CORRECTIONS TO "SOME GENERALIZATIONS OF T_D -SPACES" AND "A GENERALIZATION OF NORMAL SPACES"

Bhamini M. P. Nayar

Abstract. Some corrections to the papers "Some Generalizations of T_D -Spaces (Mat. Vesnik 34 (1982), 221-230)" and "A Generalization of Normal Spaces (ibid. 35 (1983), 1-10)" are given. The contract of the con

1. Semi- T_D spaces [1]

The first part of the proofs of Theorems 1.6 and 2.4 of $[1]$ are incorrect. The following two Theorems and their proofs provide the statements and proofs of the first parts of the Theorems 1.6 and 2.4 of [1]. The proofs of Theorems 1.6 and 2.4 [1] given in the paper prove the second parts of the statements of the Theorems.

THEOREM 1.1. A semi- T_1 space is semi- T_D .

Proof. Let X be a semi- T_1 space and $x \in X$. Then either $\{x\}$ is nowhere dense or $\{x\} \subseteq \text{int}(\text{cl}\{x\})$ [3] where int A and cl A respectively denote the interior and closure of a set A. If $\{x\}$ is nowhere dense, $\text{cl}(X - \text{cl}\{x\}) = X$ and therefore, $X - cl\{x\} \subseteq X - d\{x\} \subseteq cl(X - cl\{x\})$. So, $X - d\{x\}$ is semi-open, $d\{x\}$ being the derived set of $\{x\}$. If $\{x\}$ is not nowhere dense, $\{x\} \subseteq \text{int}(c\{x\}) = \text{sch}(x)$, the semiclosure of $\{x\}$ [3]. Since X is semi-T₁, $\{x\}$ = int(cl $\{x\}$). Hence $d\{x\}$ = cl $\{x\}$ - $\{x\}$, the boundary of an open set and hence a nowhere dense set. Therfore $X - d\{x\}$ is semi-open. Thus $d\{x\}$ is semi-closed.

THEOREM 1.2. A pairwise semi- T_1 space is pairwise semi- T_D .

Proof. Let $(X, \mathbf{T}_1, \mathbf{T}_2)$ be pairwise semi- T_1 . Then (X, \mathbf{T}_1) and (X, \mathbf{T}_2) are semi- T_1 and hence both are semi- T_D , in view of the above Theorem. For $x \in X$, \mathbf{T}_1 $d\{x\}$ is \mathbf{T}_1 -semi-closed and $\mathbf{T}_2-d\{x\}$ is \mathbf{T}_2 -semi-closed. Suppose $y \notin (\mathbf{T}_1-d\{x\}\cap \mathbf{T}_2$ $d\{x\}$). If $y \notin (\mathbf{T}_1-d\{x\} \cup \mathbf{T}_2-d\{x\})$, then there is a \mathbf{T}_1 -semi-open set U and a T_2 -semi-open set V, each containing y, and each having empty intersection with $(\mathbf{T}_1-d\{x\}\cap\mathbf{T}_2-d\{x\})$. Now suppose $y\in (\mathbf{T}_1-d\{x\}\cup\mathbf{T}_2-d\{x\})$ and $y\notin (\mathbf{T}_1-d\{x\}\cap\mathbf{T}_2-d\{x\})$ $d\{x\}$. Suppose $y \in \mathbf{T}_1-d\{x\}$ and $y \notin \mathbf{T}_2-d\{x\}$. Then there is a \mathbf{T}_2 -semi-open set

