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a-TIMES INTEGRATED SEMIGROUPS (¢ € R7)
Milorad Mijatovié and Stevan Pilipovié

Abstract. The a-times integrated semigroups, & € R~ = (—00,0], are introduced and
analyzed as extensions of 0-integrated semigroups.

0. Introduction

We introduce and analyze a-times integrated semigroups, a € R™~. With
a € N this type of semigroups is extensively investigated in many papers, see for
example [1], [2], [4], [5], [6], [11], [17]; for @ > O we refer to [6], [10].

In this paper we apply results concerning O-integrated semigroups [9] and an-
alyze families of operators on the test space Ky with values in L(E, E) which are
n-th distributional derivatives of a-times integrated semigroup for a > 0 sufficiently
large and n > a.

As an application, we consider the Cauchy problem v’ = Au+ T, T € K] in
the setting of a-times integrated semigroups a < 0.

1. Preliminaries

By L(E) = L(E,E) is denoted the space of bounded linear operators from
a Banach space (E,| - ||) into itself and C(R,L(E)) is the space of continuous
mappings from R into L(E). We refer to [15] and [18] for the definitions of spaces
D(R), £(R), S(R), their strong duals S'(E) = L(S(R), E) and to [20] for the space
Sy ={g; [tFo(t)] < Cpu,t € [0,00),k,v € No} (Ng = NU{0}) and its dual S,
which consists of tempered distributions supported by [0, 00).

The space of exponentially decreasing test functions on the real line R is defined
by K1(R) = {g; |e"to™)(t)] < Ckyt € Rk, v € No} ([3]). This space has the
same topological properties as S(R). The space K1 (R?) is defined in an appropriate
way. The strong dual of K1 (R), K1 (R) is the sapce of exponential distributions.
The space K], C Kj(R) consists of distributions which are supported by [0, 00).
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It is the dual space to K14 = {¢; |eFI1lp) ()] < Ok, t € [0,00), k,v € Ny} which
has the same topological properties as S;.. Note,

f € Ki(R) if and only if e~/ f € §'(R) for some r € R.. (1)

The space K} (E) consists of continuous linear mappings S : K1 — E with the
strong topology. Similarly K, (E) is defined; we have K}, (E) C K{(E).

The convolution of f € K} (E) and g € K|, is defined by (f*g,¢) =
(f,gxp), ¢ € K1(R) (g(t) = g(—t)). One can prove easily that fxg=g=* f €
K1, (E).

Let T': [0,00) — L(E) be strongly continuous. Then it is exponentially bound-
ed at infinity if there exist M > 0 and w > 0 such that

IT(1)] < Me',  t>0. (2)

In this case ¢ — [~ T(t)p(t) dt, ¢ € K1(R), defines an element of K, (L(E)).
The structure of K}, (L(E)) is given in the following theorem.

THEOREM 1. [9] Let S € K| (L(E)).

a) There exists ng € N such that for every n > ng there exist a strongly
continuous function F,: R — L(E), supp F,, C [0,00) and positive constants m,
and C,, such that

IE, ()] < Cpe™t, t>0,8=F"™ (" is the distributional n-th derivative).

b) Let S € K1, (L(E)) and ¥, € K1 (R). Then
(S0 (5(5,2), ) 0) = [ Fog (1 Foy (5,000 ()™ 1) dsdr. (3

c) Let o(t,s) € K1(R?) and ¢, (t), 1,(s) be sequences in D(R) such that the
product sequence ,(t) - V() (s) converges to ©(t,s) in Ki(R?) as v — co. Then
the limit

Jim (S(t(S(5.2), 6, (5))), 20 (8)

exists and defines an element of K} (R?) which we denote by S(t,S(s,x)), i.e.
(S(t,S(s,2)),0(t,5)) = lim (S(t,{S(s,2),%(5)), 00 (t)), »€Ki(R). (4)

d) Also, for p € K1(R?) and r,p € N, we have

@) (GS 5oty = (<17 (S50, groolt.s))

<S <t7 %S(sw)) ,w(t78)>

(<17 (560,56, grzeltns) )

