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�-TIMES INTEGRATED SEMIGROUPS (� 2 R�)

Milorad Mijatovi�c and Stevan Pilipovi�c

Abstract. The �-times integrated semigroups, � 2 R
� = (�1; 0], are introduced and

analyzed as extensions of 0-integrated semigroups.

0. Introduction

We introduce and analyze �-times integrated semigroups, � 2 R�. With
� 2 N this type of semigroups is extensively investigated in many papers, see for
example [1], [2], [4], [5], [6], [11], [17]; for � > 0 we refer to [6], [10].

In this paper we apply results concerning 0-integrated semigroups [9] and an-
alyze families of operators on the test space K1 with values in L(E;E) which are
n-th distributional derivatives of �-times integrated semigroup for � > 0 su�ciently
large and n > �.

As an application, we consider the Cauchy problem u0 = Au + T , T 2 K01 in
the setting of �-times integrated semigroups � < 0.

1. Preliminaries

By L(E) = L(E;E) is denoted the space of bounded linear operators from
a Banach space (E; k � k) into itself and C(R; L(E)) is the space of continuous
mappings from R into L(E). We refer to [15] and [18] for the de�nitions of spaces
D(R), E(R), S(R), their strong duals S 0(E) = L(S(R); E) and to [20] for the space
S+ = f'; jtk'(�)(t)j < Ck;� ; t 2 [0;1); k; � 2 N0g (N0 = N[f0g) and its dual S 0+
which consists of tempered distributions supported by [0;1).

The space of exponentially decreasing test functions on the real lineR is de�ned
by K1(R) = f'; jekjtj'(�)(t)j < Ck;� ; t 2 R; k; � 2 N0g ([3]). This space has the

same topological properties as S(R). The space K1(R
2) is de�ned in an appropriate

way. The strong dual of K1(R), K01(R) is the sapce of exponential distributions.
The space K01+ � K01(R) consists of distributions which are supported by [0;1).
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It is the dual space to K1+ = f'; jekjtj'(�)(t)j < Ck;� ; t 2 [0;1); k; � 2 N0g which
has the same topological properties as S+. Note,

f 2 K01(R) if and only if e�rjxjf 2 S 0(R) for some r 2 R: (1)

The space K01(E) consists of continuous linear mappings S : K1 ! E with the
strong topology. Similarly K01+(E) is de�ned; we have K

0
1+(E) � K01(E).

The convolution of f 2 K01+(E) and g 2 K01+ is de�ned by hf � g; 'i =
hf; �g � 'i, ' 2 K1(R) (�g(t) = g(�t)). One can prove easily that f � g = g � f 2
K01+(E).

Let T : [0;1)! L(E) be strongly continuous. Then it is exponentially bound-
ed at in�nity if there exist M > 0 and ! > 0 such that

kT (t)k 6Me!t; t > 0: (2)

In this case ' 7!
R1
0
T (t)'(t) dt, ' 2 K1(R), de�nes an element of K01+(L(E)).

The structure of K01+(L(E)) is given in the following theorem.

Theorem 1. [9] Let S 2 K01+(L(E)).

a) There exists n0 2 N such that for every n > n0 there exist a strongly
continuous function Fn : R ! L(E), suppFn � [0;1) and positive constants mn

and Cn, such that

kFn(t)k 6 Cne
mnt; t > 0; S = F (n)

n ((n) is the distributional n-th derivative):

b) Let S 2 K01+(L(E)) and  ; ' 2 K1(R). Then

hS(t; hS(s; x);  (s)i); '(t)i =

Z
Fn0(t; Fn0(s; x)) 

(n0)(s)'(n0)(t) ds dt: (3)

c) Let '(t; s) 2 K1(R
2) and '�(t),  �(s) be sequences in D(R) such that the

product sequence '�(t) �  (�)(s) converges to '(t; s) in K1(R
2) as � ! 1. Then

the limit
lim
�!1

hS(t; hS(s; x);  �(s)i); '�(t)i

exists and de�nes an element of K01(R
2) which we denote by S(t; S(s; x)), i.e.

hS(t; S(s; x)); '(t; s)i = lim
�!1

hS(t; hS(s; x);  �(s)i); '�(t)i ; ' 2 K1(R
2): (4)

d) Also, for ' 2 K1(R
2) and r; p 2 N, we have

(i)

�
@r

@tr
S(t; S(s; x)); '(t; s)

�
= (�1)r

�
S(t; S(s; x));

@r

@tr
'(t; s)

�
;

(ii)

