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ON TWO TENSOR FIELDS WHICH ARE ANALOGOUS
TO THE CURVATURE AND TORSION TENSOR FIELDS

Kostadin Trencevski

1. Introducing of two tensor fields

Let M, be a differentiable manifold, and let £ = (£, 7, M,,) be a vector bundle
of rank k, endowed with a linear connection I'. Apart from the linear connection
we suppose that M, is endowed with a linear connection I' on the tangent bundle.
So there exist two covariant derivations V and V, two curvature tensors

R(X,Y)=[Vx,Vy] = Vixy]
R(X,Y)=[Vx,Vy] = Vixy]
and one torsion tensor
T(X,Y)=VyX — VxY +[X,Y].
We introduce the following notation
?(Xﬁ’) =R(X,Y) + @T(X,Y)
for X, Y € x(M,). Now we define a mapping R*(X,Y, P,Q): T¢ — T¢ for given
X, Y, P, Q€ x(M,) as follows
R(X,Y,P,Q) =V(xy)* Vira) = Vire) ° Vixy) = Virexy) r(pa)
+ R(VT(P,Q)Xv V) + R(X, VoY) — R(VT(X,Y)R Q) — R(P, Vorx,y)Q)
+ R(R(P,Q)X,Y) + R(X,R(P,Q)Y) — R(R(X,Y)P,Q) — R(P,R(X, Y()Q)).
1.1

Hence it follows that R*(X,Y,P,Q): ¢ — T¢ is a linear mapping such that
R*(f1X7 f2Y7 f3f)7 f4Q) = f1f2f3f4R*(X,Y, P,Q) for arbitrary functions fl S
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F(M,) (1 < i < 4) and arbitrary vector fields X, Y, P, Q € x(M,), and thus
R* is a tensor field. Further we will find the components of the tensor field R* in
a local coordinate system.

Our convenience will be that the Latin indices take their values from the set
{1,...,n}, and the Greek indices take their values from the set {1,...,k}. Let
X =9/0x", Y =38/0x7, P =09/3z", Q = 9/z*. From (1.1) it follows that

(R* (Xv Yv Pv Q)S)a = R,g?jrssﬁv

for arbitrary section s in the vector bundle, where

E?‘jrs = R?yéingrs - R:férngij + Rgijﬁlrs + RgipRgrs
o R[D;pstij + RngRgij + R;‘”;pr; o Rgij;prs + RgquiI;'TTqS' (1'2)

From the definition (1.1) we obtain the following properties

R*(X,Y,P,Q) = _R*(YvaPvQ)v
R*(X7Y7P7Q) = _R*(X7Y7Q7P)7
R*(X,Y,P,Q)=-R"(P,Q,X,Y).

Analogously to (1.1) we can also define the following tensor
R'(X,Y,P,Q) = R(X,Y) > R(P,Q) = R(P,Q) e R(X,Y) (1.3)

which will be of special interest in the next sections. In local coordinate system,
the components of this tensor are

Rig., = Re,R), - RO, R

Bijrs Y3+ Brs yrs=@3ig "

(1.4)

While the tensor R* depends on the linear connection of the vector bundle ¢, the
tensor R* depends on the connection of the vector bundle £ only, and it can be
obtained from the tensor R* as a special case by putting T'=0 and R = 0.

Now we will introduce the second tensor field, which is analogous to the torsion
tensor field. Let us define a mapping 7 : x(M,) x x(My,) x x(M,) x x(M,) —
X (M), by

T*(X7 Y7 P7 Q) =
=T(Vrr,gX,Y)+T(X,Vripg)Y) —T(Vrxy)P,Q) = T(P,Vrxy)Q)
+T(R(P,Q)X,Y) +T(X,R(P,Q)Y) - T(R(X,Y)P,Q) - T(P, R(X,Y)Q).
(1.5)

