CORRECTIONS TO "SOME GENERALIZATIONS OF T_D -SPACES" AND "A GENERALIZATION OF NORMAL SPACES"

Bhamini M. P. Nayar

Abstract. Some corrections to the papers "Some Generalizations of T_D -Spaces (Mat. Vesnik **34** (1982), 221–230)" and "A Generalization of Normal Spaces (ibid. **35** (1983), 1–10)" are given.

1. Semi- T_D spaces [1]

The first part of the proofs of Theorems 1.6 and 2.4 of [1] are incorrect. The following two Theorems and their proofs provide the statements and proofs of the first parts of the Theorems 1.6 and 2.4 of [1]. The proofs of Theorems 1.6 and 2.4 [1] given in the paper prove the second parts of the statements of the Theorems.

THEOREM 1.1. A semi- T_1 space is semi- T_D .

Proof. Let X be a semi- T_1 space and $x \in X$. Then either $\{x\}$ is nowhere dense or $\{x\} \subseteq \operatorname{int}(\operatorname{cl}\{x\})$ [3] where int A and cl A respectively denote the interior and closure of a set A. If $\{x\}$ is nowhere dense, $\operatorname{cl}(X - \operatorname{cl}\{x\}) = X$ and therefore, $X - \operatorname{cl}\{x\} \subseteq X - d\{x\} \subseteq \operatorname{cl}(X - \operatorname{cl}\{x\})$. So, $X - d\{x\}$ is semi-open, $d\{x\}$ being the derived set of $\{x\}$. If $\{x\}$ is not nowhere dense, $\{x\} \subseteq \operatorname{int}(\operatorname{cl}\{x\}) = \operatorname{scl}\{x\}$, the semiclosure of $\{x\}$ [3]. Since X is semi- T_1 , $\{x\} = \operatorname{int}(\operatorname{cl}\{x\})$. Hence $d\{x\} = \operatorname{cl}\{x\} - \{x\}$, the boundary of an open set and hence a nowhere dense set. Therfore $X - d\{x\}$ is semi-open. Thus $d\{x\}$ is semi-closed.

THEOREM 1.2. A pairwise semi- T_1 space is pairwise semi- T_D .

Proof. Let $(X, \mathbf{T}_1, \mathbf{T}_2)$ be pairwise semi- T_1 . Then (X, \mathbf{T}_1) and (X, \mathbf{T}_2) are semi- T_1 and hence both are semi- T_D , in view of the above Theorem. For $x \in X, \mathbf{T}_1$ - $d\{x\}$ is \mathbf{T}_1 -semi-closed and \mathbf{T}_2 - $d\{x\}$ is \mathbf{T}_2 -semi-closed. Suppose $y \notin (\mathbf{T}_1 - d\{x\} \cap \mathbf{T}_2 - d\{x\})$. If $y \notin (\mathbf{T}_1 - d\{x\} \cup \mathbf{T}_2 - d\{x\})$, then there is a \mathbf{T}_1 -semi-open set U and a \mathbf{T}_2 -semi-open set V, each containing y, and each having empty intersection with $(\mathbf{T}_1 - d\{x\} \cap \mathbf{T}_2 - d\{x\})$. Now suppose $y \in (\mathbf{T}_1 - d\{x\} \cup \mathbf{T}_2 - d\{x\})$ and $y \notin (\mathbf{T}_1 - d\{x\} \cap \mathbf{T}_2 - d\{x\})$. Suppose $y \in \mathbf{T}_1 - d\{x\}$ and $y \notin \mathbf{T}_2 - d\{x\}$. Then there is a \mathbf{T}_2 -semi-open set

