α -TIMES INTEGRATED SEMIGROUPS ($\alpha \in \mathbb{R}^-$)

Milorad Mijatović and Stevan Pilipović

Abstract. The α -times integrated semigroups, $\alpha \in \mathbf{R}^- = (-\infty, 0]$, are introduced and analyzed as extensions of 0-integrated semigroups.

0. Introduction

We introduce and analyze α -times integrated semigroups, $\alpha \in \mathbf{R}^-$. With $\alpha \in \mathbf{N}$ this type of semigroups is extensively investigated in many papers, see for example [1], [2], [4], [5], [6], [11], [17]; for $\alpha > 0$ we refer to [6], [10].

In this paper we apply results concerning 0-integrated semigroups [9] and analyze families of operators on the test space \mathcal{K}_1 with values in L(E, E) which are *n*-th distributional derivatives of α -times integrated semigroup for $\alpha > 0$ sufficiently large and $n > \alpha$.

As an application, we consider the Cauchy problem u' = Au + T, $T \in \mathcal{K}'_1$ in the setting of α -times integrated semigroups $\alpha < 0$.

1. Preliminaries

By L(E) = L(E, E) is denoted the space of bounded linear operators from a Banach space $(E, \|\cdot\|)$ into itself and $C(\mathbf{R}, L(E))$ is the space of continuous mappings from **R** into L(E). We refer to [15] and [18] for the definitions of spaces $\mathcal{D}(\mathbf{R}), \mathcal{E}(\mathbf{R}), \mathcal{S}(\mathbf{R})$, their strong duals $\mathcal{S}'(E) = L(\mathcal{S}(\mathbf{R}), E)$ and to [20] for the space $\mathcal{S}_{+} = \{\varphi; |t^k \varphi^{(\nu)}(t)| < C_{k,\nu}, t \in [0, \infty), k, \nu \in \mathbf{N}_0\}$ ($\mathbf{N}_0 = \mathbf{N} \cup \{0\}$) and its dual \mathcal{S}'_{+} which consists of tempered distributions supported by $[0, \infty)$.

The space of exponentially decreasing test functions on the real line **R** is defined by $\mathcal{K}_1(\mathbf{R}) = \{\varphi; |e^{k|t|}\varphi^{(\nu)}(t)| < C_{k,\nu}, t \in \mathbf{R}, k, \nu \in \mathbf{N}_0\}$ ([3]). This space has the same topological properties as $\mathcal{S}(\mathbf{R})$. The space $\mathcal{K}_1(\mathbf{R}^2)$ is defined in an appropriate way. The strong dual of $\mathcal{K}_1(\mathbf{R}), \mathcal{K}'_1(\mathbf{R})$ is the sapce of exponential distributions. The space $\mathcal{K}'_{1+} \subset \mathcal{K}'_1(\mathbf{R})$ consists of distributions which are supported by $[0, \infty)$.

AMS Subject Classification: 46 F 99

Communicated at the 4th Symposium on Mathematical Analysis and Its Applications, Arandelovac 1997.

It is the dual space to $\mathcal{K}_{1+} = \{\varphi; |e^{k|t|}\varphi^{(\nu)}(t)| < C_{k,\nu}, t \in [0,\infty), k, \nu \in \mathbf{N}_0\}$ which has the same topological properties as \mathcal{S}_+ . Note,

$$f \in \mathcal{K}'_1(\mathbf{R})$$
 if and only if $e^{-r|x|} f \in \mathcal{S}'(\mathbf{R})$ for some $r \in \mathbf{R}$. (1)

The space $\mathcal{K}'_1(E)$ consists of continuous linear mappings $S : \mathcal{K}_1 \to E$ with the strong topology. Similarly $\mathcal{K}'_{1+}(E)$ is defined; we have $\mathcal{K}'_{1+}(E) \subset \mathcal{K}'_1(E)$.

The convolution of $f \in \mathcal{K}'_{1+}(E)$ and $g \in \mathcal{K}'_{1+}$ is defined by $\langle f * g, \varphi \rangle = \langle f, \check{g} * \varphi \rangle, \varphi \in \mathcal{K}_1(\mathbf{R}) \ (\check{g}(t) = g(-t))$. One can prove easily that $f * g = g * f \in \mathcal{K}'_{1+}(E)$.

Let $T: [0, \infty) \to L(E)$ be strongly continuous. Then it is exponentially bounded at infinity if there exist $M \ge 0$ and $\omega \ge 0$ such that

$$||T(t)|| \leqslant M e^{\omega t}, \qquad t \ge 0.$$
⁽²⁾

In this case $\varphi \mapsto \int_0^\infty T(t)\varphi(t) dt$, $\varphi \in \mathcal{K}_1(\mathbf{R})$, defines an element of $\mathcal{K}'_{1+}(L(E))$. The structure of $\mathcal{K}'_{1+}(L(E))$ is given in the following theorem.