T* is a linear mapping such that

T (1 X, f2Y, 3P, f4Q) = fifofa fuT*(X,Y, P, Q)

for arbitrary functions f; € F(M,) (1 < i < 4) and arbitrary vector fields X, Y,
P, Q € x(M,), and hence T* is a tensor field. This tensor depends on the linear
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connection I' only. Similarly to the tensor field R*, the components of the tensor
field T in local coordinates are given by

T =1Tm TP -T2 TP + T"TETY

ijrs rs;pdij ijipdrs patijdrs
+ T RE + Tmem — T’"RfU — TmRi’U7 (1.6)
and it is obvious that
T(X,)Y,P,Q)=-T(Y,X,P,Q),
T(X,Y,P,Q)=-T(X,Y,Q, P),
T(X,Y,P,Q)=-T*(P,Q,X,Y).

To the end of this section we will consider the Ricci identities, and we will
see that the tensors R* and T naturally appear. Let A a” be components of a
&-tensor field A in the vector bundle £&. We introduce the followmg notations for
the antisymmetric covariant differentiation

ay...ap @ aq...a
Aﬁl ﬁ; (7' S) A 6:?T§5 - A,@1...ﬂ:;s;r7 (1.7)
Aal...ap - — Aal.. Qp » _ Aal...ap o (18)

B1...Bq;((i5)(rs)) B1-.-Bq;(i5)i(rs) B1...Bq;(rs);(i7)

Indeed, ; (ij) is a differentiation and using the tensors R* and T*, the Ricci identity
is given by

. al...A...ap *Olq,
A,81 ﬂq (i)(rs)) — ZA R)\Urs

Al
+ Z Aﬁl...A...ﬁqRﬁnzﬂs - A,Bl ,BpuT:;?rLs (1~9)

Although it is easy to obtain the formulas (1.2) and (1.6) starting from (1.9), it
is not so easy to obtain the formulas (1.1) and (1.5). In the next sections we will
consider the geometric interpretation and we will see that these two tensors satisfy
analogous formulas as the ordinary curvature and torsion tensors.

2. Geometrical interpretation

In this section a geometrical interpretation of the tensor 7%, antisymmetric
differentiation (1.8) and the tensor R* will be given.

Let X, Y, P, Q € To(M,) and let 7.7 (t) (0 < ¢ < Au), 57(t) (0 < t <
Av),rél)(t) (0 <t < Au) and T( )( t) (0 <t < Av) be geodesms which connect the
points O and B, B and C, C and D, D and FE respectively (fig. 1), such that

(@D (W)fdt)ymo =X, (dr(0)/dt)i=o = Y5,
(e (#)/dt)imo = X0, (dri7 () /dt)mo = ~ Y,
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Fig. 1

where Yp is vector at B obtained by a parallel displacement along the curve 7'1(1)

using the linear connection I', and analogously X¢ and Yp are defined.

If A € C? is a tensor field in a neighborhood of O and if X = 9/d2” and
Y =9/0x*, then

a1...ap . . o) ar...ap ar...ap
Ao i) = 7 Ad o Ruie P Wa0e)) — (s, )0] o (21)

and it gives the geometrical interpretation of the diferentiation (1.7).

Now we will give similar geometrical interpretation of the differentiation (1.8).
We transport the vectors P and @ parallelly to the point E through the points B,
C, D, and using the vectors Pg and Qg similarly we construct geodesics 71(2)(t)
0 <t<Aw), 720) (0<t <AV, Z2@) (0<t< A, 72) (0 <t < AV,
and obtain a point F'. Similarly, using the parallelly transported vectors — X and
—Y7 we can construct geodesics 7'1(3)7 7'2(3)7 T§3) and Tf) and obtain a point G, and
finally, using the vectors —Pg and —Q¢ we find a point H. Further we are going to
find the difference (z')g — (z%)o of the coordinates of the points H and O at fourth
order approximation, neglecting all the terms of order higher than four everywhere.

