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APPLICATION OF INTERPOLATION THEORY TO THE ANALYSIS
OF THE CONVERGENCE RATE FOR FINITE DIFFERENCE
SCHEMES OF PARABOLIC TYPE

Dejan Bojovi¢ and Bosko S. Jovanovié

Abstract. In this paper we show how the theory of interpolation of function spaces can be
used to establish convergence rate estimates for finite difference schemes. As a model problem
we consider THE first initial-boundary value problem for the heat equation with variable coeffi-
cients. We assume that the solution of the problem and the coefficients of the equation belong
to the corresponding Sobolev spaces. Using interpolation theory we construct a fractional-order
convergence rate estimate which is consistent with the smoothness of the data.

1. Introduction

For a class of finite difference schemes for parabolic initial-boundary value
problems, the estimate of the convergence rate consistent with the smoothness of
the data, are of major interest, i.e.

= vl gzorigy.y < CAVD Tlullyrersigy 82 (1)

Here u = u(z,t) denotes the solution of the original initial-boundary value prob-
lem, v denotes the solution of the corresponding finite difference scheme, h and 7
are discretisation parameters, W;’S/Q(Q) denotes a Sobolev space, W;’S/Q(Qhr) de-
notes the discrete Sobolev space, and C is a positive generic constant, independent
of h,7 and u. For problems with variable coefficients the constant C depends on
the norms of the coefficients.

A standard technique for the derivation of such estimates is based on the
Bramble-Hilbert lemma [2]. In this paper we expose an alternative technique,
based on the theory of interpolation of Banach spaces.
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2. Interpolation of Banach spaces

Let A; and A, be two Banach spaces, linearly and continuosly imbedded in a
topological linear space A. Two such spaces are called interpolation pair {A;, Ao}
(see [11]). Consider also the space A; N Ag, with the norm

llall aina, = max{flal|a,, lalla,},

and the space A; + Ay ={a € A:a=a; +as, a; € A;, i =1,2}, with the norm

lallay+a, = _inf {llaa]la, + llaz]la;}-
=ai+taz

a;€A;
ObViOllSly, A1 N A2 C A—b' C Al + AQ, 1= 1,2
Let us introduce category C; whose objects A, B,C, ... are Banach spaces, and
morphisms—bounded linear operators L € L£(A, B). Let, also, Cy be a category
whose objects are interpolation pairs {A;, A2}, {B1, Bz}, ... while morphisms are

L e L({A1,A3},{B1,Ba}). Here L({A1, A2}, {B1, B2}) denotes the set of bounded
linear operators from A; + As into By + Bs, whose restrictions on A; belong to the
set E(Ai,Bi), 1= 1,2.
A functor F:Cy — Cy is called an interpolation functor if
A1 NA; C .7:({1417142}) C Ay + A,
for every interpolation pair {41, A»}, while for every morphism L € L({A1, A2},
{Bi1,B>}), F(L) is the restriction of the operator L on F({A1, A2}).

The corresponding Banach space A = F({A1, As}) is called interpolation
space.

Note that Ay N Ay and Ay + A, are interpolation spaces.
If the inequality

F({A1,A2})—=F({B1,B2}) = h:iBl ?42—>Bz )
L]l < O||L]| L]l

where 0 < § < 1 and C' = const > 1, is satisfied for every morphism L of category
Co the interpolation functor is said to be of the type 6. (Here ||L||a,— 5, denotes
the standard operator norm of L: A; — B;, i = 1,2).

One of the most often used interpolation methods is so called K-method [9,11].
Let {A1, A2} be an interpolation pair. Define the functional

K(t,a) = K(t,a, Ay Az) = _inf | {laalla, + tlaalla)
a=aj+az
a; €A;
It is obvious, that for a fixed t € (0,00), K(t,a) is a norm in A; + Ao, equivalent
to the standard norm ||a||4,+4,. For 0 <0 < 1,1 < ¢ < o0, let us define the space
(A1, As)g 4 as follows:

o . dt\ e
(A1, A2)0,g = qa € A1 + As : |lall(a,,4,),, = (/ (t_gk (t’a))q 7) S
0



Application of interpolation theory ... 101

and for ¢ = oo

(A1,42)0,00 = {a € A1 + Azt lall(ay,40),.. = 0syp t7K(t,a) < oo} .
<t<oo

The space (A1, As)g,q defined in such a way is an interpolation space. The
following relations hold:

(A17A2)9,q = (A27 Al)l_qu )
(A, A)p,g = A,
lall(ar, a5, < Cogllallis’llalh,, Ya € Arn As.