AMS Subject Classification: 54 D 15

 V_2 containing y such that $V_2 \cap (\mathbf{T}_1 \cdot d\{x\} \cap \mathbf{T}_2 \cdot d\{x\}) = \emptyset$. Since $y \in \mathbf{T}_1 \cdot d\{x\}$, $(X - \mathbf{T}_1 \cdot d\{x\}) \cup \{y\}$ is a \mathbf{T}_1 -semi-open set containing y. For, $X - \mathbf{T}_1 \cdot d\{x\}$ is \mathbf{T}_1 -semi-open and every \mathbf{T}_1 -open set containing y contains x and $x \in (X - \mathbf{T}_1 \cdot d\{x\})$. Hence $y \in \mathbf{T}_1 \cdot cl(X - \mathbf{T}_1 \cdot d\{x\})$. Thus $(X - \mathbf{T}_1 \cdot d\{x\}) \cup \{y\}$ is \mathbf{T}_1 -semi-open and $((X - \mathbf{T}_1 \cdot d\{x\}) \cup \{y\}) \cap (\mathbf{T}_1 \cdot d\{x\} \cap \mathbf{T}_2 \cdot d\{x\}) = \emptyset$, since $y \notin \mathbf{T}_2 \cdot d\{x\}$ and $(X - \mathbf{T}_1 \cdot d\{x\}) \cap \mathbf{T}_1 \cdot d\{x\} = \emptyset$. The case when $y \in \mathbf{T}_2 \cdot d\{x\}$ and $y \notin \mathbf{T}_1 \cdot d\{x\}$ can be similarly handled. Therefore $\mathbf{T}_1 \cdot d\{x\} \cap \mathbf{T}_2 \cdot d\{x\}$ is both \mathbf{T}_1 -semi-closed as well as \mathbf{T}_2 -semi-closed. Thus $(X, \mathbf{T}_1, \mathbf{T}_2)$ is semi- T_D . ■

The following example of Prof. Hindman of the Department of Mathematics, Howard University, Washington, D. C. shows that arbitrary product of semi- T_D spaces need not be semi- T_D and hence Theorem 1.15 and its analogue in bitopological spaces, Theorem 2.8, are incorrect.

Let $X = \{0, 1\}$, and $\mathbf{T} = \{\emptyset, \{0\}, X\}$. For each $n \in \mathbf{N}$, let $X_n = X$ and let $Y = \prod X_n$. X is T_D and hence is a semi- T_D space. The derived set of $\{(0)\}$ is $Y - \{(0)\}$ which is not semi-closed in Y.

However, as we shall prove in the following theorem, the product of finitely many semi- T_D spaces is semi- T_D . We shall state the following Lemma without proof.

LEMMA 1.3. If A, B, C and D are any four sets, then $A \times B - C \times D = ((A - C) \times B) \cup (A \times (B - D)).$

THEOREM 1.4. If X and Y are two semi-T_D spaces, then $X \times Y$ is semi-T_D.

Proof. Let $(x, y) \in X \times Y$. Then $d\{(x, y)\} = cl\{(x, y)\} - \{(x, y)\} = cl(\{x\} \times \{y\}) - (\{x\} \times \{y\}) = ((cl\{x\} - \{x\}) \times cl\{y\}) \cup cl\{x\} \times (cl\{y\} - \{y\})$, in view of the above Lemma. Therefore, $d\{(x, y)\} = (d\{x\} \times cl\{y\}) \cup (cl\{x\} \times d\{y\})$. Now $X \times Y - d\{(x, y)\} = X \times Y - ((d\{x\} \times cl\{y\}) \cup (cl\{x\} \times d\{y\})) = [((X - d\{x\}) \times Y) \cup (X \times (Y - cl\{y\}))] \cap [((X - cl\{x\}) \times Y) \cup (X \times (Y - d\{y\}))] = ((X - cl\{x\}) \times Y) \cup ((X - cl\{x\}) \times (Y - cl\{y\}))] \cup ((X - cl\{x\}) \times (Y - cl\{y\})) \cup ((X - cl\{y\})))$. This is a union of three open sets and one semi-open set and hence is semi-open. Thus $d\{(x, y)\}$ is semi-closed. ■

COROLLARY 1.5. Product of a finite collection of semi- T_D spaces is semi- T_D .

