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ON GEODESIC MAPPINGS OF GENERAL AFFINE CONNEXION
SPACES AND OF GENERALIZED RIEMANNIAN SPACES

Svetislav Minc¢i¢ and Miéa Stankovié

Abstract. In the present paper we define a geodesic mapping of two nonsymmetrical affine
connexion spaces and obtain necessary and sufficient conditions that a mapping of two such spaces
be geodesic (§1). Particularly we study a geodesic mapping of two generalized Riemannian spaces
(§2). Finally, we generalize the notion of Thomas’s projective parameters as an invariant of
geodesic mappings (§3).

1. Geodesic mappings of general affine connexion spaces

Consider two N-dimensional spaces of nonsymmetrical affine connexion: GAy
and GAy. So, if connexion coefficients of these spaces are respectively L%, and
f;k, we suppose that in general the symmetry with respect to indices j, k is not
valid.

One says that reciprocal one-valued mapping f: GAy — GAy is geodesic, if
geodesics of the space GAy pass to geodesics of the space GAy. We can consider
these spaces together with this mapping system of local coordinates, i.e. for f: M —
M we have M(z!,...,2") = M(x) and M(2',...,2") = M(z), where M € GAy,
M € GAy. In the corresponding points M (z) and M (x) we can put

Li(2) = Lig(z) + Pi(x), (i,5,k=1,...,N), (1.1)
where P;k(x) is the deformation tensor of the connexion L of GAy according to
the mapping f: GAx — GAy.

The curve 4 4
I: 2" =z'(t) (1.2)
is geodesic of GAy if and only if for \' = dz*/dt it is:
X’ i i
LA = p(ON (1), (1.3)

where p(t) is an invariant.
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Iff:l— 1, then by the mapping f, coordinates 7 = ! and it is N = dz'/dt =
A*, and [ is geodesic in GAy, too, so we get
) - _ i -
T + L, APAT = p(t)N'(t) (1.3)
Subtracting (1.3) and (1.3), we obtain

(T, — LL)APAT = (B(t) — p(D)N'(8),

and, because of (1.1):

PLAPAT = 24(E)X'(2). (1.4)
Denoting by P]?k, P]?'}C the symmetric and antisymmetric part of P;k respectively,
we get -
P = Pj, + P;.'Vk, (1.5)
and (1.4) reduces to
P;_quAq = 2(t)\¥(t). (1.4")

As in the case of a symmetric connexion (see e.g. [4]) one concludes that ¥ (t) =
Py (zt(t),. .., 2N (¢))AP(¢), and from (1.4"):

P;lApAq = 2Up APAY = P, APAIG] + Py NINPSL = (1,07 + 16 )APAY,

wherefrom
ik = 850k + 005 (1.6a)
Denoting also
Py = & = —Ciyy (1.60)
substituting in (1.1) we obtain
Ljy = Ly + 050 + 8405 + €, (1.7)

and the deformation tensor is

e (@) = 8500 (x) + 855 (x) + i (). (1.8)

So, the condition (1.8) is necessary that the mapping f be geodesic. It is easy to
prove that this condition is sufficient, too, and we have

THEOREM 1.1. A necessary and sufficient condition that the mapping f:
GAn — GAp be geodesic is that the deformation tensor P} from (1.1) according
to the mapping f has the form (1.8), where ¥;(x',...,2™) is a covariant vector,

and §§-k(x1, ..., 2N an antisymmetric tensor.
For k = i, we obtain from (1.6a) that P;Z = 6§¢i+621/)j = 1;+ N, wherefrom

1

i = N——Hpé’ (1.9)
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which, by substitution in (1.7), gives

1

Lie =Tt 337

(&5 Ph, (@) + 6. P, (x) +vak(1r), (1.7
where P;k (z) is the deformation tensor.

On the base of the facts given above, we get

THEOREM 1.2 Let a space GAn be given, i.e. on a differentiable manifold
My let nonsymmetric connexion coefficients L;k(:r) be defined. If on My a tensor
P;k(x) is given, too and we determine f;k(:r) according to (1.7'), then on My a

space GAy is defined, with connezion coefficients f;k(x), s0 that GAx and GAy
have common geodesics. We obtain the same result (_on the base of (1.7)) choosing
a vector ¥;(x) and antisymmetric tensor {3 (v) = P} ().

2

A question arises itself: Is there a geodesic mapping of a space GAy with a
nonsymmetric affine connexion onto a space Ax with a symmetric affine connexion?
It is easy to see that the next theorem is valid.