The corresponding interpolation functor F({A1, A2}) = (A1, A2)e,q is of the type
0, ie.
1-0 0
||L||(A17A2)9,q_’(Bl7B2)9,q < “L”Al—»Bl ||L||A2—>B2'

An analogous assertion holds true for bilinear operators:

LEMMA 1. Let Al C AQ, B1 C By and C; C Cy and let LIA2 x By — Cy be
a continuous bilinear form whose restriction on A1 X By is a continuous mapping
with values in Ci. Than L is a continuous mapping from (A1, A2)g p X (B1,B2)gq
into (C1,C2)p,r, 0<O <1, L =12+1-1>0, and

—0 0
||L||(A1,A2)9,p ><(B1,B2)9,q—>(01,02)9,,‘ S ||L||}41><Bl—>c'1 ||L||A2><BQ—>CQ .

As an example of interpolation spaces, let us consider the Sobolev spaces W
[1]. For noninteger positive s one sets

Wy (R") = B, ,(R"),
where B, is a Besov space [11].
For 0 < 51,82 < 00, 81 #82,0< 0 <1, 1<¢g< oo we have [11]:
(W, (R), W(R")), =By (R"), s = (1= 0)s1 +6ss.
In such a way, for ¢ = p and noninteger s = (1 — 6)s; + 6s2, we obtain
(W;l(]R"),W;Z(]R"))g’p =W, (R"), s=(1—0)s1 +0sa.
For p = 2 this relation holds without restrictions, i.e.:
(W5 (R™), W5*(R™)), , = W5 (R")  for all s € (s1, 52).

Hence, W3 (R™) are interpolation spaces. The same result holds for the Sobolev
spaces in a domain  with sufficiently smooth boundary.

Let us define anisotropic Sobolev spaces WQS’S/2(Q)7 Q=0x1I,1=(0,T), as
follows [4]:
W3 (Q) = La(I, W3 () n W5 (1, La(),
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with the norm

T 2
||f||W2_<.5/2(Q)_</0 [l ;(Q>dt+IIfIIW;/z(LLZ(Q))> :

These spaces are interpolation spaces, too. For si,s2,71,72 > 0,0 < 0 < 1, we
have [7,11]

(W3 (Q), W™ (Q))g.s = W (Q) s s = (L= B)sy + O, 1= (1—0)ry + 61y

3. Initial-boundary value problem and its aproximation

Let us consider, as a model problem, the first initial-boundary value problem
for a parabolic equation with variable coefficient in the rectangular domain Q =
Q2 x(0,7]=(0,1) x (0,T7]:

ou 0, Ou

Y Sl t

- Cag)=f,  (@heq,

u=0, (x,t) € 02 x [0,T7], (2)
u(x,O):uo(x), reQ,

We assume that the generalized solution of problem (2) belongs to the Sobolev
space W;’S/Q(Q), 2 < s < 4, with right-hand side f(z,t) which belongs to
W 2/271(Q). Consequently, the coefficient a = a(z) belongs to the space
of multipliers M (W;il’(sfl)ﬂ(Q))7 i.e. it is sufficient that a belongs to the space
Wy~ (Q) [8]-

Let w be a uniform mesh in @ = (0,1) with the step size h, ® = w U {0,1} =
wU~. Let 6, be a uniform mesh in (0,7) with step size 7, 8+ = 6, U {T},

0 = 0. U {0,T}. We define the following uniform mesh in Q: Qu, = w x 6,
QL =wx0#F and Q,, = @ x H,. We assume that the condition:

k1h2 §T§k2h27 ki,ks = const > 0

is satisfied. We define finite differences in the usual manner:
+ _ + _ 2 —
-z h - =i, vz = %, where v* (z,t) = v(z £ h,t),
g+ T) — ,t
v 7) —v(z,t) = vg(z,t + 7).
-