(i) { FSESEohe(t)
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As in the case of ordinary distributions (1) we have
f € K, (L(E)) if and only if e~"1* f € S’ (L(E)) for some r > 0. (5)
The Laplace transformation of an f satisfying (5) is defined by

LX) = ) = (f(B),en(t)), Red>r,

where n € C*°(R), suppn = [—£,00), ¢ > 0 and = 1 on [0,00). This definition
does not depend on 5 (cf. [20]). If f € L*([0,00), E) (which means || [~ f(t) dt||p <
00), then

~

f) = /oo e M) dt = (f(t),e™™),  Rel >0,

0
where the integral is taken in Bochner’s sense.

2. a-times integrated semigroup

Let T: (0,00) — L(E) be strongly continuous, integrable in a neighborhood
of 0 (i.e. integrable on (0, =) for some £ > 0) and exponentially bounded at infinity,
which means that (2) holds on (£,00) for some ¢ > 0. The operator R: {\ € C:
Re A > w} — L(E) defined by

R()\):/ e MT(t)dt, Rel>w,
0

where the integral is understood in Bochner’s sense, is the Laplace transformation
of T.

The family R(\) = [;* e T(t)dt, Re A > w, where T': [0,00) — L(E) is a
strongly continuous and exponentially bounded function, is a pseudoresolvent iff
Tt)T(s) = T(t+s), t,s > 0. Let « > 0 and S: (0,00) — L(E) be strongly
continuous, integrable in a neighborhood of 0, exponentially bounded at infinity
and

R(\) = )\0‘/ e MS(t)dt, RA > w.
0

Then (R(A))Rre a>w is a pseudoresolvent iff

t+s S
S(t)S(s) = ﬁ /t (t+s—7)*"tS(r)dr —/0 (t+s—7)*"tS(r)dr|, t,s>0
(6)
(ct. [2], [10]).
Recall,
H(t)tet
fat) = T(a) teR,a>0, )
fo(ffn, teR,a<0,a+n>0,n€N,

(H is Heaviside’s function).
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THEOREM 2. Let @ € R, S, € Ki, (L(E)) and R(\) = A\*L(S4)(\). Then
(R(A)Re A>w 05 a pseudoresolvent iff there exists ng € N such that ng +a > 0 and
Snotalt,') = (Sa * fne)t, 1), t20,

is continuous, supp Sny+a C [0,00) and satisfies

(Salts Sals,2)), @(0E(5) = ((Snyra (b Sngta(5,2) 7)o (B)(s))
t+s
= <ﬁ</t (t+s—r)mote=ts, o (r,z)dr—

ng + «

(no,no)

B / (t +s5— T)no+a715n0+a(rv JJ) dr)
0

for every o, € K1(R).
Moreover, (8) holds with Spi1a = Sa * fn, for every n = ng

,@<t>w<s>> ®)

REMARK. [9] If @ =0, then (8) is equivalent to
<50(t7 50(87 JJ)), ‘p(tv 5)) = <50(t + s, I)v 99(t7 S)> y PE Kl(RQ)
Proof. We have S, = S\") _ Let z € E. Relation (8) implies

nota-

(Salt, Sa(s,))) = (Sng+alt; Sng+als, x)))(novno) —

(t)H( ) +e no+a—1 rT r—
(F(’I’Lo-i— ) / (t-l—S—’l“) + Sno+a(7 )d

(no,my)

/Os(t +s—r)ytetg () dr] ) . (9)

t,s > 0, in the distributional sense. Since both sides are supported by [0, 00) X
[0, 00), it follows that

(Sa(t7 Sa(S,SC))) = Sn0+a(t7 Sn0+a(svx)) =

1 e ng+a—
F(n0+a) /t (t-l—S—’l‘) ot 1Sn()+a(’l’,$)d’l’—

/ (t+s5 =)t 8, La(r, ) dr
0

holds true for every t,s > 0. Thus, R(\, ) = N *L(S,,,+4)(A, *) is a pseudoresol-
vent. Let n > ng. Since Sp1q = SZO;LO?H no)? it follows that (8) holds for every
n>=>ny m

DEFINITION 1. Let (S(t)):>0 be a strongly continuous exponentially bounded
family in L(E) and a > 0. Then it is called an a-times integrated semigroup if (6)
is satisfied and S(0) = 0 ([10]).

