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GEOMETRY OF k-LAGRANGE SPACES OF SECOND ORDER

Mihai Anastasiei and Irena Comié

Introduction

Let M be a smooth manifold coordinated by (U,z',...,z") and 2 =

. ozt
ot .. tF), rank a—fa =k, a = 1,...,k its k-dimensional submanifold,
k =1,...,n — 1. The Latin indices will range from 1 to n and the Greek in-

dices will run from 1 to k. The Einstein convention on summation will work for
both kinds of indices.

. -9zt 927! .

A real valued smooth function L |z, —,———= ) will be called a
. ot otaoth

k-Lagrangian of second order.

For an open set O in the range of parameters (¢!, ..., ") with the property that
its closure O is compact, one considers the multiple integral

. ozt 9%’
L i bl vy (a) h () — g1 742 o lc.
/6 (x (), 5z (), 5o (t)) dt(®), where dt(*®) = dt' dt? ... dt

One may ask to find among the k-submanifolds with the same frontier those
which afford extremal values for the above multiple integral.

Our purpose is to provide a geometrization of the k-Lagrangians of second
order as a framework of the variational problem sketched above.

First, we introduce in §1 a manifold J?M fibered over M on which such La-
grangians are living.

In §2 we consider a nonlinear connection on J2M and exhibit the basis adapted
to it. Various geometrical structures on J2M are pointed out, too. In §3 a special
class of linear connections on J2M is considered.

The geometry of the manifold JZM is interesting for itself since for k = 1 it
reduces to the manifold Osc? M, see R. Miron [3], and for k = n it is the prolongation
of second order of the frame manifold.

More facts from this geometry will appear elsewhere.
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1. Manifold J,EM

Let M be a smooth manifold of dimension n and J, ,(R", M) the set of germs of
smooth mappings f: R — M with f(0) = p € M. We say that f,g € J, ,(R*, M)
are equivalent up to order ¢ if there exists a chart (U, ¢) around p such that

dy(po f)=ds(peoyg), 1<h<q (1.1)
where d denotes Frechet differentiation. It can be seen that if (1.1) holds for a chart
(U, p), it holds for any other chart (V) around p.

We denote by jg’pf the equivalence class of f (the coset of f) and set Jg’p =
{ji f, f € Jop(R*,M)}. Then we put J{M = Upenr 75, and define 7: JIM —
M by w(J5,,) = p-

One can see that J!M has a structure of smooth manifold.

We notice that for k¥ = 1, this manifold is just the manifold Osc?M studied
by R. Miron [3], which reduces to the tangent manifold for ¢ = 1. For k = n and
q = 1, we get the manifold of frames over M and for k € {2,3,...,n—1}and ¢ =1
it can be identified with TM ®---®@T M (k times) which is the manifold supporting
the k-Lagrange geometry, see R. Miron, M. Kirkovits, Mihai Anastasiei [5].

For these reasons we confine ourselves to the cases k = 2,3,...,n — 1 and for
the sake of simplicity we take ¢ = 2. The case ¢ greater than 2 can be similarly
treated.

We also notice that JZM is the manifold of 2-jets of the sections of the fibre
bundle R* x M — R* but the theory of jets from the book by D.J. Saunders [6]
cannot be applied since the typical fibre M of this bundle is too general.

Instead of that theory we follow the ideas and techniques from the k-Lagrange
geometry and from the geometry of Osc?M spaces as well, see [1], [2], [4].

Let us return to (1.1) for ¢ = 2. Letting o f,pog : R* — R" as f' =
Fit', ... tF), ¢* = g*(t',...,t*) this condition becomes

i i 2 fi 2 i
F(O) = 0) = o), 92(0) = 920), L 0)= 0T 0), ()
for a,3=1,2,... k. Let us set 9; : /9z", 8, := 0/0t™.

