α -TIMES INTEGRATED SEMIGROUPS ($\alpha \in \mathbb{R}^+$))

Milorad Mijatovic and Stevan Pilipovic

Abstract. The α -times integrated semigroups, $\alpha \in \mathbb{R}^- = (-\infty, 0]$, are introduced and analyzed as extensions of 0-integrated semigroups.

0. Introduction

We introduce and analyze α -times integrated semigroups, $\alpha \in \mathbf{R}$. With $\alpha \in \mathbb{N}$ this type of semigroups is extensively investigated in many papers, see for example [1], [2], [4], [5], [6], [11], [17]; for $\alpha > 0$ we refer to [6], [10].

In this paper we apply results concerning 0-integrated semigroups [9] and analyze families of operators on the test space \mathcal{K}_1 with values in $L(E, E)$ which are n-th distributional derivatives of α -times integrated semigroup for $\alpha > 0$ sufficiently large and $n>\alpha$.

As an application, we consider the Cauchy problem $u' = Au + T$, $T \in \mathcal{K}'_1$ in the setting of α -times integrated semigroups $\alpha < 0$.

1. Preliminaries

By $L(E) = L(E, E)$ is denoted the space of bounded linear operators from a Banach space $(E, \|\cdot\|)$ into itself and $C(\mathbf{R}, L(E))$ is the space of continuous mappings from **R** into $L(E)$. We refer to [15] and [18] for the definitions of spaces $\mathcal{D}(\mathbf{R}), \mathcal{E}(\mathbf{R}), \mathcal{S}(\mathbf{R}),$ their strong duals $\mathcal{S}'(E) = L(\mathcal{S}(\mathbf{R}), E)$ and to [20] for the space $\mathcal{S}_+ = \{\varphi;\; |t^k\varphi^{(\nu)}(t)| < C_{k,\nu}, t\in [0,\infty), k,\nu\in \mathbf{N}_0\} \;(\mathbf{N}_0 = \mathbf{N}\cup\{0\})$ and its dual \mathcal{S}'_+ which consists of tempered distributions supported by $[0, \infty)$.

The space of exponentially decreasing test functions on the real line R is defined by $\mathcal{K}_1(\mathbf{R}) = \{ \varphi; \; |e^{k|t|} \varphi^{(\nu)}(t)| \leq C_{k,\nu}, t \in \mathbf{R}, k,\nu \in \mathbf{N}_0 \}$ ([3]). This space has the same topological properties as $\mathcal{S}(\mathbf{R})$. The space $\mathcal{K}_1(\mathbf{R}^2)$ is defined in an appropriate way. The strong dual of $\mathcal{K}_1(\mathbf{R}), \mathcal{K}'_1(\mathbf{R})$ is the sapce of exponential distributions. The space $\mathcal{K}'_{1+} \subset \mathcal{K}'_1(\mathbf{R})$ consists of distributions which are supported by $[0, \infty)$.

AMS Subject Classification: 46 F 99

Communicated at the 4th Symposium on Mathematical Analysis and Its Applications, Arandelovac 1997.

It is the dual space to $\mathcal{K}_{1+} = \{\varphi; \; |e^{k|t|}\varphi^{(\nu)}(t)| < C_{k,\nu}, t \in [0,\infty), k,\nu \in \mathbf{N}_0\}$ which has the same topological properties as S_{+} . Note,

$$
f \in \mathcal{K}'_1(\mathbf{R}) \text{ if and only if } e^{-r|x|} f \in \mathcal{S}'(\mathbf{R}) \text{ for some } r \in \mathbf{R}. \tag{1}
$$

The space $\mathcal{K}'_1(E)$ consists of continuous linear mappings $S : \mathcal{K}_1 \to E$ with the strong topology. Similarly $\mathcal{K}'_{1+}(E)$ is defined; we have $\mathcal{K}'_{1+}(E) \subset \mathcal{K}'_1(E)$.

The convolution of $f \in \mathcal{K}'_{1+}(E)$ and $g \in \mathcal{K}'_{1+}$ is defined by $\langle f * g, \varphi \rangle =$ $\langle f, \check{g} * \varphi \rangle, \varphi \in \mathcal{K}_1(\mathbf{R}) \; (\check{g}(t) = g(-t)).$ One can prove easily that $f * g = g * f \in$ $\mathcal{K}'_{1+}(E)$.

Let $T: [0, \infty) \to L(E)$ be strongly continuous. Then it is exponentially bounded at infinity if there exist $M \geq 0$ and $\omega \geq 0$ such that

$$
||T(t)|| \le Me^{\omega t}, \qquad t \ge 0. \tag{2}
$$

In this case $\varphi \mapsto \int_0^\infty T(t)\varphi(t) dt$, $\varphi \in \mathcal{K}_1(\mathbf{R})$, defines an element of $\mathcal{K}'_{1+}(L(E))$.