AMS Subject Classification: 54 D 15

 V_2 containing y such that $V_2 \cap (\mathbf{T}_1 - d\{x\}) \cap \mathbf{T}_2 - d\{x\}) = \emptyset$. Since $y \in \mathbf{T}_1 - d\{x\}$, $(X - T_1 - d\{x\}) \cup \{y\}$ is a T_1 -semi-open set containing y. For, $X - T_1 - d\{x\}$ is T_1 -semi-open and every T_1 -open set containing y contains x and $x \in (X - T_1$ $d\{x\}$). Hence $y \in \mathbf{T}_1$ -cl $(X - \mathbf{T}_1-d\{x\})$. Thus $(X - \mathbf{T}_1-d\{x\}) \cup \{y\}$ is \mathbf{T}_1 -semi-open and $((X - T_1-d\{x\}) \cup \{y\}) \cap (T_1-d\{x\} \cap T_2-d\{x\}) = \emptyset$, since $y \notin T_2-d\{x\}$ and $(X - T_1-d\{x\}) \cap T_1-d\{x\} = \emptyset$. The case when $y \in T_2-d\{x\}$ and $y \notin T_1-d\{x\}$ can be similarly handled. Therefore $\mathbf{T}_1-d\{x\} \cap \mathbf{T}_2-d\{x\}$ is both \mathbf{T}_1 -semi-closed as well as \mathbf{T}_2 -semi-closed. Thus $(X, \mathbf{T}_1, \mathbf{T}_2)$ is semi- T_D .

The following example of Prof. Hindman of the Depatrment of Mathematics, Howard University, Washington, D. C. shows that arbitrary product of semi- T_D spaces need not be semi- T_D and hence Theorem 1.15 and its analogue in bitopological spaces, Theorem 2.8, are incorrect.

Let $X = \{0,1\}$, and $\mathbf{T} = \{\emptyset, \{0\}, X\}$. For each $n \in \mathbf{N}$, let $X_n = X$ and let $Y = \prod X_n$. X is T_D and hence is a semi- T_D space. The derived set of $\{(0)\}$ is $Y - \{(0)\}\$ which is not semi-closed in Y.

However, as we shall prove in the following theorem, the product of finitely many semi- T_D spaces is semi- T_D . We shall state the following Lemma without proof.

LEMMA 1.3. If A, B, C and D are any four sets, then $A \times B - C \times D =$ $((A - C) \times B) \cup (A \times (B - D)).$

THEOREM 1.4. If X and Y are two semi-T_D spaces, then $X \times Y$ is semi-T_D.

Proof. Let $(x, y) \in X \times Y$. Then $d\{(x, y)\} = cl\{(x, y)\} - \{(x, y)\} = cl(\{x\} \times Y)$ $\{y\}$) $- (\{x\} \times \{y\}) = ((\text{cl}\{x\} - \{x\}) \times \text{cl}\{y\}) \cup \text{cl}\{x\} \times (\text{cl}\{y\} - \{y\})$, in view of the above Lemma. Therefore, $d\{(x,y)\} = (d\{x\} \times cl\{y\}) \cup (cl\{x\} \times d\{y\})$. Now $X \times Y - d\{(x,y)\} = X \times Y - ((d\{x\} \times cl\{y\}) \cup (cl\{x\} \times d\{y\})) = [((X - d\{x\}) \times$ $(Y) \cup (X \times (Y - \operatorname{cl}\{y\})) \cap [((X - \operatorname{cl}\{x\}) \times Y) \cup (X \times (Y - d\{y\}))] = ((X - \operatorname{cl}\{x\}) \times Y)$ $Y \cup ((X - d\{x\}) \times (Y - d\{y\})) \cup ((X - cl\{x\}) \times (Y - cl\{y\})) \cup (X \times (Y - cl\{y\})).$ This is a union of three open sets and one semi-open set and hence is semi-open. Thus $d\{(x, y)\}\$ is semi-closed.

COROLLARY 1.5. Product of a finite collection of semi- T_D spaces is semi- T_D .

2. s-Normal spaces

There are counterexamples to show that Lemma 7 in [2] is incorrect. To state the correct proposition we need the following definition.

