
v(A;B), A, B 2 Hv and let

� = 0. Hence

[
v(A;B);
v(C;D)] = [
0v(A ^B);

0

v(C ^D)] =
1

2
[
0v;


0

v](A ^ B;C ^D)

=
1

2

�v(A ^ B;C ^D) = 0

for each A, B, C, D 2 Hv, and so [X;Y ] = 0 for each X , Y 2 f(v). Since
�0(v) is a connected Lie group whose Lie algebra is f(v), it follows that �0(v) is a
commutative group, and hence �0(u) is commutative for each u 2 E .

Let �0(!) is a commutative group, and let u 2 E be an arbitrary point. Then
�0(u) is also a commutative group. So, [X;Y ] = 0 for each X , Y 2 f(u) and hence

�u iz a zero form.

Moreover, if there exists v 2 E which can be connected with u by a horizontal
path and such that f(u) is generated by the elements of the form 
v(A;B) where
A, B 2 Hv, then one can prove that the derived group �00(u) is a Lie group and its
Lie algebra is generated by the elements of the form 
�v(A ^ B;C ^ D) where A,
B, C, D 2 Hv .
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