The structure of $\mathcal{K}'_{1+}(L(E))$ is given in the following theorem.

THEOREM 1. [9] Let $S \in \mathcal{K}'_{1+}(L(E)).$

a) There exists $n_0 \in \mathbb{N}$ such that for every $n \geq n_0$ there exist a strongly continuous function $F_n: \mathbf{R} \to L(E)$, supp $F_n \subset [0,\infty)$ and positive constants m_n and C_n , such that

- $||F_n(t)|| \leqslant C_n e^{m_n t}$, $t \geqslant 0$, $S = F_n^{(n)}$ (ⁿ) is the distributional n-th derivative).
	- b) Let $S \in \mathcal{K}'_{1+}(L(E))$ and $\psi, \varphi \in \mathcal{K}_1(\mathbf{R})$. Then

$$
\langle S(t,\langle S(s,x),\psi(s)\rangle),\varphi(t)\rangle = \int F_{n_0}(t,F_{n_0}(s,x))\psi^{(n_0)}(s)\varphi^{(n_0)}(t)\,ds\,dt.\tag{3}
$$

c) Let $\varphi(t,s) \in \mathcal{K}_1(\mathbf{R}^2)$ and $\varphi_{\nu}(t), \psi_{\nu}(s)$ be sequences in $\mathcal{D}(\mathbf{R})$ such that the product sequence $\varphi_{\nu}(t) \cdot \psi_{(\nu)}(s)$ converges to $\varphi(t,s)$ in $\mathcal{K}_1(\mathbf{R}^2)$ as $\nu \to \infty$. Then the limit

$$
\lim_{\nu \to \infty} \langle S(t, \langle S(s, x), \psi_{\nu}(s) \rangle), \varphi_{\nu}(t) \rangle
$$

exists and defines an element of $\mathcal{K}_1(\mathbf{R}^2)$ which we denote by $S(t, S(s, x))$, i.e.

$$
\langle S(t, S(s, x)), \varphi(t, s) \rangle = \lim_{\nu \to \infty} \langle S(t, \langle S(s, x), \psi_{\nu}(s) \rangle), \varphi_{\nu}(t) \rangle, \quad \varphi \in \mathcal{K}_1(\mathbf{R}^2). \tag{4}
$$

d) Also, for $\varphi \in \mathcal{K}_1(\mathbf{R}^2)$ and $r, p \in \mathbf{N}$, we have

$$
(i) \quad \left\langle \frac{\partial^r}{\partial t^r} S(t, S(s, x)), \varphi(t, s) \right\rangle = (-1)^r \left\langle S(t, S(s, x)), \frac{\partial^r}{\partial t^r} \varphi(t, s) \right\rangle;
$$

\n
$$
(ii) \quad \left\langle \frac{\partial^p}{\partial s^p} S(t, S(s, x)), \varphi(t, s) \right\rangle = \left\langle S\left(t, \frac{\partial^p}{\partial s^p} S(s, x)\right), \varphi(t, s) \right\rangle
$$

\n
$$
= (-1)^p \left\langle S(t, S(s, x)), \frac{\partial^p}{\partial s^p} \varphi(t, s) \right\rangle.
$$

As in the case of ordinary distributions (1) we have

$$
f \in \mathcal{K}'_{1+}(L(E))
$$
 if and only if $e^{-r|x|}f \in \mathcal{S}'_{+}(L(E))$ for some $r \ge 0$. (5)

The Laplace transformation of an f satisfying (5) is defined by

$$
\mathcal{L}(f)(\lambda) = \hat{f}(\lambda) = \langle f(t), e^{-\lambda t} \eta(t) \rangle, \quad \text{Re}\,\lambda > r,
$$

where $\eta \in C^{\infty}(\mathbf{R})$, supp $\eta = [-\varepsilon, \infty)$, $\varepsilon > 0$ and $\eta \equiv 1$ on $[0, \infty)$. This definition does not depend on η (cf. [20]). If $f \in L^1([0,\infty),E)$ (which means $\| \int_0^\infty f(t) \, dt \|_E < 1$ ∞), then

$$
\hat{f}(\lambda) = \int_0^\infty e^{-\lambda t} f(t) dt = \langle f(t), e^{-\lambda t} \rangle, \quad \text{Re}\,\lambda > 0,
$$

where the integral is taken in Bochner's sense.