We notice that

(2')g — (2")o = T} X"Y*Aulv + 93(X,Y) + 94(X,Y), (2.2)
b

(xt) (xt)E = (T:S)E(PT)E(QS)EAUIAUI + 193(PE7 QE) + 194(PE7 QE)?(
2.3)

where 9; (i = 3,4) are the terms of i-th order of approximation, and (T,)g are
the components of the torsion tensor at the point E. At the second order of
approximation it holds

(Tt)e =T}, + (0T}, /027 T} XPY I Aulv, (2.4)



Fields analogous to curvature and torsion tensor fields 7

and from (2.1) at the same order of approximation it holds

(P")g = P" — PR}, + [;T) )X"Y‘AuAv, (2.5)
(Q)r = Q° — Q'(R;,, + T3, T )X Y Aulv. (2.6)

By adding the equalities (2.2) and (2.3), and using the equalities (2.4), (2.5) and
(2.6), we obtain

() p — (290 = T! XY Aulv + T! PTQ* Au'Av'

+ U, XY PTQ* AulvAu' Av' +93(X,Y) + 04(X,Y) + 93(P, Q) + 94(P, Q),
where
t _ t t t
Uij'r‘s - ajj'r's/axp ’ T’S - Trp(RZij + ngTz%) - Tps (sz] + quTg)

In the same way as the point F' was obtained using vectors X, Y, P and @,
another point F' can be obtained using vectors P, Q, X and Y. Moreover, at the
fourth order of approximation it holds

() — (2o = [(2")Fr — (2")o] = [(z*)r — (z")o].
Hence and using the following equality
(2 pr — (%) = T, P"Q*Au'Av' + T} X"Y* AuAv
+ UL, PQ XY AudvAu'Av' + 93(P, Q) 4+ V4(P, Q) + 93(X,Y) + U4(X,Y),

one can prove that

(g — (2Y)o = T7L XY PTQ* AuAvAu'Av', (2.7)

Jrs
which gives a geometrical interpretation of the tensor T*. Especially, if X = 9/9x1,
Y =9/0z7, P=09/02" and Q = 3/0x°, we obtain
()i — (2o = T}, AudvAu'Av'. (2.8)

Further we will obtain the geometrical interpretation of the differentiation
(1.8). In a neighborhood of the point O we choose a &-vector field A of class C*.
We parallelly transport the vector A* from the point O to the point E along the
previously mentioned geodesic lines, using the connection I'. Then the fourth order
of approximation leads to the following transported vector

(A%)p = A% — AP(RS,, +T5,T! ) XPY 1 Aulv + 95(X, Y, A) + 04(X, Y, A). (2.9)
Similarly to (2.9) the parallelly transported vector (A%)g from E to F is

(A%)p = (A% — (A7) el(RS,.)E + (T5;) 6(T) E)(PT) £(Q°) s Au' Av'
+193(P7Q7A) +194(P7Q7A)7
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where

(R5,s)

(T'5;)
(T7)
(P g, (Q°)r and (A%)g are given by (2.5), (2.6) and (2.9). Hence, at the fourth
order of approximation we obtain

e =R, +0RS, [0z - T8 XPY 7 Aulv,
g =T%; + 0T, /0z" - To XPY ! Aulv,
g =TI, +0T] [0z - T, XPY ' Aulv,

(A%)p = A* — AP(Rg,, + T3,T3,) XPY I Aulv
— A%(RG,, + T3, T3 ) PPQ AW AV + APV, XY P"Q* AudvAu' A’
+93(X,Y, A) + 94(X, Y, A) + 93(P,Q, A) + 94(P,Q, A),
where