THEOREM 1. [9] Let $S \in \mathcal{K}'_{1+}(L(E))$.

a) There exists $n_0 \in \mathbf{N}$ such that for every $n \ge n_0$ there exist a strongly continuous function $F_n \colon \mathbf{R} \to L(E)$, supp $F_n \subset [0, \infty)$ and positive constants m_n and C_n , such that

$\|F_n(t)\| \leqslant C_n e^{m_n t}, \quad t \geqslant 0, \ S = F_n^{(n)} \quad (^{(n)} \text{ is the distributional n-th derivative}).$

b) Let $S \in \mathcal{K}'_{1+}(L(E))$ and $\psi, \varphi \in \mathcal{K}_1(\mathbf{R})$. Then

$$\langle S(t, \langle S(s, x), \psi(s) \rangle), \varphi(t) \rangle = \int F_{n_0}(t, F_{n_0}(s, x)) \psi^{(n_0)}(s) \varphi^{(n_0)}(t) \, ds \, dt.$$
(3)

c) Let $\varphi(t,s) \in \mathcal{K}_1(\mathbf{R}^2)$ and $\varphi_{\nu}(t)$, $\psi_{\nu}(s)$ be sequences in $\mathcal{D}(\mathbf{R})$ such that the product sequence $\varphi_{\nu}(t) \cdot \psi_{(\nu)}(s)$ converges to $\varphi(t,s)$ in $\mathcal{K}_1(\mathbf{R}^2)$ as $\nu \to \infty$. Then the limit

$$\lim_{\nu \to \infty} \langle S(t, \langle S(s, x), \psi_{\nu}(s) \rangle), \varphi_{\nu}(t) \rangle$$

exists and defines an element of $\mathcal{K}'_1(\mathbf{R}^2)$ which we denote by S(t, S(s, x)), i.e.

$$\langle S(t, S(s, x)), \varphi(t, s) \rangle = \lim_{\nu \to \infty} \langle S(t, \langle S(s, x), \psi_{\nu}(s) \rangle), \varphi_{\nu}(t) \rangle, \quad \varphi \in \mathcal{K}_1(\mathbf{R}^2).$$
(4)

d) Also, for $\varphi \in \mathcal{K}_1(\mathbf{R}^2)$ and $r, p \in \mathbf{N}$, we have

$$\begin{array}{ll} (i) & \left\langle \frac{\partial^r}{\partial t^r} S(t, S(s, x)), \varphi(t, s) \right\rangle = (-1)^r \left\langle S(t, S(s, x)), \frac{\partial^r}{\partial t^r} \varphi(t, s) \right\rangle; \\ (ii) & \left\langle \frac{\partial^p}{\partial s^p} S(t, S(s, x)), \varphi(t, s) \right\rangle = \left\langle S \left(t, \frac{\partial^p}{\partial s^p} S(s, x) \right), \varphi(t, s) \right\rangle \\ & = (-1)^p \left\langle S(t, S(s, x)), \frac{\partial^p}{\partial s^p} \varphi(t, s) \right\rangle. \end{array}$$

As in the case of ordinary distributions (1) we have

$$f \in \mathcal{K}'_{1+}(L(E))$$
 if and only if $e^{-r|x|} f \in \mathcal{S}'_{+}(L(E))$ for some $r \ge 0$. (5)

The Laplace transformation of an f satisfying (5) is defined by

$$\mathcal{L}(f)(\lambda) = \hat{f}(\lambda) = \langle f(t), e^{-\lambda t} \eta(t) \rangle, \quad \operatorname{Re} \lambda > r,$$

where $\eta \in C^{\infty}(\mathbf{R})$, supp $\eta = [-\varepsilon, \infty)$, $\varepsilon > 0$ and $\eta \equiv 1$ on $[0, \infty)$. This definition does not depend on η (cf. [20]). If $f \in L^1([0, \infty), E)$ (which means $\| \int_0^{\infty} f(t) dt \|_E < \infty$), then

$$\hat{f}(\lambda) = \int_0^\infty e^{-\lambda t} f(t) dt = \langle f(t), e^{-\lambda t} \rangle, \qquad \text{Re}\,\lambda > 0$$

where the integral is taken in Bochner's sense.

2. α -times integrated semigroup

Let $T: (0, \infty) \to L(E)$ be strongly continuous, integrable in a neighborhood of 0 (i.e. integrable on $(0, \varepsilon)$ for some $\varepsilon > 0$) and exponentially bounded at infinity, which means that (2) holds on (ε, ∞) for some $\varepsilon > 0$. The operator $R: \{\lambda \in \mathbf{C} :$ $\operatorname{Re} \lambda > \omega\} \to L(E)$ defined by

$$R(\lambda) = \int_0^\infty e^{-\lambda t} T(t) \, dt, \qquad \operatorname{Re} \lambda > \omega,$$

where the integral is understood in Bochner's sense, is the Laplace transformation of T.