Let So € K{,(L(E)) and o € R™. Then, S, is called an a-times integrated
semigroup if there exists ng € N, such that ng + a > 0, Sypyta = Sa * fo, 1S
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continuous on R, supported by [0, 00), exponentially bounded and satisfies (8). This
is equivalent to say that, for some ny and every n > ng, it is an n-th distributional
derivative of an n 4+ a-times integrated semigroup.

We will use the symbol (S(¢))i>0 or (Sa(t))i>o for an a-times integrated semi-
group if it is not specified whether @ > 0 or a < 0, although for a@ < 0 it is an
element of K, (L(E)) and the above expression is formal.

DEFINITION 2. Let a > 0. Then, (S(t)):>0 with the above properties is called
non-degenerate if S(t)x = 0 for all ¢ > 0, implies z = 0 ([10]). Let a < 0. Then
S € K1, (L(E)) is called non-degenerate if (S(t,),p(t)) = 0 for all ¢ € K; implies
rz=0.

Note, Cyp-semigroup is a O-integrated semigroup ([9]). Also, if (S(¢))i>o is
an n-times integrated semigroup, then n-th distributional derivative S(™) is a 0-
integrated semigroup.

DEFINITION 3. Let a € R. An operator A is the generator of an a-times
integrated semigroup (S(¢))¢>o0 if (a,00) C p(A) for some a € R and the function

-1
L W aA)

mation is understood in ordinary sense for a > 0 and in distributional sense for
a < 0.

= L(S+)(A), ReX > a, is injective, where the Laplace transfor-

Part b) of Theorem 1 and the above definition directly imply the next Propo-
sition.

PROPOSITION 1. a) Let Sy, a € R be an a-times integrated semigroup. Then
Sa * f_o is a O-integrated semigroup.
b) Let a < 0. Then A is the generator of an a-times integrated semigroup So

iff A is the generator of a O-integrated semigroup Sq * f—q.

3. The properties of A

Let A be the generator of an a-times integrated semigroup (S(t))i>o0, @ > 0.
Recall ([2], [10]), for all x € D(A) and t > 0, S(t)xr € D(A), AS(t)r = S(t)Ax,

S(t)r = ﬁx + fot S(s)Ax ds. Moreover, fot S(s)xdxr € D(A) for all x € E,
t >0 and
t e

THEOREM 3. Let a € R~ and A be a generator of an a-times integrated
semigroup (S(t))i>0, S € K1, (L(E)). Then, for all p € Ky, we have

a) A{S(t,x),p(t)) = (S(t, Ax), p(t)) for every x € D(A).
b) (S(t,xz),¢(t)) € D(A) for every x € E.
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C) <S(t,x),<p(t)> = (fa+1(t,x),<p(t)> + <(f1 * 5)(757143?)790(’5))7 T € D(A) and
A<(f1 * 5)(7573?)790(‘5)) = <S(t,x),<p(t)> - (fa+1(t7x)790(t)> y TE E. (10)

REMARK. if @ = —1, then (10) with S = S_;, implies
A((fr* S-1)(t,@), () = (S—1(t, ), () — (6(t,2), (1)),

ie.
A(So(t,2), (1)) = (So(t,2), &' (1)) — (0)x, x € E,p €Ky
We will use also the notation A (S(¢,z),o(t)) = (AS(t, ), o(t)).
Proof. We will also use notation S, for S. Let ¢ € D(R) and « € D(A). Then

(Sa(tvx)v(p(t» = (_1)n0 <Sn0+a(tvx)7 so("())(t)> , noto> O,Tlo eN
and Proposition 3.3 in [2] implies Spo4a(t,2) € D(A) and AS, +q(t,x) =
Sno+al(t, Az). This and the continuity of A imply
A(Sa(t,2),0(1) = (=1)™ A (Sngsalt,z), o)1)}