Ve =

vt(xv t) =
We also define the Steklov smoothing operators:
1
T f(ot) = [ flo bl ) de’ =T f@ 4 o),
0
1
T2 (o) =TT f(ot) = [ (1= S+ ha' ) de

—1

T f(at) = / f ety dt =T fnt 7).
0
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These operators commute with derivatives and transform derivatives into differ-
ences:

T? (D;f(x,1)) = D7 (T2 f(,t)) = fea(2,t)
Tt'_ (th(l',t)) :Dt (Tt‘_f(xvt)) ff J,',t), etc.

We approximate problem (2) with the following finite—difference scheme:
v+ Ly =TT f, in Qp,
v=20, on vx80,, (3)
v =g, on w x {0},
where 1
Lyv = —5((avx)j + (avz)z) -

The finite-difference scheme (3) is the the standard symmetric scheme with the
averaged right-hand side. Note that for s < 3.5 the right-hand side may be discon-
tinuous function, so without averaging the scheme is not well defined.

4. Convergence of the finite-difference scheme

Let u be the solution of the initial-boundary value problem (2) and v—the
solution of the finite difference scheme (3). The error z = u — v satisfies the
conditions

Zt_+Lhz:77+99v in QZTv
z2=0, on w x {0}, (4)
z=0, on vx6,,
where

1
n =TT (Do(aDyu)) = 5 ((aus )z + (auz).) and ¢ = us = Tuz,

We define the discrete inner products

(vvw)w = (vvw)Lz(w) = hz v('vt)w('vt)v

rEw
where v(-,t) = v(z,t), (2,t) € w x {t}, t € 61 fixed,
(0,0)Qn, = (0,0)1y(Qu,) =hT D Y v, hw(z,t) =7 > (v,w).,
TEW gt teoy
and the discrete Sobolev norms
||U||3 = (’U,’U)w ) ||v||2Q;,., = (vvv)Qim— )

Vol g,y = 01y, + el +loasly, + el
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The following assertion holds true:
LEMMA 2. Finite-difference scheme (4) satisfies a priori estimate

lollwz(gry < Inllan, + ¢l (5)

In such a way, the problem of deriving a convergence rate estimate for the
finite-difference scheme (3) is now reduced to estimating the right-hand side terms
in (5).

Let us derive an estimate (1) for s = r = 2. We decompose 7 in the following
manner:

_ 1
n =TT, (Ds(aD,)) - 5((““5)06 + (auz)sz)
1 4
= T2(aT, D*u) + T?(D.aT, Dyu) — at,z — i(aiu; +azul) = an
k=1

where:
m = I;Z(G’Tt‘_Dgu) y T2 = 1;2(Dxa1—t‘_Dxu) )

1 _
N3 = —QUgz, M4 = _5(%7% + aw“j{)-

The value 7 in the node (-, ¢) € w x {t} can be represented in the form

_ Lo € — x] _0%u(£,t)
m(ot) = E/z (1 - T) ()T 5 d.

—h
Applying the Cauchy-Schwartz inequality we obtain

C z+h
m .7t < — /
| ( )| h / ( x—h

1
2 2
dﬁ) .
From here, summing over the mesh w, we obtain:
(Ol < Cllall o ITul)llws o) -
Using the imbedding W, (Q) C C(Q) we have
Im (s Dllw < Cllallwr )| T ul H)llwee) -

Summation over the mesh 61 yields:

_Pu(&,t)

a(§)T; o

Inllan. < Cllallwaolullyzs g,

Analogous estimates hold true also for other terms 7, and for term ¢. In such
a way we obtain the estimates:

Inllon, < Cllallwsolullysg)s  and (6)
1¢llgu. < Cllulyzao) - (7)
From (5), (6) and (7) we obtain estimate (1) for s =r = 2.
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Let us derive estimate (1) for s = 4, » = 2. We decompose term 7 in the
following manner: n = Zi; Nk, where
= I;’(aT; D3u) — (T7a) (T T, Diu),
= (IYa—a)(TTDiu)
e = a(L?T D — uag)
s = T} (Dealy Dow) — (L7 Dea) (LT Deu)
= (I Doa — 0.5(as + az))(L' T, Do),
Mo = 0.5(az + az)(L2 T, Dou — 0.5(uy +ul)),

m1 = 0.25(a, —az)(uy —ul).

The value of 75 in the node (-,t) € w x {t} can be represented in the form

- L[ (52 (25

763u(p17 t)
ox3

x a'(p)T, dpydpdods .

From here, using the Cauchy-Schwartz inequality we obtain

ns (-, t)| < Ch3/2||a||wgo(9)||1;7U(',t)||wg(x7h,x+h) .
Summation over the mesh w yields:
15, )l < CR2[lallwy @) 1Tl O)llwz o) -
Using the imbedding W3 (Q) C W1 (©2) we obtain
1n5(, 1)l < Ch2lallwzo) I ul t)llwg o) -
From here, summing over the mesh 6 we obtain

Insllgn. < CRlallwson lullysaq, -

The value of 57 in the node (z,t) € QZT can be represented in the form:

z+h
|£—1‘| (671/1)
nr(x,t) = —a /x /tT/t < ) 52200 dvy dvd§ .

From here, using the Cauchy-Schwartz inequality we have
L
2
dydf) .

In7(z,t)] < C( ”a”C(Q (/Hh /_T

Summation over the mesh Q yields:

l/

ox 28t

Inrlla,, < Crllallo,

O
o0x20t

L2(Q) '
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Using the imbedding W3 (Q) C C(22) and the imbedding theorems for anisotropic
spaces W5""/2(Q) [4] we have

Il Qn. < Ch2llallws o lullys2g) -

Analogous estimates hold true also for other terms 7, and for term ¢. In such
a way we obtain the estimates:
InllQn. < Ch?lallwg o lullys gy, and (8)
lellQn. < Chz”“”W{}-Q(Q) . (9)
From (5), (8) and (9) we obtain estimate (1) for s =4, r = 2.
Let us define the operators A; and Ay as follows:
n=Ai(a,u) and ¢ = As(u).
The operator A; is, obviously, bilinear. From (6) it follows that A; is a bounded
bilinear operator from W (€2) x W2"'(Q) to La(Qp,), and
1411wz @) xws (@)= La(@ur) < € (10)

From (8) it follows that A; is a bounded bilinear operator from W3(Q) x W,"*(Q)
to Lo(Qnr), and

||A1||W§»(Q)XW;-2(Q)_>L2(Q,,T) < Ch?. (11)
Applying lemma 1, from (10) and (11) it follows that A; is a bounded bilinear
operator from

(WE(Q), W3 (2)),, x (W52(Q), W3 (Q)) 5, = WE™>(2) x Wy —*"27%(Q)

to

(L2(Qnr), L2(Qnr))g, 0o = L2(Qnr)

and

| A <CR*7¥ . 0<h<1. (12)

||W23729(Q)XW;_ZG‘Z_S(Q)—’LZ(QILT) —=
Finally, from (12) and the inequality

Illan, < 14w llys-2 g2+ () Lacany lalls-2o oy ullyys-s0.2-5 g
we obtain the estimate

Illa., < Ch* flallyys-ss gy lullyys-202-0g), 0<O<1.  (13)

Analogously, we obtain the following estimate of term ¢:

lellon, < O Jullyyasmams ), 0<0<1. (14)
Setting 4 — 260 = s, we obtain the estimates:
Illu, < Ch2llally sy lullyeera) (15)

Illgn, < O lullyrersg) . 2<s<4. (16)
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Finally, from (6)—(9), (15), (16) and (5) we obtain the main result of this paper:

THEOREM. Finite-difference scheme (3) converges in the norm of the space

1(QhT) and, with condition k1h?> < 17 < kyh?, the following estimate holds true:

e = oz gy, < CH g 1) + Dllull ey 25 sS4

This estimate is consistent with the smoothness of data.
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