Now, for another local chart (V,?) around p such that ¢ o ¢ ': ' =

. a ! . .
¥ (2., "), rank <_:r> = n, taking ¥ o f and ¢ o g as f' = fU(t!,...,tP)

Oxk
and ¢* = g (t',...,t?), respectively, we get f* = z' (fi(t',...,tF)), ¢° =

-7

2t (g7 (tt, ..., tP)) as well as

oft . ox’ ofi
aZfi’ B a2xi’ % afk 0 axi' a2fj

areor ~ awaat PP g V55 O+ 55 g
By (1.2) the independence of (1.1) on the chosen local chart follows.
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For f: R* — M with f(0) = o(p)(z!,...,z") we set y = %(0), zéﬁ =
2 f1 R(k+1
o (0) and define amapping o 7 (U) — (U)<RE" <R 5" by 6(f],) =

(x17 yéu Z&ﬁ)'
The mapping ¢ is invertible, its inverse associating to (z',yy,, 2. 5) the coset
of the mapping ¢~' o T, where T' is the Taylor polynomial z* + yit* + z/ 5t*t°.

If we similarly define ¢ in connection with the local chart (V,1), ¥ o ¢! has the

following form
-/ 3\
. g oz’
=g (2. 2" k - | =
T ' (2, ..., 2"), ran (8x’> n

B 1.3
Yo = 37 Ve a=1,....k (13)
s 1 82 i i’

%8 = 5 5araaR Vel gz can )

It results that ¢o¢ ! is smooth. Thus {(7~1(U), ¢)} associated to the atlas {(U, ¢)}
on M provides a smooth manifold structues for J2M. At the same time (1.3) gives
the allowable coordinate transformations with respect to the fibration 7 : JZM —
M. This fibration is a locally trivial bundle with typical fibre R*™ x R K55 e The
bundle chart associated to (U, ) is (x4 (U), ¢) where ¢: 771 (U) — U x R”k X

R 6(1f1) = (0,9 2).
We notice that 7: J2M — M is not a vector bundle although its typical fibre
is 50, because the mappings ¢, o ¢, are not linear. Here ¢, is the restriction of ¢
to the fibre 7~ 1(p) and 1, v, are similarly constructed in connection with (V).

The mapping j§ ,f — j§ ,f induces a mapping o1 : JPM — JLM which in
the local charts previously introduced has the form (z°,y,, z%5) — (z*,y.). Thus,
it is a surjective submersion. We set m: JLM — M and so m = mjoms 1. For alocal
chart (U, ) around p € M, let ¢y: 77 (U) — U x R*", gzﬁl(jé,pf) = (p,¥’) and

P
Yz w7 (V) = VxR similarly associated to (V, ). Then by oo : yl = Bx' Yl

’ 1-7/

is a linear mapping from R*" — RF™. Hence (J; M, 7, M) is a vector bundle of
rank kn. Now let ¢o(J3 ,f) = (D, g p f> 2L5) and ¢z similarly defined in connection
.1 9%
. 1L )
with (V). Then ¢z () 0 05 (, )" Zap =3 Wyayﬁ +

k( k +1)
is an affine morphism of the space R~ 2 " endowed with the standard affine

structure. Hence (JZM, 7,1, JE M) is an affine bundle.

i

82’ af with Yy = .70 p.f

2. Nonlinear connections on J?M. Adapted basis

Let us put E := J?M and let 7: E — M be the canonical projection. Since
m is a submersion, the linear spaces V,F := kerm, ,, v € E define a distribution
V:u— V,E on E (vertical distribution).
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DEFINITION. A nonlinear connection on J?M =: E is a distribution H: u —
H,FE on E which is supplementary to the vertical distribution i.e.

T,.E=H,E®V,E (direct sum), (2.1)
holds for every u € E.

Let us introduce the following notation:

0 0 0
0= ——, 0= ——, O = — =9/". 2.2
axlv (2 ayg7 7 az;ﬁ 7 ( )
The natural basis B of T,,(J2M) is
B = (9:,07.07"). (23)

If the change of coordinates (1.3) is performed, the elements of B are transformed
as follows:

0 = (0i2" )y + (9;0;2" Yyl 0% + [271(2:0; 00" Yyl ylh + (310507 )21 51077,
02 = (9:2" )% + (205" )yh05°, 97 = (9;2)95".