= (—1)(n°)A/5no+a(t7w)90(”°)(t)dt (=1)"A lim Z Snotalty, @)™ (t;)At;

IJ—)OO

= (=1)" lim E ASnyralty, 2)p(™) (t;) At

l/—)OO

= (-1 <A5n0+a<t,x>,¢<no><t>> = (Salt, Av),¢(t)), € E,peD,

where (25:1 Sporalti,r)p™)(t;)At;) is a sequence of integral sums for

f Sn()+a(tv I)@(no)(t) dt.
Let ¢ € K1 and ¢, be a sequence in D which converges to ¢ in 1. Then

A(S(t),p(h) = lim (S(tAx), 0 (0) = (S(t, An).o(0).

This implies the assertion.
b) Proposition 3.3 in [2] implies fot Sno(s,2)ds € D(A) for every ¢ € E.
Thus, <f0t S’m,(s,x)ds,go(t)> € D(A) for every ¢ € K; and € E. We know that

(Snotaso(t)) € D(A) for every ¢ € K. By putting (™) instead of ¢, we obtain
(S(-,x), ) € D(A) for every ¢ € K;.

c¢) Similarly, using Proposition 3.3 in [2], we obtain
(Salt, ), p(0)) = (1) (Suyralt, ), o™ (1))
= (_1)(710) <f”0+04+1(t7x)7@(no)(t)> + (_ )n(] <(f1 * Sn()+04)(t Al‘) (no)(t)>

= (fari(t:2),0(0) + ((f+ ST AD), (1))
= <fa+1(t,1') (t)> <( 1 *Sa)(thx)ﬁp(t))v T e D(A),QD eKlv
which gives the first assertion.
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Again by using the quoted Proposition 3.3 in [2], it follows
A((fr 5 Sa)(t2), (1)) = (1)) (A(f % St (b,2), 00 (1))
= (1)) (Snpralt,?), 0" (1)) = (=™ (fayrara(t;2), 0™ (1)
= (S (b2)2() = ok (8,2),0(8) = (Salts ), 2(D) = (fara(t:2), (1))

which gives (10). m

Arendt ([2]) has obtained the characterization of a generator A of an (n + 1)-
times integrated semigroup (S(t))i>0, n € N if A is a non-densely defined linear
operator.

THEOREM 4. Let « e R, w € R, M > 0 and n € N such that « +n > 0 if
a € (—00,0]. If a > 0 we take n = 0.

a) Let A be a (non-densely defined) linear operator on a Banach space E such
that (a,00) C p(A) for some a 2 0 and w € (—o00,a]. The following statements are
equivalent:

(i) A generates an o+ n + 1-times integrated semigroup (S(t))i>o0 satisfying

1
i - - < Me*? > 0.
}lllfrésuthS(t-{—h) S| < Me**, t>0

(ii)

1 (R(A,A))W

kt1
1
7\ atn <M< ) , for all Re X > a, k € Ny.

A—w

b) If A satisfies the equivalent conditions of (a), then the part of A on D(A)
is the generator of an (a + n)-times integrated semigroup.

¢) Let A in (a) be a densely defined linear operator. Then (i) in (a) is equiv-
alent with the following condition:

A generates an (a+n)-times integrated semigroup (S(t))e>o0 satisfying ||S(t)]] <
Me*t, t > 0.

REMARK. The case @ = 0 in Theorem 2c) is the Hille-Yosida theorem.

COROLLARY 1. Let a <0 and a+n > 0. If a densely defined linear operator
A generates an («a + n)-times integrated semigroup, then its adjoint A* generates
an (o +n + 1)-times integrated semigroup.

This directly follows from Theorem 4 since R(A, A)* = R(\, A*) for A real.