The family $R(\lambda) = \int_0^\infty e^{-\lambda t} T(t) dt$, $\operatorname{Re} \lambda > \omega$, where $T \colon [0, \infty) \to L(E)$ is a strongly continuous and exponentially bounded function, is a pseudoresolvent iff $T(t)T(s) = T(t+s), t, s \ge 0$. Let $\alpha > 0$ and $S \colon (0, \infty) \to L(E)$ be strongly continuous, integrable in a neighborhood of 0, exponentially bounded at infinity and

$$R(\lambda) = \lambda^{\alpha} \int_0^{\infty} e^{-\lambda t} S(t) \, dt, \qquad \Re \lambda > \omega.$$

Then $(R(\lambda))_{\operatorname{Re}\lambda>\omega}$ is a pseudoresolvent iff

$$S(t)S(s) = \frac{1}{\Gamma(\alpha)} \left[\int_{t}^{t+s} (t+s-r)^{\alpha-1} S(r) \, dr - \int_{0}^{s} (t+s-r)^{\alpha-1} S(r) \, dr \right], \quad t,s \ge 0$$
(6)

(cf. [2], [10]).

Recall.

$$f_{\alpha}(t) = \begin{cases} \frac{H(t)t^{\alpha-1}}{\Gamma(\alpha)}, & t \in \mathbf{R}, \alpha > 0, \\ f_{\alpha+n}^{(n)}, & t \in \mathbf{R}, \alpha \leqslant 0, \alpha+n > 0, n \in \mathbf{N}, \end{cases}$$
(7)

(H is Heaviside's function).

THEOREM 2. Let $\alpha \in \mathbf{R}^-$, $S_\alpha \in \mathcal{K}'_{1+}(L(E))$ and $R(\lambda) = \lambda^{\alpha} \mathcal{L}(S_\alpha)(\lambda)$. Then $(R(\lambda))_{\operatorname{Re}\lambda > \omega}$ is a pseudoresolvent iff there exists $n_0 \in \mathbf{N}$ such that $n_0 + \alpha > 0$ and

$$S_{n_0+\alpha}(t,\cdot) = (S_{\alpha} * f_{n_0})(t,\cdot), \quad t \ge 0,$$

is continuous, supp $S_{n_0+\alpha} \subset [0,\infty)$ and satisfies

$$\langle S_{\alpha}(t, S_{\alpha}(s, x)), \varphi(t)\psi(s) \rangle = \left\langle (S_{n_{0}+\alpha}(t, S_{n_{0}+\alpha}(s, x)))^{(n_{0}, n_{0})}, \varphi(t)\psi(s) \right\rangle$$

$$= \left\langle \frac{1}{\Gamma(n_{0}+\alpha)} \left(\int_{t}^{t+s} (t+s-r)^{n_{0}+\alpha-1} S_{n_{0}+\alpha}(r, x) dr - \int_{0}^{s} (t+s-r)^{n_{0}+\alpha-1} S_{n_{0}+\alpha}(r, x) dr \right)^{(n_{0}, n_{0})}, \varphi(t)\psi(s) \right\rangle$$
(8)

for every $\varphi, \psi \in \mathcal{K}_1(\mathbf{R})$.

Moreover, (8) holds with $S_{n+\alpha} = S_{\alpha} * f_n$, for every $n \ge n_0$.

REMARK. [9] If $\alpha = 0$, then (8) is equivalent to

$$\langle S_0(t, S_0(s, x)), \varphi(t, s) \rangle = \langle S_0(t + s, x), \varphi(t, s) \rangle, \quad \varphi \in \mathcal{K}_1(\mathbf{R}^2).$$

Proof. We have $S_{\alpha} = S_{n_0+\alpha}^{(n_0)}$. Let $x \in E$. Relation (8) implies

$$(S_{\alpha}(t, S_{\alpha}(s, x))) = (S_{n_{0}+\alpha}(t, S_{n_{0}+\alpha}(s, x)))^{(n_{0}, n_{0})} = \left(\frac{H(t)H(s)}{\Gamma(n_{0}+\alpha)} \left[\int_{t}^{t+s} (t+s-r)^{n_{0}+\alpha-1} S_{n_{0}+\alpha}(r, x) dr - \int_{0}^{s} (t+s-r)^{n_{0}+\alpha-1} S_{n_{0}+\alpha}(r, x) dr \right] \right)^{(n_{0}, n_{1})}, \quad (9)$$

t,s>0, in the distributional sense. Since both sides are supported by $[0,\infty)\times[0,\infty),$ it follows that