DEFINITION 2.1 [2] A real valued function f on X is said to be quasi-lower semi-continuous, denoted as q-l.s.c., (respectively, quasi-upper semi-continuous, denoted q-u.s.c.) if the set $\{x : f(x) > b\}$ (respectively, $\{x : f(x) < b\}$) is a semi-open subset of X where b is a real number.

LEMMA 2.2 Let D be any dense subset of the space of positive real numbers with relative usual topology. If to each $t \in D$ there corresponds a semi-open subset U_t of a space X such that $t < s$ in D implies that $scl U_t \subseteq U_s$ and $\bigcup_{t \in D} U_t = X$, then the function f defined as $f(x) = \inf\{t : x \in U_t\}$ is quasi-upper semmi-continuous and quasi-lower semi-continuous.

The proof of Lemma 7 in [2] proves that the function satisfying the hypothesis of the Lemma is in fact q-l.s.c. and q-u.s.c.

The purpose of Lemma 7 in [2] is to prove an analogue of Urysohn's Lemma for s-normal spaces. However, here we shall prove analogues of Urysohn's Lemma for s-normal spaces and for semi-normal spaces without using the above Lemma. Thus the change in Lemma 7 in $[2]$ does not affect Theorem 8 or any result consequential to Theorem 8 in [2].

THEOREM 2.3. A space X is s-normal if and only if for any two disjoint semiclosed subsets A and B of X, there exists a semi-continuous function $f: X \to [0,1]$ such that $f(x)=0$ for every $x \in A$ and $f(x)=1$ for every $x \in B$.

Proof. Let A and B be two disjoint semi-closed subsets of X and let X be s-normal. Then there are disjoint semi-open sets U and V such that $A \subseteq U$ and $B \subseteq V$. Consider the characteristic function $\chi_{_{\rm scl}V}$. $\chi_{_{\rm scl}V}^{-1}(a,1] = \text{sc}V,$ a semi-open set, being the semi-closure of a semi-open set. $\chi_{\text{self}}^{-1}[0, a) = \Lambda - \text{sc}(V)$, a semi-open set and $\chi^2_{\text{self}}(a, b) = \emptyset$ where $0 < a < b < 1$. Also $\chi^2_{\text{self}}(A) = 0$ and $\chi^2_{\text{self}}(B) = 1$ $\sim \text{sel } V$ is semi-continuous.

The converse is easy to prove. ■

THEOREM 2.4. A space X is semi-normal if and only if for any two disjoint closed subsets A and B of X, there is a semi-continuous function $f: X \to [0,1]$ such that $f(A)=0$ and $f(B)=1$.

Proof. Let X be semi-normal and let A and B be two disjoint closed subsets of X. Then there are disjoint semi-open sets U and V such that $A \subseteq U$ and $B \subseteq V$. Now, scl V and scl U are disjoint semi-open sets and if h is the characteristic function of scl V, then h is semi-continuous, $h(A) = 0$ and $h(B) = 1$.

Converse is easy to prove.

The proof of Theorem 19 in [2] proves only the following and hence the Theorem 19 should be stated as follows:

THEOREM 2.5. If X is an s-normal space and f and g are functions on X such that f is q-l.s.c. and g is q-u.s.c. and $g(x) \leq f(x)$ for every $x \in X$, then there is a q-u.s.c. and q-l.s.c. function h on X such that $g(x) \leqslant h(x) \leqslant f(x)$.

REFERENCES

- [1] S. P. Arya and M. P. Bhamini, Some generalizations of T_D -spaces, Mat. Vesnik $6(19)(34)$ $(1982), 221-230.$
- [2] S. P. Arya and M. P. Bhamini, A generalization of normal spaces, Mat. Vesnik 35 (1983), $1{-}10.$
- [3] D. S. Janković and I. L. Reilly, On semi-separation properties, Indian J. Pure and Appl. Math., 16 (9) (1985), 957-964.

(received 10.09.1994, in revised form 20.01.1997.)

Department of Mathematics, University of the District of Columbia, Washington, D. C. 20008, U.S.A.