Vijne = R, R + RS, T TV + R T2 TP + T T THTY, + RS, RY,

yrsTBig yrs Bij= ypTrTs Bp~ygTijTTs Tij

+T%,T%RY,, + RS, T2, Tf + T4, TETY,TL + RS, RV, + T5,T2 RY,

T3 rqdi strt si si
+RngF§qTZ+FﬁpT]T”qF§tTt 8{1]%[;3/850”-T%—FﬁpanS/axq-T;’j—aFﬁp/axq ;‘fSTZ
Symmetrically, it holds
(A%)pr = A* — AP(RG,, + T5,T5,) PP Q Au' Av'
— AP(R,, + T3, TI)X"Y ' Aulv + APV, P'Q’ XY AuAvAu'Av'
+393(P,Q,A) +94(P,Q,A) + 93(X, Y, A) + 94(X,Y, A).
Thus, at the fourth order of approximation we obtain
(A = (Ao +[(A%)r = (A%) 1] = AP (V5 e = ViEewis) XY PTQ* AulvAu' Av'.
According to (2.8), the &-vector field A* at the point H has coordinates
A% + A% [0z - TP X'YIP"Q* AulvAu'Av'.

Subtracting the parallelly transported vector (A%)y from this vector, we obtain
the following vector

(AD; 1777“3 + AﬁRﬁz]rs) YjPTQSAUA’UAu’A’UI =
= —Af{ij)rsn X" YIPTQf AuAvAu' Av'.

Especially, if X = 8/0x%, Y = 98/0x?, P =9/dz" and Q = 9/dx*, we obtain

1

@ - _ 3 o _ .0 o
A;((ij)(rs)) o Au,Av,kg’l,Av’—m AuAvAu Av' [(A )H Q‘QH(A )]7 (210)

where @?[ denotes the parallel displacement from O to H with respect to the
connection I, and (A%*)y denotes the vector of the field A* at the point H. Now
(2.10) represents the geometrical interpretation of the differentiation (1.8). Note
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that (2.10) also holds if the vector field A is substituted by an arbitrary &-tensor
field.

Further we will give geometrical interpretation of the tensor R*. Let X, Y, P,
Q € To(M,), and let 7" and 7" be two infinitesimal parallelograms with adjacent
edges Au-X and Av-Y for 7/, and Au/- P and Av'-Q for 7. Let A be an arbitrary
&-tensor field in a neighborhood of O. We will denote by ¢(A) the &-tensor at the
point O which is obtained by parallel displacement of the &-tensor Ap along the
curve 7'+ 7" (/)" - (7'")~" using the connection T. It is easy to verify that at the
fourth order of approximation, it holds

((P(A))gllg: _ a ap — |: Z Aal...fy...ap :,Zl;.s

v---Bq /31, ijrs

+ Z Agrr ]XinPTQSAuAvAu'Av', (2.11)
which gives the required geometrlcal interpretation.

3. Structure equation and Bianchi identity

Further we will not use the linear connection I' and the tensors R* and T,
and so our convenience will be to use the notations I, V, R and R* instead of T,
V, R and R*.

First we will obtain the structure equation and the Bianchi identity for the
curvature tensor R* in the case of the vector bundle (&£, w, M,), and further we
will consider the general case when a connection is given in a principal bundle
(&,mE/G).

Like in the non-commutative differential geometry [1], the need of introducing
of differential forms of the following kind naturally appears here. Differential -
form is a correspondence of an element of A"(T)(M,)) to each point z € M,,
where T (M,,) is the vector space of bivectors on T, (M), i.e.

I/ 8 9 .
T (M,) =< a” -] Al — :a” eR ;.
o ={o*((53) ~(5) ] o e®)
For example, an arbitrary differential 3-form in local coordinates has the following
form

W = fiy ivininisgs (AT A dx?t) A (dz'2 A dz??) A (dx' A da?®).

For the sake of simplicity our convenience is to write the differential forms as in
the following form w = fi, ;4554555 d2" 7" A dx*?7% A dx'37%. Note that

A o o

ij Y _sigi —sigi

dx <8xi A 8xj> = 8,05 — 6,07,

The need of consideration of differential forms with values in the vector bundle T7¢
also appears. Using the tensor R, we obtain the following differential 1-form

a 1 « 17
Q5 = iRﬁij dz"” (3.1)
with values in End ¢ = £* @ &.
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Now we define an operator D* as follows. If ¢ is a differential r-form with
values in TP¢, then D*¢ is a differential (r + 1)-form with values in the tensor
bundle T7¢ and

a ap o a ...)\...ap ap
(D" Zﬂ A g Zﬂg A g5 5, (3.2)