�
@p

@sp
S(t; S(s; x)); '(t; s)

�
=

�
S

�
t;
@p

@sp
S(s; x)

�
; '(t; s)

�

= (�1)p
�
S(t; S(s; x));

@p

@sp
'(t; s)

�
:
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As in the case of ordinary distributions (1) we have

f 2 K01+(L(E)) if and only if e�rjxjf 2 S 0+(L(E)) for some r > 0: (5)

The Laplace transformation of an f satisfying (5) is de�ned by

L(f)(�) = f̂(�) =


f(t); e��t�(t)

�
; Re� > r;

where � 2 C1(R), supp � = [�";1), " > 0 and � � 1 on [0;1). This de�nition
does not depend on � (cf. [20]). If f 2 L1([0;1); E) (which means k

R1
0 f(t) dtkE <

1), then

f̂(�) =

Z 1

0

e��tf(t) dt =


f(t); e��t

�
; Re� > 0;

where the integral is taken in Bochner's sense.

2. �-times integrated semigroup

Let T : (0;1) ! L(E) be strongly continuous, integrable in a neighborhood
of 0 (i.e. integrable on (0; ") for some " > 0) and exponentially bounded at in�nity,
which means that (2) holds on (";1) for some " > 0. The operator R : f� 2 C :
Re� > !g ! L(E) de�ned by

R(�) =

Z 1

0

e��tT (t) dt; Re� > !;

where the integral is understood in Bochner's sense, is the Laplace transformation
of T .

The family R(�) =
R1
0 e��tT (t) dt, Re� > !, where T : [0;1) ! L(E) is a

strongly continuous and exponentially bounded function, is a pseudoresolvent i�
T (t)T (s) = T (t + s), t; s > 0. Let � > 0 and S : (0;1) ! L(E) be strongly
continuous, integrable in a neighborhood of 0, exponentially bounded at in�nity
and

R(�) = ��
Z 1

0

e��tS(t) dt; <� > !:

Then (R(�))Re �>! is a pseudoresolvent i�

S(t)S(s) =
1

�(�)

�Z t+s

t

(t+ s� r)��1S(r) dr�

Z s

0

(t+ s� r)��1S(r) dr

�
; t; s > 0

(6)
(cf. [2], [10]).

Recall,

f�(t) =

8><
>:

H(t)t��1

�(�)
; t 2 R; � > 0;

f
(n)
�+n; t 2 R; � 6 0; �+ n > 0; n 2 N;

(7)

(H is Heaviside's function).
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Theorem 2. Let � 2 R�, S� 2 K01+(L(E)) and R(�) = ��L(S�)(�). Then
(R(�))Re �>! is a pseudoresolvent i� there exists n0 2 N such that n0 + � > 0 and

Sn0+�(t; �) = (S� � fn0)(t; �); t > 0;

is continuous, suppSn0+� � [0;1) and satis�es

hS�(t; S�(s; x)); '(t) (s)i =
D
(Sn0+�(t; Sn0+�(s; x)))

(n0;n0); '(t) (s)
E

=

�
1

�(n0 + �)

�Z t+s

t

(t+ s� r)n0+��1Sn0+�(r; x) dr�

�

Z s

0

(t+ s� r)n0+��1Sn0+�(r; x) dr

�(n0;n0)

; '(t) (s)

�
(8)

for every ';  2 K1(R).

Moreover, (8) holds with Sn+� = S� � fn, for every n > n0.

Remark. [9] If � = 0, then (8) is equivalent to

hS0(t; S0(s; x)); '(t; s)i = hS0(t+ s; x); '(t; s)i ; ' 2 K1(R
2):

Proof. We have S� = S
(n0)
n0+�. Let x 2 E. Relation (8) implies

(S�(t; S�(s; x))) = (Sn0+�(t; Sn0+�(s; x)))
(n0;n0) =�

H(t)H(s)

�(n0 + �)

�Z t+s

t

(t+ s� r)n0+��1Sn0+�(r; x) dr�

Z s

0

(t+ s� r)n0+��1Sn0+�(r; x) dr

��(n0;n))

; (9)

t; s > 0, in the distributional sense. Since both sides are supported by [0;1) �
[0;1), it follows that

(S�(t; S�(s; x))) = Sn0+�(t; Sn0+�(s; x)) =

1

�(n0 + �)

�Z t+s

t

(t+ s� r)n0+��1Sn0+�(r; x) dr�Z s

0

(t+ s� r)n0+��1Sn0+�(r; x) dr

�

holds true for every t; s > 0. Thus, R(�; �) = �n0+�L(Sn0+�)(�; �) is a pseudoresol-
vent. Let n > n0. Since Sn+� = Sn�n0

n0+�+(n�n0)
, it follows that (8) holds for every

n > n0.