$$(S_{\alpha}(t, S_{\alpha}(s, x))) = S_{n_{0}+\alpha}(t, S_{n_{0}+\alpha}(s, x)) = \frac{1}{\Gamma(n_{0}+\alpha)} \left[\int_{t}^{t+s} (t+s-r)^{n_{0}+\alpha-1} S_{n_{0}+\alpha}(r, x) dr - \int_{0}^{s} (t+s-r)^{n_{0}+\alpha-1} S_{n_{0}+\alpha}(r, x) dr \right]$$

holds true for every $t, s \ge 0$. Thus, $R(\lambda, \cdot) = \lambda^{n_0+\alpha} \mathcal{L}(S_{n_0+\alpha})(\lambda, \cdot)$ is a pseudoresolvent. Let $n \ge n_0$. Since $S_{n+\alpha} = S_{n_0+\alpha+(n-n_0)}^{n-n_0}$, it follows that (8) holds for every $n \ge n_0$.

DEFINITION 1. Let $(S(t))_{t\geq 0}$ be a strongly continuous exponentially bounded family in L(E) and $\alpha > 0$. Then it is called an α -times integrated semigroup if (6) is satisfied and S(0) = 0 ([10]).

Let $S_{\alpha} \in \mathcal{K}'_{1+}(L(E))$ and $\alpha \in \mathbf{R}^-$. Then, S_{α} is called an α -times integrated semigroup if there exists $n_0 \in \mathbf{N}$, such that $n_0 + \alpha > 0$, $S_{n_0+\alpha} = S_{\alpha} * f_{n_0}$ is

continuous on **R**, supported by $[0, \infty)$, exponentially bounded and satisfies (8). This is equivalent to say that, for some n_0 and every $n \ge n_0$, it is an *n*-th distributional derivative of an $n + \alpha$ -times integrated semigroup.

We will use the symbol $(S(t))_{t\geq 0}$ or $(S_{\alpha}(t))_{t\geq 0}$ for an α -times integrated semigroup if it is not specified whether $\alpha > 0$ or $\alpha \leq 0$, although for $\alpha \leq 0$ it is an element of $\mathcal{K}'_{1+}(L(E))$ and the above expression is formal.

DEFINITION 2. Let $\alpha > 0$. Then, $(S(t))_{t \ge 0}$ with the above properties is called non-degenerate if S(t)x = 0 for all $t \ge 0$, implies x = 0 ([10]). Let $\alpha \le 0$. Then $S \in \mathcal{K}'_{1+}(L(E))$ is called non-degenerate if $\langle S(t, x), \varphi(t) \rangle = 0$ for all $\varphi \in \mathcal{K}_1$ implies x = 0.

Note, C_0 -semigroup is a 0-integrated semigroup ([9]). Also, if $(S(t))_{t\geq 0}$ is an *n*-times integrated semigroup, then *n*-th distributional derivative $S^{(n)}$ is a 0-integrated semigroup.

DEFINITION 3. Let $\alpha \in \mathbf{R}$. An operator A is the generator of an α -times integrated semigroup $(S(t))_{t \ge 0}$ iff $(a, \infty) \subset \rho(A)$ for some $a \in \mathbf{R}$ and the function $\lambda \mapsto \frac{(\lambda I - A)^{-1}}{\lambda^{\alpha}} = \mathcal{L}(S_{\alpha})(\lambda)$, $\operatorname{Re} \lambda > a$, is injective, where the Laplace transformation is understood in ordinary sense for $\alpha > 0$ and in distributional sense for $\alpha \le 0$.

Part b) of Theorem 1 and the above definition directly imply the next Proposition.

PROPOSITION 1. a) Let S_{α} , $\alpha \in \mathbf{R}$ be an α -times integrated semigroup. Then $S_{\alpha} * f_{-\alpha}$ is a 0-integrated semigroup.

b) Let $\alpha < 0$. Then A is the generator of an α -times integrated semigroup S_{α} iff A is the generator of a 0-integrated semigroup $S_{\alpha} * f_{-\alpha}$.

3. The properties of A

Let A be the generator of an α -times integrated semigroup $(S(t))_{t \ge 0}, \alpha > 0$. Recall ([2], [10]), for all $x \in D(A)$ and $t \ge 0$, $S(t)x \in D(A)$, AS(t)x = S(t)Ax, $S(t)x = \frac{t^{\alpha}}{\Gamma(\alpha+1)}x + \int_0^t S(s)Ax\,ds$. Moreover, $\int_0^t S(s)x\,dx \in D(A)$ for all $x \in E$, $t \ge 0$ and

$$A \int_0^t S(s)x \, ds = S(t)x - \frac{t^{\alpha}}{\Gamma(\alpha+1)}x$$

THEOREM 3. Let $\alpha \in \mathbf{R}^-$ and A be a generator of an α -times integrated semigroup $(S(t))_{t\geq 0}$, $S \in \mathcal{K}'_{1+}(L(E))$. Then, for all $\varphi \in \mathcal{K}_1$, we have

a) $A \langle S(t, x), \varphi(t) \rangle = \langle S(t, Ax), \varphi(t) \rangle$ for every $x \in D(A)$.

b) $\langle S(t,x), \varphi(t) \rangle \in D(A)$ for every $x \in E$.