2. α -times integrated semigroup

Let $T: (0, \infty) \to L(E)$ be strongly continuous, integrable in a neighborhood of 0 (i.e. integrable on $(0, \varepsilon)$ for some $\varepsilon > 0$) and exponentially bounded at infinity, which means that (2) holds on (ε, ∞) for some $\varepsilon > 0$. The operator $R: \{\lambda \in \mathbf{C} :$ $\text{Re }\lambda > \omega \} \rightarrow L(E)$ defined by

$$
R(\lambda) = \int_0^\infty e^{-\lambda t} T(t) dt, \quad \text{Re}\,\lambda > \omega,
$$

where the integral is understood in Bochner's sense, is the Laplace transformation

The family $R(\lambda) = \int_0^\infty e^{-\lambda t} T(t) dt$, Re $\lambda > \omega$, where $T: [0, \infty) \to L(E)$ is a strongly continuous and exponentially bounded function, is a pseudoresolvent i $T(t)T(s) = T(t + s), t, s \geq 0$. Let $\alpha > 0$ and $S: (0, \infty) \to L(E)$ be strongly continuous, integrable in a neighborhood of 0, exponentially bounded at infinity and

$$
R(\lambda) = \lambda^{\alpha} \int_0^{\infty} e^{-\lambda t} S(t) dt, \quad \Re \lambda > \omega.
$$

Then $(R(\lambda))_{\text{Re }\lambda>\omega}$ is a pseudoresolvent iff

$$
S(t)S(s) = \frac{1}{\Gamma(\alpha)} \left[\int_{t}^{t+s} (t+s-r)^{\alpha-1} S(r) dr - \int_{0}^{s} (t+s-r)^{\alpha-1} S(r) dr \right], \quad t, s \geq 0
$$
\n(6)

 $(cf. [2], [10]).$

Recall,

$$
f_{\alpha}(t) = \begin{cases} \frac{H(t)t^{\alpha-1}}{\Gamma(\alpha)}, & t \in \mathbf{R}, \alpha > 0, \\ f_{\alpha+n}^{(n)}, & t \in \mathbf{R}, \alpha \leqslant 0, \alpha + n > 0, n \in \mathbf{N}, \end{cases}
$$
(7)

 $(H$ is Heaviside's function).

THEOREM 2. Let $\alpha \in \mathbb{R}^-, S_\alpha \in \mathcal{K}'_{1+}(L(E))$ and $R(\lambda) = \lambda^\alpha \mathcal{L}(S_\alpha)(\lambda)$. Then $(R(\lambda))_{\text{Re }\lambda>\omega}$ is a pseudoresolvent iff there exists $n_0 \in \mathbb{N}$ such that $n_0 + \alpha > 0$ and

$$
S_{n_0+\alpha}(t,\cdot)=(S_\alpha*f_{n_0})(t,\cdot),\quad t\geqslant 0,
$$

is continuous, supp $S_{n_0+\alpha} \subset [0,\infty)$ and satisfies

$$
\langle S_{\alpha}(t, S_{\alpha}(s, x)), \varphi(t)\psi(s)\rangle = \left\langle (S_{n_0+\alpha}(t, S_{n_0+\alpha}(s, x)))^{(n_0, n_0)}, \varphi(t)\psi(s) \right\rangle \n= \left\langle \frac{1}{\Gamma(n_0+\alpha)} \left(\int_t^{t+s} (t+s-r)^{n_0+\alpha-1} S_{n_0+\alpha}(r, x) dr - \int_0^s (t+s-r)^{n_0+\alpha-1} S_{n_0+\alpha}(r, x) dr \right)^{(n_0, n_0)}, \varphi(t)\psi(s) \right\rangle
$$
\n(8)

for every $\varphi, \psi \in \mathcal{K}_1(\mathbf{R})$.

Moreover, (8) holds with $S_{n+\alpha} = S_{\alpha} * f_n$, for every $n \ge n_0$.

REMARK. [9] If $\alpha = 0$, then (8) is equivalent to

$$
\langle S_0(t, S_0(s, x)), \varphi(t, s) \rangle = \langle S_0(t + s, x), \varphi(t, s) \rangle, \quad \varphi \in \mathcal{K}_1(\mathbf{R}^2).
$$

Proof. We have $S_{\alpha} = S_{n_0+\alpha}^{(m)}$. Let $x \in E$. Relation (8) implies

$$
(S_{\alpha}(t, S_{\alpha}(s, x))) = (S_{n_0+\alpha}(t, S_{n_0+\alpha}(s, x)))^{(n_0, n_0)} =
$$

$$
\left(\frac{H(t)H(s)}{\Gamma(n_0+\alpha)}\left[\int_t^{t+s}(t+s-r)^{n_0+\alpha-1}S_{n_0+\alpha}(r, x)\,dr-\int_0^s(t+s-r)^{n_0+\alpha-1}S_{n_0+\alpha}(r, x)\,dr\right]\right)^{(n_0, n_0)},
$$
 (9)