4. Relations with distributional semigroup

We follow the definition of an exponentially bounded distributional semigroup,
SGDE, given in [7], Definition 6.1. Note, instead of S(R), we use the space K;(R)
(cf. [9]). As in [7], we put Dy = {p € C§°; suppp € [0,00)}.
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If (T'(t))e>0 is a Co-semigroup and S, = T * fo, a € R then we define
Sa(p, ) = (Sal(, ) x 9)(0) = (T * fal,2)) x£)(0), z€E,peky.  (11)
One can show that S, is an a-times integrated semigroup.

THEOREM 5. Let (So(t))i>0, @ € R, be an a-times integrated semigroup.
Assume that its infinitesimal generator A is densely defined. Then,

Sa(@, 1) = (Sa ¥ 9)(0)(x), @ €Ky, (12)
defines an element of Ky, (L(E)) which is an SGDE iff a = 0.

Proof. Let (S(t))i>0 be an SGDE. As it was remarked by Arendt, Theorem
4.3 in [2] and Theorem 3.2 in [13] imply that there exists an n-times integrated
semigroup (S, (t))t>0, » € R such that

S(e,a) = (S(t,2),0(0)) = (S (,0) +$)(0),  wEDaeE.

This implies S,(L") = S, % fo, = Sy, where S is a O-integrated semigroup equal
to S.

Now we will prove that for @« € R\ {0}, (12) does not define an SGDE. If
it happened for some o € R\ {0}, then (S4(¢))¢>0 and ((Sa * f—a)(t))i>0 would
determine different SGDE’s which is impossible by the uniqueness of an SGDE with
the given infinitesimal generator A. m

Let A be an operator on E and T' € K, (E). Then u € K, (F) is a solution
to
u =Au+T in K} (E) (13)

if (u(t),o(t)) € D(A) for every p € K1(R) and (13) holds.

Let (So(t))i>0 be a O-integrated semigroup with an infinitesimal generator
which is not necessarily densely defined. We recall: if for some z € E

So(p,x) = /Sg(t,x)go(t) dt =0 for every p € Dy, (14)

then z = 0.

As in [7], we extend (So(£))i>0 on T € E'(R), suppT C [0,00) by using o-
sequences {p, } in Dy, (p, — 8): So(T,x) = lim, o So(T"*p.,x) for those z € E for
which this limit exists. Because of (14), we can define the closure of So(7’,-) which
will be denoted by Sy(T',-). Theorem 4b) implies that a O-integrated semigroup has
the same properties as an SGDE except the set {Sy(¢,z); ¢ € Do,z € E} is dense
in E (cf. [7]).

Let U € K1 (L(E,D(A))), V € K1 (L(D(A),E)) and suppU C [a,0),
suppV C [b,0), a,b € R. Then U*V and V*U are defined as in [15]. More-
over, they are elements of K} (L(D(A))) and K} (L(E)), respectively, and their
supports are bounded from the left by a + b.
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THEOREM 6. Let € R™ and S, € K, be an a-times integrated semigroup
with the infinitesimal generator A, such that S, * f_, be a O-integrated semigroup.
Then

9 0
(J,) (—A+ a) * Sy = fa ®Imy So * <_A+ a) = fa ®ID(A)’ where

9
A+ 2 = @A+ 1.
+g =004+ ®

b) Let T € K\ (L(D(A))). Then uw = Sy * f_o x T is the unique solution of
(13).

Proof. a) Put S = S, * f_o. Then, as in [7] Theorem 4.1, one can prove
0
—A+a *50:6®Iﬁ. (15)

Since D(A) is not dense in E, in general, we apply both sides of (15) on z € D(A).
Then, by making convolution with f, we obtain the first assertion of a). In a
similar way we prove the second one.

b) This simply follows from a).

THEOREM 7. Let A be an infinitesimal generator of an a-times integrated
semigroup (Sa(t))ez0, @« € R™. Then So * f_o determines an SGDE with the

infinitesimal generator A on Ey x Ky, where Ey = {So(¢,2); ¢ € Do,z € E} and

0

0
(-A'}‘a)*sa:fa@IEo? Sa*(_A'f‘a):fa@ID(A)ﬂEo

Let T € K[ (Ey). Then u = So % f_q T is the unique solution of (13).
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