Definition 1. Let (S(t))t>0 be a strongly continuous exponentially bounded
family in L(E) and � > 0. Then it is called an �-times integrated semigroup if (6)
is satis�ed and S(0) = 0 ([10]).

Let S� 2 K01+(L(E)) and � 2 R�. Then, S� is called an �-times integrated
semigroup if there exists n0 2 N, such that n0 + � > 0, Sn0+� = S� � fn0 is
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continuous onR, supported by [0;1), exponentially bounded and satis�es (8). This
is equivalent to say that, for some n0 and every n > n0, it is an n-th distributional
derivative of an n+ �-times integrated semigroup.

We will use the symbol (S(t))t>0 or (S�(t))t>0 for an �-times integrated semi-
group if it is not speci�ed whether � > 0 or � 6 0, although for � 6 0 it is an
element of K01+(L(E)) and the above expression is formal.

Definition 2. Let � > 0. Then, (S(t))t>0 with the above properties is called
non-degenerate if S(t)x = 0 for all t > 0, implies x = 0 ([10]). Let � 6 0. Then
S 2 K01+(L(E)) is called non-degenerate if hS(t; x); '(t)i = 0 for all ' 2 K1 implies
x = 0.

Note, C0-semigroup is a 0-integrated semigroup ([9]). Also, if (S(t))t>0 is

an n-times integrated semigroup, then n-th distributional derivative S(n) is a 0-
integrated semigroup.

Definition 3. Let � 2 R. An operator A is the generator of an �-times
integrated semigroup (S(t))t>0 i� (a;1) � �(A) for some a 2 R and the function

� 7!
(�I �A)�1

��
= L(S�)(�), Re� > a, is injective, where the Laplace transfor-

mation is understood in ordinary sense for � > 0 and in distributional sense for
� 6 0.

Part b) of Theorem 1 and the above de�nition directly imply the next Propo-
sition.

Proposition 1. a) Let S�, � 2 R be an �-times integrated semigroup. Then
S� � f�� is a 0-integrated semigroup.

b) Let � < 0. Then A is the generator of an �-times integrated semigroup S�
i� A is the generator of a 0-integrated semigroup S� � f��.

3. The properties of A

Let A be the generator of an �-times integrated semigroup (S(t))t>0, � > 0.
Recall ([2], [10]), for all x 2 D(A) and t > 0, S(t)x 2 D(A), AS(t)x = S(t)Ax,

S(t)x =
t�

�(�+ 1)
x +

R t
0
S(s)Axds. Moreover,

R t
0
S(s)x dx 2 D(A) for all x 2 E,

t > 0 and

A

Z t

0

S(s)x ds = S(t)x�
t�

�(�+ 1)
x:

Theorem 3. Let � 2 R� and A be a generator of an �-times integrated
semigroup (S(t))t>0, S 2 K01+(L(E)). Then, for all ' 2 K1, we have

a) A hS(t; x); '(t)i = hS(t; Ax); '(t)i for every x 2 D(A).

b) hS(t; x); '(t)i 2 D(A) for every x 2 E.
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c) hS(t; x); '(t)i = hf�+1(t; x); '(t)i + h(f1 � S)(t; Ax); '(t)i, x 2 D(A) and

A h(f1 � S)(t; x); '(t)i = hS(t; x); '(t)i � hf�+1(t; x); '(t)i ; x 2 E: (10)

Remark. if � = �1, then (10) with S = S�1, implies

A h(f1 � S�1)(t; x); '(t)i = hS�1(t; x); '(t)i � h�(t; x); '(t)i ;

i.e.
A hS0(t; x); '(t)i = hS0(t; x); '

0(t)i � '(0)x; x 2 E;' 2 K1:

We will use also the notation A hS(t; x); '(t)i = hAS(t; x); '(t)i.

Proof. We will also use notation S� for S. Let ' 2 D(R) and x 2 D(A). Then

hS�(t; x); '(t)i = (�1)n0
D
Sn0+�(t; x); '

(n0)(t)
E
; n0 + � > 0; n0 2 N

and Proposition 3.3 in [2] implies Sn0+�(t; x) 2 D(A) and ASn0+�(t; x) =
Sn0+�(t; Ax). This and the continuity of A imply

A hS�(t; x); '(t)i = (�1)n0A
D
Sn0+�(t; x); '

(n0)(t)
E

= (�1)(n0)A

Z
Sn0+�(t; x)'

(n0)(t) dt = (�1)n0A lim
�!1

�P
j=1

Sn0+�(tj ; x)'
(n0)(tj)�tj

= (�1)n0 lim
�!1

�P
j=1

ASn0+�(tj ; x)'
(n0)(tj)�tj

= (�1)n0
D
ASn0+�(t; x); '

(n0)(t)
E
= hS�(t; Ax); '(t)i ; x 2 E;' 2 D;

where (
P�

j=1 Sn0+�(tj ; x)'
(n0)(tj)�tj) is a sequence of integral sums forR

Sn0+�(t; x)'
(n0)(t) dt.

Let ' 2 K1 and '� be a sequence in D which converges to ' in K1. Then

A hS(t; x); '(t)i = lim
�!1

hS(t; Ax); '� (t)i = hS(t; Ax); '(t)i :

This implies the assertion.

b) Proposition 3.3 in [2] implies
R t
0
Sn0(s; x) ds 2 D(A) for every x 2 E.

Thus,
DR t

0
Sn0(s; x) ds; '(t)

E
2 D(A) for every ' 2 K1 and x 2 E. We know that

hSn0+�; '(t)i 2 D(A) for every ' 2 K1. By putting '(n0) instead of ', we obtain
hS(�; x); 'i 2 D(A) for every ' 2 K1.

c) Similarly, using Proposition 3.3 in [2], we obtain

hS�(t; x); '(t)i = (�1)n0
D
Sn0+�(t; x); '

(n0)(t)
E

= (�1)(n0)
D
fn0+�+1(t; x); '

(n0)(t)
E
+ (�1)n0

D
(f1 � Sn0+�)(t; Ax); '

(n0)(t)
E

= hf�+1(t; x); '(t)i +
D
(f1 � S

(n0)
n0+�)(t; Ax); '(t)

E
= hf�+1(t; x); '(t)i + h(f1 � S�)(t; Ax); '(t)i ; x 2 D(A); ' 2 K1;

which gives the �rst assertion.
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Again by using the quoted Proposition 3.3 in [2], it follows

A h(f1 � S�)(t; x); '(t)i = (�1)(n0)
D
A(f1 � Sn0+�)(t; x); '

(n0)(t)
E

= (�1)(n0)
D
Sn0+�(t; x); '

(n0)(t)
E
� (�1)n0

D
fn0+�+1(t; x); '

(n0)(t)
E

=
D
S
(n0)
n0+�(t; x); '(t)

E
� hf�+1(t; x); '(t)i = hS�(t; x); '(t)i � hf�+1(t; x); '(t)i

which gives (10).

Arendt ([2]) has obtained the characterization of a generator A of an (n+ 1)-
times integrated semigroup (S(t))t>0, n 2 N if A is a non-densely de�ned linear
operator.

Theorem 4. Let � 2 R, ! 2 R, M > 0 and n 2 N such that � + n > 0 if
� 2 (�1; 0]. If � > 0 we take n = 0.

a) Let A be a (non-densely de�ned) linear operator on a Banach space E such
that (a;1) � �(A) for some a > 0 and ! 2 (�1; a]. The following statements are
equivalent:

(i) A generates an �+ n+ 1-times integrated semigroup (S(t))t>0 satisfying

lim
h # 0

sup
1

h
kS(t+ h)� S(t)k 6Me!t; t > 0:

(ii)


1

k!

�
R(�;A)

��+n

�(k)
 6M

�
1

�� !

�k+1
, for all Re� > a, k 2 N0.

b) If A satis�es the equivalent conditions of (a), then the part of A on D(A)
is the generator of an (� + n)-times integrated semigroup.

c) Let A in (a) be a densely de�ned linear operator. Then (ii) in (a) is equiv-
alent with the following condition:

A generates an (�+n)-times integrated semigroup (S(t))t>0 satisfying kS(t)k 6
Me!t, t > 0.

Remark. The case � = 0 in Theorem 2c) is the Hille-Yosida theorem.

Corollary 1. Let � 6 0 and �+ n > 0. If a densely de�ned linear operator
A generates an (� + n)-times integrated semigroup, then its adjoint A� generates
an (�+ n+ 1)-times integrated semigroup.

This directly follows from Theorem 4 since R(�;A)� = R(�;A�) for � real.

4. Relations with distributional semigroup

We follow the de�nition of an exponentially bounded distributional semigroup,
SGDE, given in [7], De�nition 6.1. Note, instead of S(R), we use the space K1(R)
(cf. [9]). As in [7], we put D0 = f' 2 C10 ; supp' 2 [0;1)g.
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If (T (t))t>0 is a C0-semigroup and S� = T � f�, � 2 R then we de�ne

S�('; x) = (S�(�; x) � �')(0) = ((T � f�(�; x)) � �')(0); x 2 E;' 2 K1: (11)

One can show that S� is an �-times integrated semigroup.

Theorem 5. Let (S�(t))t>0, � 2 R, be an �-times integrated semigroup.
Assume that its in�nitesimal generator A is densely de�ned. Then,

S�('; x) = (S� � �')(0)(x); ' 2 K1; (12)

de�nes an element of K01+(L(E)) which is an SGDE i� � = 0.

Proof. Let (S(t))t>0 be an SGDE. As it was remarked by Arendt, Theorem
4.3 in [2] and Theorem 3.2 in [13] imply that there exists an n-times integrated
semigroup (Sn(t))t>0, n 2 R such that

S('; x) =
D
S(n)n (t; x); '(t)

E
= (S(n)n (�; x) � �')(0); ' 2 D; x 2 E:

This implies S
(n)
n = Sn � f�n = S0, where S0 is a 0-integrated semigroup equal

to S.

Now we will prove that for � 2 R n f0g, (12) does not de�ne an SGDE. If
it happened for some � 2 R n f0g, then (S�(t))t>0 and ((S� � f��)(t))t>0 would
determine di�erent SGDE's which is impossible by the uniqueness of an SGDE with
the given in�nitesimal generator A.

Let A be an operator on E and T 2 K01+(E). Then u 2 K01+(E) is a solution
to

u0 = Au+ T in K01(E) (13)

if hu(t); '(t)i 2 D(A) for every ' 2 K1(R) and (13) holds.

Let (S0(t))t>0 be a 0-integrated semigroup with an in�nitesimal generator
which is not necessarily densely de�ned. We recall: if for some x 2 E

S0('; x) =

Z
S0(t; x)'(t) dt = 0 for every ' 2 D0; (14)

then x = 0.

As in [7], we extend (S0(t))t>0 on T 2 E 0(R), suppT � [0;1) by using �-
sequences f��g in D0, (�� ! �): S0(T; x) = lim�!1 S0(T

��� ; x) for those x 2 E for
which this limit exists. Because of (14), we can de�ne the closure of S0(T; �) which

will be denoted by S0(T; �). Theorem 4b) implies that a 0-integrated semigroup has
the same properties as an SGDE except the set fS0('; x); ' 2 D0; x 2 Eg is dense
in E (cf. [7]).

Let U 2 K01+(L(E;D(A))), V 2 K01+(L(D(A); E)) and suppU � [a;1),
suppV � [b;1), a; b 2 R. Then U�V and V �U are de�ned as in [15]. More-
over, they are elements of K01+(L(D(A))) and K01+(L(E)), respectively, and their
supports are bounded from the left by a+ b.
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Theorem 6. Let � 2 R� and S� 2 K01+ be an �-times integrated semigroup
with the in�nitesimal generator A, such that S� � f�� be a 0-integrated semigroup.
Then

a)

�
�A+

@

@t

�
� S� = f� 
 I

D(A), S� �

�
�A+

@

@t

�
= f� 
 ID(A), where

�A+
@

@t
= �� 
A+ �0 
 I.

b) Let T 2 K01(L(D(A))). Then u = S� � f�� � T is the unique solution of
(13).

Proof. a) Put S = S� � f��. Then, as in [7] Theorem 4.1, one can prove�
�A+

@

@t

�
� S0 = � 
 I

D(A): (15)

Since D(A) is not dense in E, in general, we apply both sides of (15) on x 2 D(A).
Then, by making convolution with f� we obtain the �rst assertion of a). In a
similar way we prove the second one.

b) This simply follows from a).

Theorem 7. Let A be an in�nitesimal generator of an �-times integrated
semigroup (S�(t))t>0, � 2 R�. Then S� � f�� determines an SGDE with the

in�nitesimal generator A on E0 �K1, where E0 = fS0('; x); ' 2 D0; x 2 Eg and�
�A+

@

@t

�
� S� = f� 
 IE0 ; S� �

�
�A+

@

@t

�
= f� 
 ID(A)\E0

:

Let T 2 K01+(E0). Then u = S� � f�� � T is the unique solution of (13).
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