M. Mijatović, S. Pilipović

$$c) \langle S(t,x),\varphi(t) \rangle = \langle f_{\alpha+1}(t,x),\varphi(t) \rangle + \langle (f_1 * S)(t,Ax),\varphi(t) \rangle, x \in D(A) \text{ and} \\ A \langle (f_1 * S)(t,x),\varphi(t) \rangle = \langle S(t,x),\varphi(t) \rangle - \langle f_{\alpha+1}(t,x),\varphi(t) \rangle, x \in E.$$
(10)

REMARK. if $\alpha = -1$, then (10) with $S = S_{-1}$, implies

$$A\left\langle (f_1 * S_{-1})(t, x), \varphi(t) \right\rangle = \left\langle S_{-1}(t, x), \varphi(t) \right\rangle - \left\langle \delta(t, x), \varphi(t) \right\rangle,$$

i.e.

$$A \langle S_0(t,x), \varphi(t) \rangle = \langle S_0(t,x), \varphi'(t) \rangle - \varphi(0)x, \quad x \in E, \varphi \in \mathcal{K}_1.$$

We will use also the notation $A \langle S(t, x), \varphi(t) \rangle = \langle AS(t, x), \varphi(t) \rangle$.

Proof. We will also use notation S_{α} for S. Let $\varphi \in \mathcal{D}(\mathbf{R})$ and $x \in D(A)$. Then

$$\left\langle S_{\alpha}(t,x),\varphi(t)\right\rangle = (-1)^{n_0} \left\langle S_{n_0+\alpha}(t,x),\varphi^{(n_0)}(t)\right\rangle, \quad n_0+\alpha > 0, n_0 \in \mathbf{N}$$

and Proposition 3.3 in [2] implies $S_{n_0+\alpha}(t,x) \in D(A)$ and $AS_{n_0+\alpha}(t,x) = S_{n_0+\alpha}(t,Ax)$. This and the continuity of A imply

$$A \left\langle S_{\alpha}(t,x),\varphi(t) \right\rangle = (-1)^{n_{0}} A \left\langle S_{n_{0}+\alpha}(t,x),\varphi^{(n_{0})}(t) \right\rangle$$

= $(-1)^{(n_{0})} A \int S_{n_{0}+\alpha}(t,x)\varphi^{(n_{0})}(t) dt = (-1)^{n_{0}} A \lim_{\nu \to \infty} \sum_{j=1}^{\nu} S_{n_{0}+\alpha}(t_{j},x)\varphi^{(n_{0})}(t_{j})\Delta t_{j}$
= $(-1)^{n_{0}} \lim_{\nu \to \infty} \sum_{j=1}^{\nu} A S_{n_{0}+\alpha}(t_{j},x)\varphi^{(n_{0})}(t_{j})\Delta t_{j}$
= $(-1)^{n_{0}} \left\langle A S_{n_{0}+\alpha}(t,x),\varphi^{(n_{0})}(t) \right\rangle = \left\langle S_{\alpha}(t,Ax),\varphi(t) \right\rangle, \quad x \in E, \varphi \in \mathcal{D},$

where $(\sum_{j=1}^{\nu} S_{n_0+\alpha}(t_j, x)\varphi^{(n_0)}(t_j)\Delta t_j)$ is a sequence of integral sums for $\int S_{n_0+\alpha}(t, x)\varphi^{(n_0)}(t) dt$.

Let $\varphi \in \mathcal{K}_1$ and φ_{ν} be a sequence in \mathcal{D} which converges to φ in \mathcal{K}_1 . Then

$$A \left\langle S(t,x), \varphi(t) \right\rangle = \lim \left\langle S(t,Ax), \varphi_{\nu}(t) \right\rangle = \left\langle S(t,Ax), \varphi(t) \right\rangle.$$

This implies the assertion.

b) Proposition 3.3 in [2] implies $\int_0^t S_{n_0}(s, x) ds \in D(A)$ for every $x \in E$. Thus, $\left\langle \int_0^t S_{n_0}(s, x) ds, \varphi(t) \right\rangle \in D(A)$ for every $\varphi \in \mathcal{K}_1$ and $x \in E$. We know that $\langle S_{n_0+\alpha}, \varphi(t) \rangle \in D(A)$ for every $\varphi \in \mathcal{K}_1$. By putting $\varphi^{(n_0)}$ instead of φ , we obtain $\langle S(\cdot, x), \varphi \rangle \in D(A)$ for every $\varphi \in \mathcal{K}_1$.