 $t, s > 0$, in the distributional sense. Since both sides are supported by $[0, \infty) \times$ $[0, \infty)$, it follows that

$$
(S_{\alpha}(t, S_{\alpha}(s, x))) = S_{n_0 + \alpha}(t, S_{n_0 + \alpha}(s, x)) =
$$

$$
\frac{1}{\Gamma(n_0 + \alpha)} \left[\int_t^{t+s} (t+s-r)^{n_0 + \alpha - 1} S_{n_0 + \alpha}(r, x) dr - \int_0^s (t+s-r)^{n_0 + \alpha - 1} S_{n_0 + \alpha}(r, x) dr \right]
$$

holds true for every $t, s \geq 0$. Thus, $R(\lambda, \cdot) = \lambda^{n_0+\alpha} \mathcal{L}(S_{n_0+\alpha})(\lambda, \cdot)$ is a pseudoresolvent. Let $n \geq n_0$. Since $S_{n+\alpha} = S_{n_0+\alpha+(n-n_0)}^{\alpha}$, it follows that (8) holds for every $n \geqslant n_0$.

DEFINITION 1. Let $(S(t))_{t\geqslant0}$ be a strongly continuous exponentially bounded family in $L(E)$ and $\alpha > 0$. Then it is called an α -times integrated semigroup if (6) is satisfied and $S(0) = 0$ ([10]).

Let $S_\alpha \in \mathcal{K}'_{1+}(L(E))$ and $\alpha \in \mathbb{R}^-$. Then, S_α is called an α -times integrated semigroup if there exists $n_0 \in \mathbb{N}$, such that $n_0 + \alpha > 0$, $S_{n_0 + \alpha} = S_{\alpha} * f_{n_0}$ is

continuous on **R**, supported by $[0, \infty)$, exponentially bounded and satisfies (8). This is equivalent to say that, for some n_0 and every $n \geq n_0$, it is an *n*-th distributional derivative of an $n + \alpha$ -times integrated semigroup.

We will use the symbol $(S(t))_{t\geq0}$ or $(S_{\alpha}(t))_{t\geq0}$ for an α -times integrated semigroup if it is not specified whether $\alpha > 0$ or $\alpha \leq 0$, although for $\alpha \leq 0$ it is an element of $\mathcal{K}'_{1+}(L(E))$ and the above expression is formal.

DEFINITION 2. Let $\alpha > 0$. Then, $(S(t))_{t \geq 0}$ with the above properties is called non-degenerate if $S(t)x = 0$ for all $t \ge 0$, implies $x = 0$ ([10]). Let $\alpha \le 0$. Then $S \in \mathcal{K}'_{1+}(L(E))$ is called non-degenerate if $\langle S(t, x), \varphi(t) \rangle = 0$ for all $\varphi \in \mathcal{K}_1$ implies $x=0$.

Note, C_0 -semigroup is a 0-integrated semigroup ([9]). Also, if $(S(t))_{t\geqslant0}$ is an n -times integrated semigroup, then n -th distributional derivative $S^{(n)}$ is a 0integrated semigroup.

DEFINITION 3. Let $\alpha \in \mathbb{R}$. An operator A is the generator of an α -times integrated semigroup $(S(t))_{t\geqslant0}$ iff $(a,\infty)\subset\rho(A)$ for some $a\in\mathbf{R}$ and the function $\lambda \mapsto \frac{(M-A)^{-1}}{\lambda^{\alpha}} = \mathcal{L}(S_{\alpha})(\lambda), \text{ Re }\lambda > a, \text{ is injective, where the Laplace transform.}$ mation is understood in ordinary sense for $\alpha > 0$ and in distributional sense for $\alpha \leqslant 0.$

Part b) of Theorem 1 and the above definition directly imply the next Proposition.

PROPOSITION 1. a) Let S_α , $\alpha \in \mathbf{R}$ be an α -times integrated semigroup. Then $S_{\alpha}*f_{-\alpha}$ is a 0-integrated semigroup.

b) Let $\alpha < 0$. Then A is the generator of an α -times integrated semigroup S_{α} iff A is the generator of a 0-integrated semigroup $S_{\alpha}*f_{-\alpha}$.

3. The properties of A

Let A be the generator of an α -times integrated semigroup $(S(t))_{t\geqslant0}$, $\alpha>0$. Recall ([2], [10]), for all $x \in D(A)$ and $t \geq 0$, $S(t)x \in D(A)$, $AS(t)x = S(t)Ax$, $S(t)x = \frac{t}{\sqrt{t^2 + 4}}x + 1$ $\Gamma(\alpha + 1)$ \longrightarrow \longrightarrow \longrightarrow $\int_0^t S(s)Ax ds$. Moreover, $\int_0^t S(s)x dx \in D(A)$ for all $x \in E$, $t \geqslant 0$ and

$$
A \int_0^t S(s)x ds = S(t)x - \frac{t^{\alpha}}{\Gamma(\alpha+1)}x.
$$

THEOREM 3. Let $\alpha \in \mathbf{R}$ and A be a generator of an α -times integrated semigroup $(S(t))_{t\geqslant 0}$, $S \in \mathcal{K}'_{1+}(L(E))$. Then, for all $\varphi \in \mathcal{K}_1$, we have

a) $A \langle S(t, x), \varphi(t) \rangle = \langle S(t, Ax), \varphi(t) \rangle$ for every $x \in D(A)$.