_ THEOREM 1.3 A necessary and sufficient condition that a mapping f : GAN —
AN of a nonsymmetric affine connezion space GAN onto a symmetric affine con-
nexion space An be geodesic, is that

lek(x) = - ;Vk(x)v (1.10)

where P, (x), L}, (x), are antisymmetric parts of the deformation tensor and con-
2

\%
nexion coefficients of the GAn respectively.

REMARK. It is easy to check that a set of geodesic mappings of a space GAx
forms a group.

2. Geodesic mappings of generalized Riemannian spaces

Generalized Riemannian space GRy in the sense of Eisenhart’s definition [1] is
a differentiable NV-dimensional manifold, equipped with nonsymmetric basic tensor
gi;. Connexion coefficients are generalized Cristoffel’s symbols of the second kind
I, where

1 7 7
Tijn = §(gji,k = Gjksi + Gikyi)s Tk = ¢k, (2.1)

and gi—pgi_p = 6.
Generally, it is T, # I} .. Based on this, everything that we exposed for GAy,
is valid for GRy, too. We will expose some specifics.

In a space of nonsymmetric affine connexion (and in a generalized Riemannian
space) one can define four kinds of covariant derivative [2,3]. For example, for a
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tensor a;- in GAx we have

7 7 4 i
Wlm = WGm T mea] — Ly
1 7 P i
Qjim = +me i~ Limjp,
ajlm m + Lpm J mjdp>
7 7 4 i
Wlm = Wjm T mea] — Ljmap-
Denote by |, | a covariant derivative of the kind § in GRy and GRy respec-

0
tively. We deﬁneoa geodesic mapping of GRy in the similar manner as of GAyx
(§1).
Suppose that a geodesic mapping f: GRy — GRy is given. Then, with
respect to (1.7), one obtains

Ty =Tl + 8laby, + 6hb; + Pjvk. (2.3)
and

Gt =00 —T0G. —T0. G, =
gzy%k g’L],k} zkgp] ]kgzp (2.3)

= yzg,k (sz + 6p¢k + 6p¢l +P )gp] ( ik + 6p¢k + 6p¢] + P )gzp
= (Gij — TikOps — Uiip) — Gij¥r — Grji — iy — Gty — zkgpj — PG
2
(2.4)
Because of gij\k §J|k + gmk and gmk =0 (A =1,2), and in the parentheses

on the right 51de of (2 4) we have gmk, thls equation gives

gz]|k ij|k 291]1/)1» + wzgk] + ¢ngk + gsz]k + gp]sz (253‘)

V1

Starting from g;;|;, we obtain

2

gijlk - ?ivjlk =29,k + ViGr; + 09 + gipP]%‘ + ypjplgv)iv (2.50)
2

With respect to the Theorem 1.1., the condition (2.3) is necessary and sufficient
that the mapping f: GRy — GRy be geodesic, so the conditions (2.5a,b) are
necessary for this. Let us prove that these conditions are sufficient too. Start from
(2.5b). Denoting the left and right side in (2.5b) by £ and R respectively, we have

L=9Gij 1k = Tijie = Gijlk — Jijlk
2 3 2 3

V3

— — — — P — =P —
=ik — ]‘—‘I}zigpj - Fijgip ~ 9k — Fkigpj - ijgip
TP — P —
= (T — in)gpj + (T, — Fij)gipv
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R = ¢i§kj + ¢k§ij + yij]gi + G, + ¢k§ij + yipplgj
= (¥i0) + 6! + P]gi)ypj + (P05 + Yro? + P;ﬁ;j )Gip-
The equation (2.5b), i.e. £L =R is satisfied for
Thj = T3 = w6 + ¥udj + Py,

and this is the equation (1.7). Starting from (2.5a), one obtains the same. For,
starting from one of the equations (2.5a,b), it follows (1.7), and from here the other
of these equations follows, so we conclude that they are equivalent.

By virtue of the facts exposed above, we have

THEOREM 2.1 a) A mapping f: GRy — GRy is geodesic if and only together
with the mapping f the system of local coordinates and the second kind Cristoffel
symbols of these spaces satisfy (2.3).

b) If the mapping [ is geodesic, then the equations (2.5a,b) are satisfied. Con-
versely, if one of these equations is satisfied, this mapping is geodesic, and the other
is satisfied too.

COROLLARY. If the mapping f: GRNy — GRy is geodesic, then the basic
tensor g,; of the space GRy satisfies the relation

Tij\e T Tijle — Tijie — Jije = 2ViGk; + 205G, + 491755, (2.6)
1 2 VT \/5

1

where ; is a covariant vector.