c) Similarly, using Proposition 3.3 in [2], we obtain

$$\begin{split} \langle S_{\alpha}(t,x),\varphi(t)\rangle &= (-1)^{n_0} \left\langle S_{n_0+\alpha}(t,x),\varphi^{(n_0)}(t) \right\rangle \\ &= (-1)^{(n_0)} \left\langle f_{n_0+\alpha+1}(t,x),\varphi^{(n_0)}(t) \right\rangle + (-1)^{n_0} \left\langle (f_1 * S_{n_0+\alpha})(t,Ax),\varphi^{(n_0)}(t) \right\rangle \\ &= \left\langle f_{\alpha+1}(t,x),\varphi(t) \right\rangle + \left\langle (f_1 * S_{n_0+\alpha}^{(n_0)})(t,Ax),\varphi(t) \right\rangle \\ &= \left\langle f_{\alpha+1}(t,x),\varphi(t) \right\rangle + \left\langle (f_1 * S_{\alpha})(t,Ax),\varphi(t) \right\rangle, \quad x \in D(A), \varphi \in \mathcal{K}_1, \end{split}$$

which gives the first assertion.

Again by using the quoted Proposition 3.3 in [2], it follows

$$A \left\langle (f_1 * S_{\alpha})(t, x), \varphi(t) \right\rangle = (-1)^{(n_0)} \left\langle A(f_1 * S_{n_0 + \alpha})(t, x), \varphi^{(n_0)}(t) \right\rangle$$

= $(-1)^{(n_0)} \left\langle S_{n_0 + \alpha}(t, x), \varphi^{(n_0)}(t) \right\rangle - (-1)^{n_0} \left\langle f_{n_0 + \alpha + 1}(t, x), \varphi^{(n_0)}(t) \right\rangle$
= $\left\langle S_{n_0 + \alpha}^{(n_0)}(t, x), \varphi(t) \right\rangle - \left\langle f_{\alpha + 1}(t, x), \varphi(t) \right\rangle = \left\langle S_{\alpha}(t, x), \varphi(t) \right\rangle - \left\langle f_{\alpha + 1}(t, x), \varphi(t) \right\rangle$

which gives (10).

Arendt ([2]) has obtained the characterization of a generator A of an (n + 1)times integrated semigroup $(S(t))_{t \ge 0}$, $n \in \mathbb{N}$ if A is a non-densely defined linear operator.

THEOREM 4. Let $\alpha \in \mathbf{R}$, $\omega \in \mathbf{R}$, $M \ge 0$ and $n \in \mathbf{N}$ such that $\alpha + n > 0$ if $\alpha \in (-\infty, 0]$. If $\alpha > 0$ we take n = 0.

a) Let A be a (non-densely defined) linear operator on a Banach space E such that $(a, \infty) \subset \rho(A)$ for some $a \ge 0$ and $\omega \in (-\infty, a]$. The following statements are equivalent:

(i) A generates an $\alpha + n + 1$ -times integrated semigroup $(S(t))_{t \ge 0}$ satisfying

$$\lim_{h \downarrow 0} \sup \frac{1}{h} \|S(t+h) - S(t)\| \leq M e^{\omega t}, \qquad t \ge 0.$$

(*ii*)
$$\left\| \frac{1}{k!} \left(\frac{R(\lambda, A)}{\lambda^{\alpha+n}} \right)^{(k)} \right\| \leq M \left(\frac{1}{\lambda - \omega} \right)^{k+1}$$
, for all $\operatorname{Re} \lambda > a$, $k \in \mathbf{N}_0$.

b) If A satisfies the equivalent conditions of (a), then the part of A on $\overline{D(A)}$ is the generator of an $(\alpha + n)$ -times integrated semigroup.

c) Let A in (a) be a densely defined linear operator. Then (ii) in (a) is equivalent with the following condition:

A generates an $(\alpha+n)$ -times integrated semigroup $(S(t))_{t\geq 0}$ satisfying $||S(t)|| \leq Me^{\omega t}, t \geq 0.$

REMARK. The case $\alpha = 0$ in Theorem 2c) is the Hille-Yosida theorem.

COROLLARY 1. Let $\alpha \leq 0$ and $\alpha + n > 0$. If a densely defined linear operator A generates an $(\alpha + n)$ -times integrated semigroup, then its adjoint A^* generates an $(\alpha + n + 1)$ -times integrated semigroup.

This directly follows from Theorem 4 since $R(\lambda, A)^* = R(\lambda, A^*)$ for λ real.