b) $\langle S(t, x), \varphi(t) \rangle \in D(A)$ for every $x \in E$.

c)
$$
\langle S(t, x), \varphi(t) \rangle = \langle f_{\alpha+1}(t, x), \varphi(t) \rangle + \langle (f_1 * S)(t, Ax), \varphi(t) \rangle, x \in D(A)
$$
 and
\n $A \langle (f_1 * S)(t, x), \varphi(t) \rangle = \langle S(t, x), \varphi(t) \rangle - \langle f_{\alpha+1}(t, x), \varphi(t) \rangle, x \in E.$ (10)

REMARK. if $\alpha = -1$, then (10) with $S = S_{-1}$, implies

$$
A \langle (f_1 * S_{-1})(t, x), \varphi(t) \rangle = \langle S_{-1}(t, x), \varphi(t) \rangle - \langle \delta(t, x), \varphi(t) \rangle,
$$

i.e.

$$
A\langle S_0(t,x),\varphi(t)\rangle = \langle S_0(t,x),\varphi'(t)\rangle - \varphi(0)x, \quad x \in E, \varphi \in \mathcal{K}_1.
$$

We will use also the notation $A \langle S(t, x), \varphi(t) \rangle = \langle AS(t, x), \varphi(t) \rangle$.

Proof. We will also use notation S_{α} for S. Let $\varphi \in \mathcal{D}(\mathbf{R})$ and $x \in D(A)$. Then

$$
\langle S_{\alpha}(t,x), \varphi(t) \rangle = (-1)^{n_0} \left\langle S_{n_0+\alpha}(t,x), \varphi^{(n_0)}(t) \right\rangle, \quad n_0+\alpha > 0, n_0 \in \mathbf{N}
$$

and Proposition 3.3 in [2] implies $S_{n_0+\alpha}(t, x) \in D(A)$ and $AS_{n_0+\alpha}(t, x)$ = $S_{n_0+\alpha}(t, Ax)$. This and the continuity of A imply

d_i and the second second

$$
A\langle S_{\alpha}(t,x),\varphi(t)\rangle = (-1)^{n_0} A \langle S_{n_0+\alpha}(t,x),\varphi^{(n_0)}(t)\rangle
$$

\n
$$
= (-1)^{(n_0)} A \int S_{n_0+\alpha}(t,x) \varphi^{(n_0)}(t) dt = (-1)^{n_0} A \lim_{\nu \to \infty} \sum_{j=1}^{\nu} S_{n_0+\alpha}(t_j,x) \varphi^{(n_0)}(t_j) \Delta t_j
$$

\n
$$
= (-1)^{n_0} \lim_{\nu \to \infty} \sum_{j=1}^{\nu} A S_{n_0+\alpha}(t_j,x) \varphi^{(n_0)}(t_j) \Delta t_j
$$

\n
$$
= (-1)^{n_0} \langle A S_{n_0+\alpha}(t,x),\varphi^{(n_0)}(t) \rangle = \langle S_{\alpha}(t,Ax),\varphi(t) \rangle, \quad x \in E, \varphi \in \mathcal{D},
$$

where $(\sum_{j=1}^{\nu} S_{n_0+\alpha}(t_j, x)\varphi^{(n_0)}(t_j)\Delta t_j)$ is a sequence of integral sums for $\int S_{n_0+\alpha}(t, x) \varphi^{(n_0)}(t) dt$.

Let $\varphi \in \mathcal{K}_1$ and φ_{ν} be a sequence in D which converges to φ in \mathcal{K}_1 . Then

$$
A\left\langle S(t,x),\varphi(t)\right\rangle = \lim_{\nu\to\infty} \left\langle S(t,Ax),\varphi_{\nu}(t)\right\rangle = \left\langle S(t,Ax),\varphi(t)\right\rangle.
$$

This implies the assertion.

b) Proposition 3.3 in [2] implies $\int_0^t S_{n_0}(s, x) ds \in D(A)$ for every $x \in E$. Thus, $\left\langle \int_0^t S_{n_0}(s, x) ds, \varphi(t) \right\rangle \in D(A)$ for every $\varphi \in \mathcal{K}_1$ and $x \in E$. We know that $\langle S_{n_0+\alpha}, \varphi(t) \rangle \in D(A)$ for every $\varphi \in \mathcal{K}_1$. By putting $\varphi^{(n_0)}$ instead of φ , we obtain $\langle S(\cdot, x), \varphi \rangle \in D(A)$ for every $\varphi \in \mathcal{K}_1$.
c) Similarly, using Proposition 3.3 in [2], we obtain

$$
\langle S_{\alpha}(t,x), \varphi(t) \rangle = (-1)^{n_0} \left\langle S_{n_0+\alpha}(t,x), \varphi^{(n_0)}(t) \right\rangle
$$