This relation is obtained by adding (2.5a,b).
Further, we have

THEOREM 2.2 By a geodesic mapping f: GRy — GGy the vector 1; is given

in the form
1 g
;= ———— l = N 2.
v N+1<n ‘QD (2.7)

where g = det(gi;), g = det(g;;) and the comma denotes a partial derivative.
Proof. With respect to (2.1) one gets
Pijk +Tiik = gij ke, Tijie + Thji = Gik,j- (2.8a,b)
On the other hand, as in the case of Riemannian space, we have:
9,= 99255 i = g9 (Tj ki + Thji) = g(Th; +T,) = 2917,

where we used (2.8a). Using (2.8b) we obtain g . = 2gI'} . From these equations

I‘gi = I‘fp = (In/|gl).s- (2.9)

we have
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Analogous equation is valid for T, too, and from (1.9) one obtains

(T, = %) = s ln /g — G flgh.,

1

Vi NI

i.e. (2.7) is in effect. m
REMARK. From (2.9) we see that in GRy, I'", is the gradient and that

%, =0. (2.10)

From (2.7) it follows that at the mapping f: GRy — GRy the corresponding
vector v; is gradient, too.

3. Generalized Thomas’s projective parameters

Putting P into (1.7") in accordance with (1.1) we get
i —i 1

T 1 TP 1 TP
7 7 1 7 7
=L} — * N—H(éjLﬁ_p+ 6,CL§£),

Denoting
i i 1 i i i
we see that _
The magnitudes T]?'}C we call generalized Thomas’s projective parameters at the map-

ping f: GAy — GAy. Accordingly, these magnitudes are invariant at a geodesic
mapping. Starting from (3.1) and (3.2), one obtains (1.7’), and we conclude that
the next theorem is valid.

_ THEOREM 3.1 A necessary and sufficient condition that a mapping f: GAy —
GAp be geodesic is that the generalized Thomas’s projective parameters are invari-
ant.

Using the transformation law for connexion coefficients Lj-k, from (3.1) we
obtain the transformation law for T]?'}C (7) passing from coordinates z° to coordinates
7' in GA N:

v [ (InA) g + 2f (In A) ;1] +x§’x§-,k,,

T (z') = Th(x)z) oty — N1t
(3.3)

where A = det(z,), 2% = 92/0x" , ¥, = 022’ /027 92" and so on.
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Let in GAy local coordinates are z*, in GAy, z¢, and f: GAy — GAy.
Passing from z* in GAy to 2*, we obtain an inverse relation with respect to (3.3),
and (3.2) gives

— ! ’

. 3 . -1
he(@) =T (x) =T (x')xz,x; xy —

zl [scj (In A, + i (In A')J] + scz-lk,
(3.4)

N+1
where A’ = det(z?).
Writing (3.4) in the form

1
N+1

T i _Ti' g ok
se(@)zy =T (@)zg o

[x;'.’ (InA") 4 + i (In A'),j] +aly,  (34)
we see that the following is valid.

THEOREM 3.2 A space GAn, with connezxion coefficients L;k(x) in local coor-
dinates x*, allows a geodesic mapping f on a space GAn with connexion coefficients

f;-,k, (') in local coordinates 2%, if and only if there exist functions

o =2t (2h .., (P =1',...,N'; det(z?) £0) (3.5)
of the class C" (r > 2), satisfying the equation (3.4"), and by which the mapping
f: GAN — GAp is realized.

REMARK. The equations (3.4') form a system of second order partial dif-
ferential (nonlinear) equations with respect to unknown functions 2% (3.5). But,
practical solving of this problem is very difficult in general.

REFERENCES
[1] L. P. Eisenhart, Generalized Riemannian spaces I, Proc. Nat. Acad. Sci. USA 37 (1951),
311-315.

[2] S. M. Mincié, Ricci identities in the space of non-symmetric affine connexion, Matematicki
vesnik 25, 2 (1973), 161-172.

[8] S. M. Min¢ié, New commutation formulas in the non-symmetric affine connezion space, Publ.
Inst. Math. (Beograd) (N.S) 36 (1977), 189-199.

[4] H. C. Cuniokos, ['eodesuueckue omobpancenus Pumannoewrz npocmpancme, Mocksa, “Hay-
ka”, ['n. pen. ¢us.-mat. aumr., 1987.

(received 27.12.1996.)

University of Ni§, Faculty of Philosophy, Department of Mathematics, Cirila i Metodija 2, 18000
Nis, Yugoslavia

e-mail: smica@archimed.filfak.ni.ac.yu