4. Relations with distributional semigroup

We follow the definition of an exponentially bounded distributional semigroup, SGDE, given in [7], Definition 6.1. Note, instead of $\mathcal{S}(\mathbf{R})$, we use the space $\mathcal{K}_1(\mathbf{R})$ (cf. [9]). As in [7], we put $\mathcal{D}_0 = \{\varphi \in C_0^{\infty}; \text{ supp } \varphi \in [0, \infty)\}.$ If $(T(t))_{t\geq 0}$ is a C_0 -semigroup and $S_{\alpha} = T * f_{\alpha}, \alpha \in \mathbf{R}$ then we define

$$S_{\alpha}(\varphi, x) = (S_{\alpha}(\cdot, x) * \check{\varphi})(0) = ((T * f_{\alpha}(\cdot, x)) * \check{\varphi})(0), \quad x \in E, \varphi \in \mathcal{K}_{1}.$$
(11)

One can show that S_{α} is an α -times integrated semigroup.

THEOREM 5. Let $(S_{\alpha}(t))_{t \ge 0}$, $\alpha \in \mathbf{R}$, be an α -times integrated semigroup. Assume that its infinitesimal generator A is densely defined. Then,

$$S_{\alpha}(\varphi, x) = (S_{\alpha} * \check{\varphi})(0)(x), \qquad \varphi \in \mathcal{K}_{1}, \tag{12}$$

defines an element of $\mathcal{K}'_{1+}(L(E))$ which is an SGDE iff $\alpha = 0$.

Proof. Let $(S(t))_{t\geq 0}$ be an SGDE. As it was remarked by Arendt, Theorem 4.3 in [2] and Theorem 3.2 in [13] imply that there exists an *n*-times integrated semigroup $(S_n(t))_{t\geq 0}$, $n \in \mathbf{R}$ such that

$$S(\varphi, x) = \left\langle S_n^{(n)}(t, x), \varphi(t) \right\rangle = (S_n^{(n)}(\cdot, x) * \check{\varphi})(0), \qquad \varphi \in \mathcal{D}, x \in E.$$

This implies $S_n^{(n)} = S_n * f_{-n} = S_0$, where S_0 is a 0-integrated semigroup equal to S.

Now we will prove that for $\alpha \in \mathbf{R} \setminus \{0\}$, (12) does not define an SGDE. If it happened for some $\alpha \in \mathbf{R} \setminus \{0\}$, then $(S_{\alpha}(t))_{t \geq 0}$ and $((S_{\alpha} * f_{-\alpha})(t))_{t \geq 0}$ would determine different SGDE's which is impossible by the uniqueness of an SGDE with the given infinitesimal generator A.

Let A be an operator on E and $T \in \mathcal{K}'_{1+}(E)$. Then $u \in \mathcal{K}'_{1+}(E)$ is a solution to

$$u' = Au + T \quad \text{in } \mathcal{K}_1'(E) \tag{13}$$

if $\langle u(t), \varphi(t) \rangle \in D(A)$ for every $\varphi \in \mathcal{K}_1(\mathbf{R})$ and (13) holds.

Let $(S_0(t))_{t \ge 0}$ be a 0-integrated semigroup with an infinitesimal generator which is not necessarily densely defined. We recall: if for some $x \in E$

$$S_0(\varphi, x) = \int S_0(t, x)\varphi(t) \, dt = 0 \quad \text{for every } \varphi \in \mathcal{D}_0, \tag{14}$$

then x = 0.

As in [7], we extend $(S_0(t))_{t \ge 0}$ on $T \in \mathcal{E}'(\mathbf{R})$, $\operatorname{supp} T \subset [0, \infty)$ by using δ -sequences $\{\rho_\nu\}$ in $\mathcal{D}_0, (\rho_\nu \to \delta)$: $S_0(T, x) = \lim_{\nu \to \infty} S_0(T^*\rho_\nu, x)$ for those $x \in E$ for which this limit exists. Because of (14), we can define the closure of $S_0(T, \cdot)$ which will be denoted by $\overline{S_0(T, \cdot)}$. Theorem 4b) implies that a 0-integrated semigroup has the same properties as an SGDE except the set $\{S_0(\varphi, x); \varphi \in \mathcal{D}_0, x \in E\}$ is dense in E (cf. [7]).

Let $U \in \mathcal{K}'_{1+}(L(E, D(A)))$, $V \in \mathcal{K}'_{1+}(L(D(A), E))$ and $\operatorname{supp} U \subset [a, \infty)$, $\operatorname{supp} V \subset [b, \infty)$, $a, b \in \mathbf{R}$. Then U^*V and V^*U are defined as in [15]. Moreover, they are elements of $\mathcal{K}'_{1+}(L(D(A)))$ and $\mathcal{K}'_{1+}(L(E))$, respectively, and their supports are bounded from the left by a + b.

THEOREM 6. Let $\alpha \in \mathbf{R}^-$ and $S_{\alpha} \in \mathcal{K}'_{1+}$ be an α -times integrated semigroup with the infinitesimal generator A, such that $S_{\alpha} * f_{-\alpha}$ be a 0-integrated semigroup. Then

a)
$$\left(-A + \frac{\partial}{\partial t}\right) * S_{\alpha} = f_{\alpha} \otimes I_{\overline{D(A)}}, S_{\alpha} * \left(-A + \frac{\partial}{\partial t}\right) = f_{\alpha} \otimes I_{D(A)}, \text{ where}$$

 $-A + \frac{\partial}{\partial t} = -\delta \otimes A + \delta' \otimes I.$
b) Let $T \in \mathcal{K}'_{1}(L(\overline{D(A)})).$ Then $u = S_{\alpha} * f_{-\alpha} * T$ is the unique solution of (13).