= $(-1)^{(n_0)} \left\langle f_{n_0+\alpha+1}(t,x), \varphi^{(n_0)}(t) \right\rangle + (-1)^{n_0} \left\langle (f_1 * S_{n_0+\alpha})(t, Ax), \varphi^{(n_0)}(t) \right\rangle$
= $\langle f_{\alpha+1}(t,x), \varphi(t) \rangle + \left\langle (f_1 * S_{n_0+\alpha})(t, Ax), \varphi(t) \right\rangle$
= $\langle f_{\alpha+1}(t,x), \varphi(t) \rangle + \left\langle (f_1 * S_{\alpha})(t, Ax), \varphi(t) \right\rangle, \quad x \in D(A), \varphi \in \mathcal{K}_1,$

which gives the first assertion.

Again by using the quoted Proposition 3.3 in [2], it follows

$$
A \langle (f_1 * S_\alpha)(t, x), \varphi(t) \rangle = (-1)^{(n_0)} \langle A(f_1 * S_{n_0+\alpha})(t, x), \varphi^{(n_0)}(t) \rangle
$$

\n
$$
= (-1)^{(n_0)} \langle S_{n_0+\alpha}(t, x), \varphi^{(n_0)}(t) \rangle - (-1)^{n_0} \langle f_{n_0+\alpha+1}(t, x), \varphi^{(n_0)}(t) \rangle
$$

\n
$$
= \langle S_{n_0+\alpha}^{(n_0)}(t, x), \varphi(t) \rangle - \langle f_{\alpha+1}(t, x), \varphi(t) \rangle = \langle S_\alpha(t, x), \varphi(t) \rangle - \langle f_{\alpha+1}(t, x), \varphi(t) \rangle
$$

which gives (10) .

Arendt ([2]) has obtained the characterization of a generator A of an $(n + 1)$ times integrated semigroup $(S(t))_{t\geqslant0}$, $n \in \mathbb{N}$ if A is a non-densely defined linear operator.

THEOREM 4. Let $\alpha \in \mathbf{R}$, $\omega \in \mathbf{R}$, $M \geqslant 0$ and $n \in \mathbf{N}$ such that $\alpha + n > 0$ if $\alpha \in (-\infty,0]$. If $\alpha > 0$ we take $n = 0$.

a) Let A be a (non-densely defined) linear operator on a Banach space E such that $(a, \infty) \subset \rho(A)$ for some $a \geq 0$ and $\omega \in (-\infty, a]$. The following statements are equivalent:

(i) A generates an $\alpha + n + 1$ -times integrated semigroup $(S(t))_{t \geq 0}$ satisfying

$$
\lim_{h \downarrow 0} \sup \frac{1}{h} \| S(t+h) - S(t) \| \leqslant M e^{\omega t}, \qquad t \geqslant 0.
$$

$$
(ii) \left\| \frac{1}{k!} \left(\frac{R(\lambda, A)}{\lambda^{\alpha + n}} \right)^{(k)} \right\| \leq M \left(\frac{1}{\lambda - \omega} \right)^{k+1}, \text{ for all } \text{Re}\,\lambda > a, \, k \in \mathbb{N}_0.
$$

b) If A satisfies the equivalent conditions of (a), then the part of A on $\overline{D(A)}$ is the generator of an $(\alpha + n)$ -times integrated semigroup.

c) Let A in (a) be a densely defined linear operator. Then (ii) in (a) is equiv a lent with the following condition:

A generates an $(\alpha+n)$ -times integrated semigroup $(S(t))_{t\geq 0}$ satisfying $||S(t)|| \leq$ $M e, t \geq 0.$

REMARK. The case $\alpha = 0$ in Theorem 2c) is the Hille-Yosida theorem.

COROLLARY 1. Let $\alpha \leq 0$ and $\alpha + n > 0$. If a densely defined linear operator A generates an $(\alpha + n)$ -times integrated semigroup, then its adjoint A^* generates an $(\alpha + n + 1)$ -times integrated semigroup.

This directly follows from Theorem 4 since $R(\lambda, A) = R(\lambda, A)$ for λ real.

4. Relations with distributional semigroup

We follow the definition of an exponentially bounded distributional semigroup, SGDE, given in [7], Definition 6.1. Note, instead of $\mathcal{S}(\mathbf{R})$, we use the space $\mathcal{K}_1(\mathbf{R})$ (cf. [9]). As in [7], we put $\mathcal{D}_0 = \{ \varphi \in C_0^{\infty}; \text{ supp } \varphi \in [0, \infty) \}.$

If $(T(t))_{t\geqslant0}$ is a C_0 -semigroup and $S_\alpha = T * f_\alpha$, $\alpha \in \mathbf{R}$ then we define

$$
S_{\alpha}(\varphi, x) = (S_{\alpha}(\cdot, x) * \check{\varphi})(0) = ((T * f_{\alpha}(\cdot, x)) * \check{\varphi})(0), \quad x \in E, \varphi \in \mathcal{K}_1. \tag{11}
$$

One can show that S_{α} is an α -times integrated semigroup.