The connection between the operator D* and the differential operator D is given
as follows. If

5 a s s Sy

¢ 5, = ﬁll...ﬁfslmsT drst A - Adx

is an ordinary r-form (1.e. an element of A"(T'(My))) with values in T}, then it is
well known that

ocp _ ar...ap a AL
(DY), [aA Ly, /0T +ZFM R

- Zrﬁ ¢51...>\...gqsl ] dz® Adx®* A+ Adx®m. (3.3)
It can be verified that
P
ap _ Qg o4 ...)\...ap
(DDy)g 50 =D Q% Mg Z% AURT L (34)
s=1

where Qf is the differential 2-form of curvature. According to (3.2) and (3.4) it

seems to be that D? = D*, but it is not because D? acts on the elements of
A"(T'(M,)) but D* acts on the elements of A"(T"(M,)).

The definition (3.2) of D* gives the following properties:
(i) If p=¢q¢ =0, then D*¢ = 0.
(ii) The operator D* commutes with the contraction.

(iii) If ¢; is a differential r-form with values in TP and ¢ is a differential
s-form with values in T7*¢, then

D*(¢1 A ¢2) = (D"¢1) A g2 + (=1) 1 A (D" 2).

The operator D? satisfies the properties (i) and (ii) also, and instead of (iii) it
satisfies

D*(¢1 A ¢2) = (D*¢1) A 63 + d1 A (D? ).
So D* is more convenient than D?. Using the tensor R* we obtain a differential
2-form with values in End{ = £* ® 5, as follows

Qy dz' A da™. (3.5)

,G’Urs
From (3.1), (3.5) and (1.4) it is easy to obtain
Q5 =5 AQ; (3.6)
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and
Q5" = D*(923). (3.7)

The equation (3.7) is the structural equation for the form of curvature Q*. Note
that if QF was considered as a differential 2- form (an element of A%(T(M,))) we
would obtain DD(23) = 0. That shows the need of consideration of new class of
differential forms as elements of A™(T'(M,,)).

From (3.2) and (3.6) it follows that
DO =0 (3.8)

which is the Bianchi identity for the curvature form Q*.
If ¢ is a differential r-form, then (3.2) and (3.6) imply the following identity

(D*D )5 5" ZQ*O‘ P ZQ;MW“ g (3.9)

which has the same form as the operator D - D. So we can introduce a new class
of differential forms which correspond an element of A"(T)(M,)) to each point
x € M, where T = T (T!(M,)). Thus

Q= Rﬁmsd iirs (3.10)

is a differential 1-form with values in End ¢ and for arbitrary r-form ¢ with values
in T}¢, we define the following differentiation

q
sk a ap _ Ee a ...A...ap % 010
(D™ )3 {ZQ ORI S QR A (3.1
s=1

This procedure can be further continued, and the corresponding structural equa-
tions and the Bianchi identities can be obtained.

Now we will generalize the previous considerations to the case of a principal G-
bundle (€, 7,£/G). Let w be the form of connection and 2 be the form of curvature.
Then it is known that the tensorial forms of type Ad G can be identified by ¢[Ad]-
valued forms on M,, = £/G, where {[Ad] is the associated vector bundle ([3]). Thus
we will use the tensorial forms of type AdG on &, instead of £[Ad]-valued forms
on M,,.

Let % be an ordinary tensorial r-form of type Ad G, in sense that at each point
u € & we have an element of A"(T,(€)). Then it is well known that

Dy = dip + [w, ). (3.12)
From the definition of the operation [], the following identities can be verified
A1, o] = [dibr, 2] — [Y1, de] (3.13)

and

[[¥1,91], 2], (3.14)

DN =

(Y1, [Y1,12]] =
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where 1 is a differential 1-form and 1), is a differential r-form. Using the formulas
(3.12), (3.13) and (3.14), if ¢ is an arbitrary r-form of type Ad G, we obtain