Proof. a) Put $S = S_{\alpha} * f_{-\alpha}$. Then, as in [7] Theorem 4.1, one can prove

$$\left(-A + \frac{\partial}{\partial t}\right) * S_0 = \delta \otimes I_{\overline{D(A)}}.$$
(15)

Since D(A) is not dense in E, in general, we apply both sides of (15) on $x \in D(A)$. Then, by making convolution with f_{α} we obtain the first assertion of a). In a similar way we prove the second one.

b) This simply follows from a).

THEOREM 7. Let A be an infinitesimal generator of an α -times integrated semigroup $(S_{\alpha}(t))_{t \geq 0}$, $\alpha \in \mathbf{R}^-$. Then $S_{\alpha} * f_{-\alpha}$ determines an SGDE with the infinitesimal generator A on $E_0 \times \mathcal{K}_1$, where $E_0 = \{S_0(\varphi, x); \varphi \in \mathcal{D}_0, x \in E\}$ and

$$\left(-A+rac{\partial}{\partial t}
ight)*S_{lpha}=f_{lpha}\otimes I_{E_{0}},\quad S_{lpha}*\left(-A+rac{\partial}{\partial t}
ight)=f_{lpha}\otimes I_{D(A)\cap E_{0}}.$$

Let $T \in \mathcal{K}'_{1+}(E_0)$. Then $u = S_{\alpha} * f_{-\alpha} * T$ is the unique solution of (13).

REFERENCES

- Arendt, W., Resolvent positive operators and integrated semigroups, Proc. London Math. Soc. (3) 54 (1987), 321-349.
- [2] Arendt, W., Vector valued Laplace transforms and Cauchy problems, Israel J. Math., 59 (1987), 327-352.
- [3] Hasumi, M., Note on the n-dimensional tempered ultradistributions, Tôhoku Math. J., 13 (1961), 94-104.
- [4] Hieber, M., Integrated semigroups and differential operators on L^p spaces, Math. Ann., 291 (1991), 1-16.
- Hieber, M., L^p spectra of pseudodifferential operators generating integrated semigroups, Trans. Amer. Math. Soc., 347 (1995), 4023-4035.
- [6] Kellermann, H. and Hieber, M., Integrated semigroups, J. Funct. Anal., 84 (1989), 160-180.
- [7] Lions, J. L., Semi-groupes distributions, Portugal. Math., 19 (1960), 141-164.
- [8] Melnikova, I. V. and Alshansky, M. A., Well-posedness of Cauchy problem in a Banach space: regular and degenerate cases, Itogi nauki i tehn., Series Sovr. matem. i ee priloz., Analiz-9/VINITI, 27 (1995), 5-64.
- [9] Mijatović, M. and Pilipović, S., A zero-integrated semigroup, preprint
- [10] Mijatović, M., Pilipović, S. and Vajzović, F., α -times integrated semigroup ($\alpha \in \mathbf{R}^+$), J. Math. Anal. Appl., **210** (1997), 790-803.

M. Mijatović, S. Pilipović

- [11] Neubrander, F., Integrated semigroups and their applications to the abstract Cauchy problem, Pacif. J. Math., 135 (1988), 111-155.
- [12] Oharu, S., Semigroups of linear operators in Banach spaces, Publ. Res. Inst. Math. Sci, 204 (1973), 189-198.
- [13] Sova, M., Problémes de Cauchy paraboliques abstraits de classes supérieurs et les semigroupes distributions, Ricerche Math., 18 (1969), 215-238.
- [14] Schwartz, L., Théorie des distributions, 2 vols, Hermann, Paris 1950-1951.
- [15] Schwartz, L., Théorie des distributions à valeurs vectorielles, Ann. Inst. Fourier, 1-ére partie, 7 (1957), 1-141; 2-éme partie, 8 (1958), 1-207.
- [16] Tanaka, N. and Okazawa, N., Local C-semigroups and local integrated semigroups, Proc. London Math. Soc., (1990), 63-90.
- [17] Thieme, H. R., Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152 (1990), 416-447.
- [18] Treves, F., Topological Vector Spaces, Distributions and Kernels, Acad. Press, New York 1967.
- [19] Ushijama, T., Some properties of regular distribution semigroups, Proc. Japan Acad., 45 (1969), 224-227.
- [20] Vladimirov, V. S., Generalized Functions in Mathematical Physics, Mir, Moscow 1979.

(received 02.09.1997.)

Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia