$H ext{-PROJECTING IN } n ext{-DIMENSIONAL}$ EUCLIDEAN SPACE E^n

Milan Janić

Abstract. Several types of projecting in n-dimensional Euclidean spaces are known. In this article we define a new type of projecting of the n-dimensional Euclidean space onto its fixed plane. We shall prove some properties of this projecting. It will be shown that so defined projecting is a central projecting with an (n-3)-dimensional subspace as a center.

1. Central projecting

By E^n we denote the n-dimensional Euclidean space. An m-dimensional subspace of E^n will be denoted by E^m . It is known that E^n can be extended to the projective n-dimensional space P^n by adding a hyperplane E_{∞}^{n-1} . The subspaces of P^n will be denoted the same way as the subspaces of E^n . The lower index ∞ will denote that a subspace of P^n is in E_{∞}^{n-1} . If E_1^n and E_2^n are subspaces of P^n , then their intersection is also a subspace. If $n_1 + n_2 - n \ge 0$ and the subspaces E_1^n and E_2^n are in general position, their intersection is the subspace $E^{n_1} \cap E^{n_2} = E^{n_1 + n_2 - n}$.

Let M be a point of E^n and $\left\{S_{1\infty},\ldots,S_{(n-2)\infty}\right\}$ a simplex of a subspace E_{∞}^{n-3} . The points $S_{1\infty},\ldots,S_{(n-2)\infty},M$ determine a subspace E_M^{n-2} of E^n . Let E_0^2 be a fixed plane of E^n in general position with respect to the simplex $\left\{S_{1\infty},\ldots,S_{(n-2)\infty}\right\}$, i.e. such that they span E^n . We define that $E_0^2\cap E_M^{n-2}=E^0=M'$, is the projection of the point M by a subspace E_{∞}^{n-3} . The subspace E_M^{n-2} is called the projecting subspace. To determine the projection of any other point N onto the plane E_0^2 , it is sufficient to intersect that plane by the subspace determined by the points $S_{1\infty},\ldots,S_{(n-2)\infty},N$. The subspace E_{∞}^{n-3} is called the center of projecting of E^n onto the plane E_0^2 . The point M' is called the central projection of the point M by the center E_{∞}^{n-3} .

2. Projecting of E^n by E_{∞}^{n-3}

Let $Ox_1 \ldots x_n$ be a coordinate system of E^n . Let $X_{i\infty} = x_i \cap E_{\infty}^{n-1}$ $(i=1,\ldots,n)$ and let $E_{1,\ldots,n-1}^{n-1}$ be the coordinate hyperplane $Ox_1 \ldots x_{n-1}$. If M

 $AMS\ Subject\ Classification {:}\ 51\ N\ 15$

78 M. Janić

is a point of E^n then its projection onto the hyperplane $E_{1,\ldots,n-1}^{n-1}$ is $M_{1,\ldots,n-1}=E_{1,\ldots,n-1}^{n-1}\cap MX_{n\infty}$. Let H_n be a point of the line $X_{1\infty}X_{n\infty}$, $H_n\neq X_{1\infty}$, $X_{n\infty}$. The point $M_{1,\ldots,n-1}^n=H_nM\cap X_{1\infty}M_{1,\ldots,n-1}$ is the projection of M by H_n onto the hyperplane $E_{1,\ldots,n-1}^{n-1}$. If H_{n-1} is a point of the line $X_{1\infty}X_{(n-1)\infty}$, then the procedure of projecting will be continued from the points $X_{(n-1)\infty}$ and H_{n-1} .

We shall obtain the point $M_{1,\dots,n-2} = (M_{1,\dots,n-1})_{1,\dots,n-2} = E_{1,\dots,n-2}^{n-2} \cap M_{1,\dots,n-1}X_{(n-1)\infty}$ and the point $M_{1,\dots,n-2}^n = (M_{1,\dots,n-1}^n)_{1,\dots,n-2} = E_{1,\dots,n-2}^{n-2} \cap M_{1,\dots,n-1}^nX_{(n-1)\infty}$ as the projections of the points $M_{1,\dots,n-1}$ and $M_{1,\dots,n-1}^n$ from $X_{(n-1)\infty}$ onto the coordinate subspace $E_{1,\dots,n-2}^{n-2} = Ox_1\dots x_{n-2}$. Also $M_{1,\dots,n-2}^{n-1} = (M_{1,\dots,n-1})_{1,\dots,n-2}^{n-1} = E_{1,\dots,n-2}^{n-2} \cap H_{(n-1)}M_{1,\dots,n-1}$, will be the projection of the point $M_{1,\dots,n-1}$ from H_{n-1} onto the subspace $E_{1,\dots,n-2}^{n-2}$.

After n-2 such steps, we shall obtain the set of n-1 points:

$$\begin{split} M_{1,2} &= \left(\left(\dots \left(\left(M_{1,\dots,n-1}\right)_{1,\dots,n-2}\right)\dots\right)_{1,2,3}\right)_{1,2},\\ M_{1,2}^3 &= \left(\left(\dots \left(\left(M_{1,\dots,n-1}\right)_{1,\dots,n-2}\right)\dots\right)_{1,2,3}\right)_{1,2}^3,\\ M_{1,2}^4 &= \left(\left(\dots \left(\left(M_{1,\dots,n-1}\right)_{1,\dots,n-2}\right)\dots\right)_{1,2,3}^4\right)_{1,2},\\ \dots\\ M_{1,2}^{n-1} &= \left(\left(\dots \left(\left(M_{1,\dots,n-1}\right)_{1,\dots,n-2}^{n-1}\right)\dots\right)_{1,2,3}\right)_{1,2},\\ M_{1,2}^n &= \left(\left(\dots \left(\left(M_{1,\dots,n-1}\right)_{1,\dots,n-2}^{n-1}\right)\dots\right)_{1,2,3}\right)_{1,2}. \end{split}$$

We call this projecting the H-projecting of E^n onto the plane $E_{1,2}^2 = Ox_1, x_2$. We shall prove that the central projecting defined in section 1 is actually an H-projecting.

Lemma 1. Let E^{n-k-l} be a subspace of E^n and let $\{S_{1\infty},\ldots,S_{(k+l)\infty}\}$ be a simplex of E_{∞}^{k+l-1} in general position with respect to E^{n-k-l} . Let E_{∞}^{k-1} be the (afine) span of $\{S_{1\infty},\ldots,S_{k\infty}\}$, E_{∞}^{l-1} the span of $\{S_{(k+1)\infty},\ldots,S_{(k+l)\infty}\}$, and E^{n-l} the span of E^{n-k-l} and E_{∞}^{k-1} . If E^{n-k-l} is the central projection of E^{n-k-l} onto the subspace E^{n-l} , E^{n-k-l} in the central projection of E^{n-k-l} onto the subspace E^{n-k-l} , and E^{n-k-l} in the central projection of E^{n-k-l} onto the subspace E^{n-k-l} , then E^{n-k-l} in the subspace E^{n-k-l} in the subsp

Proof. Let E^l be the span of E^{l-1}_{∞} and M, E^{k+l} the span of E^{k+l-1}_{∞} and M, and E^k the span of E^{k-1}_{∞} and M'. Then $E^l \subset E^{k+l}$ implies $M' \in E^{k+l}$, which implies $E^k \subset E^{k+l}$, and the last relation in turn implies $M'' \in E^{k+l} \cap E^{n-k-l} = \{M'''\}$.

THEOREM 1. The point $M_{1,2}$ defined by the H-projecting is equal to the point M', defined by the central projecting for $S_{i\infty} = X_{i\infty}$, i = 3, ..., n, and $E_0^2 = Ox_1x_2$.

Proof. We shall prove the theorem by induction. The statement is true for n=3, we assume it is true for n=m-1, and let n=m. By Lemma 1 the point M' is the central projection of the point $M_{1,2,\ldots,m-1}$ from the span of the points $X_{i\infty}$, $i=3,\ldots,m-1$, onto the plane E_0^2 , which is (by induction) the point $M_{1,2}$.

We shall also prove the following essential property of the H-projecting.

Theorem 2. The points $M_{12}, M_{1,2}^3, \ldots, M_{1,2}^n$ are on a line parallel to the x_1 axis.

Proof. The planes which contain the points H_i and $X_{i\infty}$ do contain the point $X_{1\infty} \in H_i X_{i\infty}$. Hence, 2-dimensional planes spanned by the points H_i , $X_{i\infty}$ and $M_{1,2,\ldots,i}$ intersect the coordinate planes $E_{1,2,\ldots,i-1}^{i-1}$ along the lines which are parallel to the x_1 axis. Since $M_{1,2,\ldots,i-1}^i = E_{1,2,\ldots,i-1}^{i-1} \cap M_{1,2,\ldots,i}H_i$, and $M_{1,2,\ldots,i-1} = E_{1,2,\ldots,i-1}^{i-1} \cap M_{1,2,\ldots,i}X_{i\infty}$, we conclude that the lines $M_{1,2,\ldots,i-1}^i M_{1,2,\ldots,i-1}$ are parallel to the x_1 axis.

By central and H projectings onto the plane Ox_1x_2 the lines parallel to the x_1 axis remain parallel to it. Hence, the lines $M_{12}, M_{1,2}^i$ are parallel to the x_1 axis, and therefore they coincide, as the central projections of the lines $M_{1,2,\ldots,i-1}^iM_{1,2,\ldots,i-1}$ onto the plane E_0^2 .

By an *H*-projecting the point M is maped onto an (n-1)-touple of colinear points $M_{12}, M_{1,2}^3, \ldots, M_{1,2}^n$. We shall prove that this correspondence is bijective.

Theorem 3. The mappings $M \xrightarrow{H} (M_{1,\dots,i}, M_{1,\dots,i}^{i+1}, \dots, M_{1,\dots,i}^n)$, $i = 2, 3, \dots, n-1$, are bijections of E^n onto the set of (n-i+1)-touples of points (of the coordinate planes $E_{1,2,\dots,i}^i$) which are on lines parallel to the x_1 -axis.

80 M. Janić

Proof. We need only to prove that given an (n-i+1)-tuple of points (N_1, \ldots, N_{n-i+1}) of a line from $E^i_{1,\ldots,i}$ parallel to the x_1 axis, there is a unique point M such that

$$(N_1, \dots, N_{n-i+1}) = (M_{1,\dots,i}, M_{1,\dots,i}^{i+1}, \dots, M_{1,\dots,i}^n).$$
 (1)

The proof will go by induction. Let i=n-1. The point M, if it exists, is on the lines $N_1X_{n\infty}$ and N_2H_n . Since $N_1=N_2$, or $N_1N_2\ni X_{1\infty}$ and $X_{1\infty}\in X_{n\infty}H_n$, the lines $N_1X_{n\infty}$ and N_2H_n are coplanar nonparallel and intersect at a unique point M.

Assuming the statement is true for $i=k\leq n-1$ we prove it is true for i=k-1. Let us suppose that (1) holds for some point M and i=k-1. As we have just proved, the points $N_1=M_{1,\dots,k-1}$ and $N_2=M_{1,\dots,k-1}^k$ give rise to a unique point $N\in E_{1,2,\dots,k}^k$ such that $N=M_{1,2,\dots,k}$. The point $N=M_{1,2,\dots,k}$ in turn determines the line through it parallel to the x_1 axis which, as we have shown in the proof of the previous theorem, should contain the points $M_{1,2,\dots,k}^j$, $j=k+1,\dots,n$. The points $M_{1,2,\dots,k}^j$, $j=k+1,\dots,n$, are therefore unique intersections of the line through $N=M_{1,2,\dots,k}$ which is parallel to the x_1 axis, and the lines through the points $N_{j-k+2}=M_{1,\dots,k-1}^j$, $j=k+1,\dots,n$, which are parallel to the x_k axis. Now, using the induction, we conclude that n-k+1-tuple $(M_{1,\dots,k},M_{1,\dots,k}^{k+1},\dots,M_{1,\dots,k}^n)$ uniquely determines M.

REMARK. If the coordinate system $Ox_1 \ldots x_n$ is orthogonal, and the directions $H_i, i = 3, \ldots, n$ disect the right angles defind by the directions $X_{1\infty}$ and $X_{i\infty}$, then $M_{1,2}M_{1,2}^i$ equals to the distance of the point M to the hyperplane $E_{1,\ldots,i-1,i+1,\ldots,n}^{n-1}$.

REFERENCES

- [1] Glazunov, E. A., Četveruhin, N. F., Aksonometriya, Moskva, 1953.
- [2] Filipov, P. V., Nachertatelnaya geometriya mnogomernogo prostranstva i ee prilozheniya, Izdvo Leningrad. un-ta, 1979.
- [3] Janić, M., Projekcija euklidskog prostora Eⁿ na neku njegovu ravan, Zbornik radova, Tehnički Fakultet, Bor, 1979.
- [4] Pryanishnikova, Z. I., Obobshchenie proekcii E. S. Fedorova, Metody nachertatelnoĭ geometrii i ee prilozheniya, Moskva, 1955.
- [5] Šnajder, Z., Određivanje tragova ravni u četvorodimenzionalnom prostoru i tragova (n 2)dimenzionalnoga prostora u n-dimenzionalmom prostoru, Bull. Soc. math. phys. R. P. de Serbie, IX, 1-2, (1957).
- [6] Šnajder, Z., Eine Eigenschaft der Spurenbestimmung eines (n-2)-dimensionalen Raumes in einem E_n Raum, Bull. Soc. math. phys. R. P. de Serbie, **XI**, 1-4, (1959).
- [7] Bell, P. O., Generalized theorems of Desarques for n-dimensional space, Proc. Amer. Math. Soc. 6 (1955), 675-681.
- [8] Schoute, P. H., Mehrdimensionale Geometrie, t. I, Die linearen Räume, Leipzig, 1902.

(received 14.06.1994, in revised form 03.11.1997.)

Technical Faculty, Bor, Yugoslavia