THEOREM 5. Let $(S_\alpha(t))_{t\geqslant 0}, \alpha \in \mathbf{R},$ be an α -times integrated semigroup. Assume that its infinitesimal generator A is densely defined. Then,

$$
S_{\alpha}(\varphi, x) = (S_{\alpha} * \check{\varphi})(0)(x), \qquad \varphi \in \mathcal{K}_1,\tag{12}
$$

defines an element of $\mathcal{K}'_{1+}(L(E))$ which is an SGDE iff $\alpha = 0$.

Proof. Let $(S(t))_{t\geq0}$ be an SGDE. As it was remarked by Arendt, Theorem 4.3 in $[2]$ and Theorem 3.2 in $[13]$ imply that there exists an *n*-times integrated semigroup $(S_n(t))_{t\geq 0}, n \in \mathbf{R}$ such that

$$
S(\varphi, x) = \langle S_n^{(n)}(t, x), \varphi(t) \rangle = (S_n^{(n)}(\cdot, x) * \check{\varphi})(0), \qquad \varphi \in \mathcal{D}, x \in E.
$$

This implies $S_n^{\gamma\gamma} = S_n * f_{-n} = S_0$, where S_0 is a 0-integrated semigroup equal to S.
Now we will prove that for $\alpha \in \mathbf{R} \setminus \{0\}$, (12) does not define an SGDE. If

it happened for some $\alpha \in \mathbf{R} \setminus \{0\}$, then $(S_{\alpha}(t))_{t\geqslant0}$ and $((S_{\alpha}*f_{-\alpha})(t))_{t\geqslant0}$ would determine different SGDE's which is impossible by the uniqueness of an SGDE with the given infinitesimal generator A .

Let A be an operator on E and $T \in \mathcal{K}'_{1+}(E)$. Then $u \in \mathcal{K}'_{1+}(E)$ is a solution

$$
u' = Au + T \quad \text{in } \mathcal{K}'_1(E) \tag{13}
$$

if $\langle u(t), \varphi(t) \rangle \in D(A)$ for every $\varphi \in \mathcal{K}_1(\mathbf{R})$ and (13) holds.

Let $(S_0(t))_{t\geq 0}$ be a 0-integrated semigroup with an infinitesimal generator which is not necessarily densely defined. We recall: if for some $x \in E$

$$
S_0(\varphi, x) = \int S_0(t, x)\varphi(t) dt = 0 \quad \text{for every } \varphi \in \mathcal{D}_0,
$$
 (14)

then $x = 0$

As in [7], we extend $(S_0(t))_{t\geqslant 0}$ on $T \in \mathcal{E}'(\mathbf{R})$, supp $T \subset [0, \infty)$ by using δ -
sequences $\{\rho_\nu\}$ in \mathcal{D}_0 , $(\rho_\nu \to \delta)$: $S_0(T, x) = \lim_{\nu \to \infty} S_0(T^*\rho_\nu, x)$ for those $x \in E$ for which this limit exists. Because of (14), we can define the closure of $S_0(T, \cdot)$ which will be denoted by $\overline{S_0(T, \cdot)}$. Theorem 4b) implies that a 0-integrated semigroup has the same properties as an SGDE except the set $\{S_0(\varphi, x); \varphi \in \mathcal{D}_0, x \in E\}$ is dense in E (cf. [7]).

Let $U \in \mathcal{K}'_{1+}(L(E,D(A))), V \in \mathcal{K}'_{1+}(L(D(A), E))$ and supp $U \subset [a, \infty),$ supp $V \subset [b, \infty), a, b \in \mathbb{R}$. Then U^*V and V^*U are defined as in [15]. Moreover, they are elements of $\mathcal{K}'_{1+}(L(D(A)))$ and $\mathcal{K}'_{1+}(L(E))$, respectively, and their supports are bounded from the left by $a + b$.

THEOREM 6. Let $\alpha \in \mathbb{R}^-$ and $S_\alpha \in \mathcal{K}_{1+}'$ be an α -times integrated semigroup with the infinitesimal generator A, such that $S_{\alpha}*f_{-\alpha}$ be a 0-integrated semigroup. $Then$

a)
$$
\left(-A + \frac{\partial}{\partial t}\right) * S_{\alpha} = f_{\alpha} \otimes I_{\overline{D(A)}}, S_{\alpha} * \left(-A + \frac{\partial}{\partial t}\right) = f_{\alpha} \otimes I_{D(A)}, \text{ where}
$$

\n $-A + \frac{\partial}{\partial t} = -\delta \otimes A + \delta' \otimes I.$
\nb) Let $T \in K'_1(L(\overline{D(A)})).$ Then $u = S_{\alpha} * f_{-\alpha} * T$ is the unique solution of (13).