2

(2.4)

We note that the vertical distribution is locally spanned by (8%,9%7). For each

1) 2

a € {1,2,...,k} we define a linear operator J: T,E — T,E on basis B as follows:
10:) =02, 1(09) = 827, 7(077) = 0. (25)

One checks using (2.4) that 7 is well-defined. Also, one easily verifies

a B B o o B v a3
JoJ=JolJ, JoJoJ=0,J =0, for every o, 8,7y € {1,2,...,k}. (2.6)

Thus J is a 3-tangent structure on E and so J?M is endowed with k natural
3-tangent structures which commute with each other.

The restriction of =, , to T, E is an isomorphism H, — Tﬂ(u)M. Denoting
by h its inverse and setting 6, = h(9;) one gets a local basis of the horizontal
distribution. Since 7.(6;) = 9;, the local vector fields é; will have the form

b6i = 0; — Ni, (2,9, 2)0jo — N}, 5(2,, Z)B;“’B, (2.7)
where the minus sign is taken for convenience and because of §; = (8ixil)6i, the

functions N7, , Nijaﬂ have to satisfy

(9;z") = (9527 )N, — 9i(y?)

N (@) = (927 )NT, 5 + NLOY(20,5) = Dzl

2

(2.8)

Conversely, a set of functions N = (Nija(x,y, z), Ngaﬁ(x,y, z)) verifying (2.8) com-

pletely determine (§;) which in turn defines a nonlinear connection on E.
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Now if we consider 6% := 3(6,4) =0" — N;/'Baj‘ﬁ for all € {1,...,k}, we get

kn linearly independent local vector fields verifying,
68 = (9:;2")6¥, a=1,... k. (2.9)
Setting H,E := Ny(u), from the above it follows that (6%) span a subdistribution

a B
Ni(u) of V and 65"6 := (J o J)(6;) span a second subdistribution No(u) of V.
Clearly, we have

T,E = No(u) @ Ny(u) & No(u), u€ E. (2.10)

Notice that each distribution N; and N, decomposes in k and, respectively,
k(k 4+ 1)/2 n-dimensional distributions.

The adapted basis with respect to the decomposition (2.10) is
= (6;,62,677); 607 =09F =9 (2.11)

Notice that we have
8 = (O )oi, 6% = (Bix )68, 627 = (9,27 )65°. (2.12)

These equations provide the main advantage of B when comparing with B.
The dual basis of B is B* = (dz*,dy,,,dz!,3). By the change of coordinates
(1.3) the elements of B* are transformed as follows

= (92" )dx

dya ((9(933 ) ' da? +(8x )dyf)‘7

dzly = (9izhg)da’ + (0] zhg)dyl + (9]° 28 5)dz (2.13)
=[27

H(0;0;002" YLyl + (9:0;27 )] 5lda’
+271(0;002" ) (yhdyl, + yldy’) + (B )dz
The dual basis of B is B* = (da7, 6yl 6ziﬁ), where
oyl = dyl + M7 da'

627 o = =dz’ st Mmﬁdy; + Mmﬁdx

(2.14)

The functions M are, for the time being, undetermined.

PROPOSITION 2.1. The necessary and sufficient conditions for the basis B and
B* to be dual to each other (when B and B* are dual) are the following equations:

MJ — NJ ,
MZJ/@ = N7 for v = and zero for 5 #~, (2.15)
M, Nfaﬁ + N{ Nl



20 M. Anastasiei, I. Comié

The proof follows by a straightforward calculation.

In the following we shall need the formulae which express the elements of B
as functions of elements of B. These are getting in the form

0; = 6 + NLo% + (NN} 5 + N7, 5677,

ia¥j
0% = 6% + N{z6%, (2.16)
077 =677
We shall need also the brackets of vector fields from B
67,657 =0,
(67,057 = 8] (N85
[6:, 677 = 07" (N8R + [0 (NLINE + 07" (NI )JoR*, (2.17)
(67,071 = [0] () = NLO (NENOYT = [07 (N]2) = Ny (N )19y
[0i,0;] = 7.]aak +R7.]a,6’aaﬁ = Rfjaék (RY iiaB Nh.,Gsza))a]?ﬁv
where
b = 85(NE) = 6:(NE), o1s)

k
Rz]a,@ - 6 ( 7.04,8) 6(N]a,8)
From (2.17) one reads

PROPOSITION 2.2. The horizontal distribution w — No(u), u € E is integrable
if and only if
Ry, =0, R}

ijo ijaB —

(2.19)

(8)
By (1.3) and (2.4) it follows that I' = 3.0’ are k-vector fields globally
defined on J2M. They are similar to the Liouville vector field on TM.

3. Distinguished connections on J?M

Among the linear connections on E = J2M those which preserve by parallelism
the decomposition (2.11) are remarkable ones. They are useful especially when a
calculation in local coordinates is performed.

Let Ny, N7, N3 be the sets of vector fields on E which take their values in the
distributions Ny, Ny, Na, respectively.

DEFINITION 3.1. A linear connection D on E will be called a distinguished
connection (d-connection, for brevity) if for any vector field X € X(E) we have

(VY e N,)DxY € N,, a=0,1,2. (3.1)
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By (221), P(X)=X <= X eNy, P(X)=-X < X eN, ®N:.
Using these formulae one finds

PROPOSITION 3.1. A linear connection D on E is a d-connection if and only
if DxP = 0.

In the basis B, a d-connection D takes the form:

1 1 1
Ds;6i = Ff'ﬁk, Dsab; = Vf-at?k, Da(_,/géi = Cf.o‘ﬁﬁk,

Ds, 8% = %557 Dyobf = vf;;ﬁm Dy 87 cj;ﬂ”(sh (3:2)
D5 aﬁ _ Fﬁ»ﬂ@;ﬁ/aw aﬁ _ Vivjozﬁvaw Dafaiaﬁ _ ijozbﬁuvsaw

DEFINITION 3.2. A d-connection D will be called strongly distinguished if
DJ=0,a=1,...,k.

A straightforward calculation gives

PROPOSITION 3.2. A d-connection D is normal if and only if its local coeffi-
cients in (3.1) verify

2 1 3 1
a . ca ka3 L co o3

Fro = FRo5, Fiol = FR60060,

2 1 3 1

ka8 __ yhB o hayB _ yhkB ca gy 3.3
Vil = vidss vier = vidsasT, (3:3)

3

aBy _ ~kBy afvye _ kol

d c’“ 8c, Gl _c’?j 8567

Thus a normal d-connection is completely determined by the local coefficients
(‘FZ? fo‘? Cko‘ﬁ)
When the local coordinates are changed by (1.3), these local coeflicients are
transformed as follows:

1, i i L 922F
i (9 2*) (0 )(ka ), ij — (Ovz )(8 )8501 oxd’
VES = (9pa") 0y )(fmk’)ﬁ;& (3.4)

1 ' o 7 ] ! ot

J

1 1 1
Notice that V' and C' are tensor fields and F' changes like the coefficients of a linear
connection.

From (2.8) one sees that if (N7, (z,y,z)) do not depend on z in a local chart,
then this happens also in any other local chart. In other words, the property
87'NJ =0 is a geometrical one. In fact, the functions 797" = 8’8“Nfa, define a
tensor field of type (1.2).
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ko

Using again (2.8) it follows that if 797" = 0 then 03 NE, and 877 NE ; change
1
under (1.3) as F};. Thus we have

PROPOSITION 3.3. Let (NF , NE

i)t a3

1
do not depend on z then BT = (3¢ Nf,,
d-connections on E.

) be a nonlinear connection on E. If (NF))

2
0,0) and BT = (8j‘ﬁNfa/@70,0) are normal

The connections from Proposition 3.3 are similar with the Berwald connection
from Finsler geometry.
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