2. *s*-Normal spaces

There are counterexamples to show that Lemma 7 in [2] is incorrect. To state the correct proposition we need the following definition.

DEFINITION 2.1 [2] A real valued function f on X is said to be quasi-lower semi-continuous, denoted as q-l.s.c., (respectively, quasi-upper semi-continuous, denoted q-u.s.c.) if the set $\{x : f(x) > b\}$ (respectively, $\{x : f(x) < b\}$) is a semi-open subset of X where b is a real number. LEMMA 2.2 Let D be any dense subset of the space of positive real numbers with relative usual topology. If to each $t \in D$ there corresponds a semi-open subset U_t of a space X such that t < s in D implies that $scl U_t \subseteq U_s$ and $\bigcup_{t \in D} U_t = X$, then the function f defined as $f(x) = \inf\{t : x \in U_t\}$ is quasi-upper semmi-continuous and quasi-lower semi-continuous.

The proof of Lemma 7 in [2] proves that the function satisfying the hypothesis of the Lemma is in fact q-l.s.c. and q-u.s.c.

The purpose of Lemma 7 in [2] is to prove an analogue of Urysohn's Lemma for s-normal spaces. However, here we shall prove analogues of Urysohn's Lemma for s-normal spaces and for semi-normal spaces without using the above Lemma. Thus the change in Lemma 7 in [2] does not affect Theorem 8 or any result consequential to Theorem 8 in [2].

THEOREM 2.3. A space X is s-normal if and only if for any two disjoint semiclosed subsets A and B of X, there exists a semi-continuous function $f: X \to [0, 1]$ such that f(x) = 0 for every $x \in A$ and f(x) = 1 for every $x \in B$.

Proof. Let A and B be two disjoint semi-closed subsets of X and let X be s-normal. Then there are disjoint semi-open sets U and V such that $A \subseteq U$ and $B \subseteq V$. Consider the characteristic function $\chi_{scl V}$. $\chi_{scl V}^{-1}(a, 1] = scl V$, a semi-open set, being the semi-closure of a semi-open set. $\chi_{scl V}^{-1}[0, a) = X - scl V$, a semi-open set and $\chi_{scl V}^{-1}(a, b) = \emptyset$ where 0 < a < b < 1. Also $\chi_{scl V}(A) = 0$ and $\chi_{scl V}(B) = 1$ and $\chi_{scl V}$ is semi-continuous.

The converse is easy to prove. ■

THEOREM 2.4. A space X is semi-normal if and only if for any two disjoint closed subsets A and B of X, there is a semi-continuous function $f: X \to [0,1]$ such that f(A) = 0 and f(B) = 1.

Proof. Let X be semi-normal and let A and B be two disjoint closed subsets of X. Then there are disjoint semi-open sets U and V such that $A \subseteq U$ and $B \subseteq V$. Now, scl V and scl U are disjoint semi-open sets and if h is the characteristic function of scl V, then h is semi-continuous, h(A) = 0 and h(B) = 1.

Converse is easy to prove. ■

The proof of Theorem 19 in [2] proves only the following and hence the Theorem 19 should be stated as follows:

THEOREM 2.5. If X is an s-normal space and f and g are functions on X such that f is q-l.s.c. and g is q-u.s.c. and $g(x) \leq f(x)$ for every $x \in X$, then there is a q-u.s.c. and q-l.s.c. function h on X such that $g(x) \leq h(x) \leq f(x)$. REFERENCES

- S. P. Arya and M. P. Bhamini, Some generalizations of T_D-spaces, Mat. Vesnik 6(19)(34) (1982), 221-230.
- [2] S. P. Arya and M. P. Bhamini, A generalization of normal spaces, Mat. Vesnik 35 (1983), 1-10.
- [3] D. S. Janković and I. L. Reilly, On semi-separation properties, Indian J. Pure and Appl. Math., 16 (9) (1985), 957-964.

(received 10.09.1994, in revised form 20.01.1997.)

Department of Mathematics, University of the District of Columbia, Washington, D. C. 20008, U.S.A.

84