Proof. a) Put $S = S_{\alpha} * f_{-\alpha}$. Then, as in [7] Theorem 4.1, one can prove

$$
\left(-A + \frac{\partial}{\partial t}\right) * S_0 = \delta \otimes I_{\overline{D(A)}}.
$$
\n(15)

Since $D(A)$ is not dense in E, in general, we apply both sides of (15) on $x \in D(A)$. Then, by making convolution with f_α we obtain the first assertion of a). In a similar way we prove the second one.

b) This simply follows from a).

THEOREM 7. Let A be an infinitesimal generator of an α -times integrated semigroup $(S_{\alpha}(t))_{t\geq 0}$, $\alpha \in \mathbf{R}$. Then $S_{\alpha}*f_{-\alpha}$ determines an SGDE with the infinitesimal generator A on $E_0 \times K_1$, where $E_0 = \{S_0(\varphi, x); \varphi \in \mathcal{D}_0, x \in E\}$ and

$$
\left(-A+\frac{\partial}{\partial t}\right)*S_{\alpha}=f_{\alpha}\otimes I_{E_0},\quad S_{\alpha}*\left(-A+\frac{\partial}{\partial t}\right)=f_{\alpha}\otimes I_{D(A)\cap E_0}.
$$

Let $T \in \mathcal{K}'_{1+}(E_0)$. Then $u = S_\alpha * f_{-\alpha} * T$ is the unique solution of (13).

REFERENCES

- [1] Arendt, W., Resolvent positive operators and integrated semigroups, Proc. London Math. Soc. (3) 54 (1987) , 321-349.
- [2] Arendt, W., Vector valued Laplace transforms and Cauchy problems, Israel J. Math., 59 $(1987), 327 - 352.$
- [3] Hasumi, M., Note on the n-dimensional tempered ultradistributions, Tôhoku Math. J., 13 $(1961), 94-104.$
- (4) fileber, M., Integrated semigroups and differential operators on L^r spaces, Math. Ann., **291** $(1991), 1-16.$
- [5] Hieber, M., Lp spectra of pseudodierential operators generating integrated semigroups, Trans. Amer. Math. Soc., 347 (1995), 4023-4035.
- [6] Kellermann, H. and Hieber, M., Integrated semigroups, J. Funct. Anal., 84 (1989), 160-180.
- [7] Lions, J. L., $Semi-groupes\ distributions$, Portugal. Math., 19 (1960), 141-164.
- [8] Melnikova, I. V. and Alshansky, M. A., Well-posedness of Cauchy problem in a Banach space: regular and degenerate cases, Itogi nauki i tehn., Series Sovr. matem. i ee priloz., Analiz-9/VINITI, 27 (1995), 5-64.
- [9] Mijatovic, M. and Pilipovic, S., A zero-integrated semigroup, preprint
- $|10|$ Mijatovic, M., Pilipovic, S. and Vajzovic, F., α -times integrated semigroup ($\alpha \in \mathbf{R}^+$), J. Math. Anal. Appl., 210 (1997), 790-803.

162 M. Mijatovic, S. Pilipovic

- [11] Neubrander, F., Integrated semigroups and their applications to the abstract Cauchy problem, Pacif. J. Math., 135 (1988), 111-155.
- [12] Oharu, S., Semigroups of linear operators in Banach spaces, Publ. Res. Inst. Math. Sci, 204 $(1973), 189{-}198.$
- [13] Sova, M., Problemes de Cauchy paraboliques abstraits de classes superieurs et les semigroupes distributions, Ricerche Math., 18 (1969), 215-238.
- [14] Schwartz, L., Théorie des distributions, 2 vols, Hermann, Paris 1950-1951.
- [15] Schwartz, L., Theorie des distributions a valeurs vectoriel les, Ann. Inst. Fourier, 1-ere partie, 7 (1957), 1-141; 2-éme partie, 8 (1958), 1-207.
- [16] Tanaka, N. and Okazawa, N., Local C-semigroups and local integrated semigroups, Proc. London Math. Soc., (1990), 63-90.
- [17] Thieme, H. R., Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152 (1990), 416-447.
- [18] Treves, F., Topological Vector Spaces, Distributions and Kernels, Acad. Press, New York 1967.
- [19] Ushijama, T., Some properties of regular distribution semigroups, Proc. Japan Acad., 45 $(1969), 224-227.$
- [20] Vladimirov, V. S., Generalized Functions in Mathematical Physics, Mir, Moscow 1979.

(received 02.09.1997.)

Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Yugoslavia