(D - D)y = D(dyp + [w, ¥]) = d[w, ] + [w, d + [w, V]
= [dwvz/]] - [W, dl/]] + [wv [Wﬂ/f]] + [wvdw]

= o, ] + 5[, 8] = 2, 4] (3.15)

Further we are going to define tensorial forms of type Ad G in sense that for
each point w € £ we have an element of A"(T,(£)). So we first define that the
bivector S is horizontal, if it can be represented in the following form

S = zn:zn:aini /\)(j7

i=1 j=1
where X7, ..., X, are horizontal vectors. Besides, it is naturally to define
(Ra)x(}/l A }/2) = (Ra)x}/l A (Ra)*Y27

where Y7, Y5 € T,,(€). Now we define a new class of tensorial r-forms of type Ad G
as g-valued differential r-forms, which correspond to each point v € £ an element
of A™(T!(€)) such that:

(i) Ri¢ = (Ada1)¢ for each a € G, and

(ii) ¢(S1,...,S,) = 0, if at least one of the bivectors Sy, ..., S, is not hori-
zontal.

Now the tensorial form of the curvature can be interpreted as a tensorial 1-
form Q' of type Ad G in the sense of the previous definition, if we suppose that
QXAY)=Q(X,Y). Thus, if ¢ is a tensorial r-form of type Ad G in the sense of
the previous definition, then the formula (3.15) leads us to introduce an operator
D* by

D¢ = [, 4] (3.16)

and now D*¢ is a tensorial (r + 1)-form of type Ad G. From the definition of the
operation [] one can verify that

D*(¢1 A ¢2) = (D"¢1) A g2 + (=1)"¢1 A (D" 2),

where ¢; is a tensorial r-form and ¢ is a tensorial s-form of type Ad G.

Further we define tensorial 2-form of curvature Q* by Q* = [, '], i.e.
O = D*(Q). (3.17)
The formula (3.17) represents the structural equation. It is easy to verify that
D*(Q*) =0, (3.18)

which is the Bianchi identity.
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The equality (3.14) implies
* * 1 *
(D"~ D")¢ = 5[0, 4]. (3.19)

This formula leads us to introduce a new operator, if we consider * as a tensorial 1-
form of type Ad G. This procedure can be continued further, and the corresponding
structural equations and the Bianchi identities can be obtained.

4. Holonomy group

Let ®o(u) be the restricted holonomy group for the considered principal bundle
(€,7,E/G) at point w € &, and we will denote by f(u) the corresponding Lie
algebra. We suppose that £/G is a connected manifold. We will prove the following
proposition.

PROPOSITION. Suppose that there exists a point v € € such that f(v) is gener-
ated by the elements of the form Q,(A, B) where A, B € H, are arbitrary horizontal
vectors at the point v. If Q* iz zero form on &, then ®y(u) is a commutative group
for each u € £.

Conversely, if ®o(u) is a commutative group, then Q* iz a zero form on £.
Proof. Let f(v) is generated by the elements Q,(A,B), A, B € H, and let
Q" = 0. Hence

[2.(A, B),2,(C, D)] = [2(A A B),2,(C A D)] = =[2, QU](A A B,C A D)

1
2

1
SU(ANB.CAD) =0

for each A, B, C, D € H,, and so [X,Y] = 0 for each X, Y € f(v). Since
®y(v) is a connected Lie group whose Lie algebra is f(v), it follows that ®4(v) is a
commutative group, and hence ®(u) is commutative for each u € €.

Let ®¢(w) is a commutative group, and let v € £ be an arbitrary point. Then
®(u) is also a commutative group. So, [X,Y] = 0 for each X, Y € f(u) and hence
QF iz a zero form. m

Moreover, if there exists v € £ which can be connected with u by a horizontal
path and such that f(u) is generated by the elements of the form Q,(A, B) where
A, B € H,, then one can prove that the derived group ®((u) is a Lie group and its
Lie algebra is generated by the elements of the form (A A B,C A D) where A,
B,C, D¢ H,.
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