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RECENT RESULTS IN THE THEORY OF

MATRIX TRANSFORMATIONS IN SEQUENCE SPACES

Eberhard Malkowsky

Abstract. In this paper we give a survey of recent results in the theory of matrix trans-
fomrations between sequence spaces. We shall deal with sequence spaces that are closely related
to various concepts of summability, study their topological structures, �nd their Schauder-bases
and determine their �-duals. Further we give necessary and su�cient conditions for matrix trans-
formations between them.

1. Introduction and well-known results

We shall write ! for the set of all complex sequences x = (xk)
1
k=0 and �, l1,

c and c0 for the sets of all �nite, bounded, convergent sequences and sequences
convergent to naught, respectively; and �nally, for 1 6 p < 1, lp = fx 2 ! :P1

k=0 jxk j
p <1g.

By e and e(n) (n = 0; 1; . . . ) we denote the sequences such that ek = 1 for

k = 0, 1, . . . , and e
(n)
n = 1 and e

(n)
k = 0 for k 6= n.

A BK space is a Banach sequence space with continuous coordinates. A se-
quence (bn)

1
n=0 in a linear metric space X is called a (Schauder-) basis if for each

x 2 X there exists a unique sequence (�n)
1
n=0 of scalars such that x =

P1
n=0 �nbn.

A BK spaces X � � is said to have AK if every x = (xk)
1
k=0 2 X has a unique

representation x =
P1

n=0 xne
(n).

Let A = (ank)
1
n;k=0 be a in�nite matrix of complex numbers, x 2 ! and

1 6 p <1. Then we shall write

An(x) =
1P
k=0

ankxk; An(jxjp) =
1P
k=0

ankjxkjp (n = 0; 1; . . . );

A(x) = (An(x))
1
n=0 and A(jxjp) = (An(jxj

p))1n=0:
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188 E. Malkowsky

For any subset X of !, we de�ne the sets

XA = fx 2 ! : A(x) 2 X g and X[A]p = fx 2 ! : A(jxjp) 2 X g:

If p = 1, then we omit the index p, i.e. we write X[A] = A[A]1 for short. For
instance, if E is the matrix de�ned by enk = 1 (0 6 k 6 n) and enk = 0 (k > n)
for all n = 0, 1, . . . , then cs = cE and bs = (lbb)E are the sets of convergent and
bounded series.

We shall be interested in sequence spaces that are closely related to the con-
cepts of ordinary, strong and absolute summability with index p > 1 [5, pp. 185,
189, 190]. Further, we shall study the topological properties of these sequence
spaces, give their �-duals and characterize matrix transformations between them.

The reader is referred to [2, 13, 19] for the results in classical summability
theory, and to [18, 14, 5, 15, 19] for the theory of sequence spaces.

2. The classical BK spaces

In this section, we shall state the fundamental results. It is well known [18,
5, 14] that the spaces lp (1 6 p < 1), c0, c and l1 are BK spaces with their
natural norms, lp and c have AK, every sequence x = (xk)

1
k=0 2 c has a unique

representation x = le +
P1

k=0(xk � l)e(k) where l = limk!1 xk and l1 has no
Schauder basis.

If X and Y are arbitrary subsets of ! and z any sequence, then we shall write

z�1 �X = fx 2 ! : xz 2 Xg and M(X;Y ) =
\
x2X

x�1 � Y:

In the special case, where Y = cs, the set

X� =M(X; cs) =

�
a 2 ! :

1P
k=0

akxk converges for all x 2 X

�

is called the �-dual of X . If X is an arbitrary normed space, then we denote its
continuous dual by X�, i.e. X� is the space of all continuous linear functionals
on X , with the norm k � k� de�ned by

kfk� = supfjf(x)j : kxk = 1g (f 2 X�):

There is a close relation between the continuous dual and the �-dual of a BK space.

Theorem 2.1. ([18, Theorems 4.3.15, p. 64 and 7.2.9, p. 107) Let (X; k � k) be
a BK space.

(a) Then X� is a BK space with kak� = supfsupn j
Pn

k=0 akxkj : kxk = 1g.

(b) The inclusion X� � X� holds in the following sense: Let the map :̂ X� !
X� be de�ned by (̂a) = â : X ! C (a 2 X�) where â(x) =

P1
k=0 akxk for all

x 2 X. Then^is an isomorphism into X�. Further, if X has AK, then the map^is
onto X�.
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The �-duals of the classical sequence spaces are well-known [16, 18, 14]:

!� = �; �� = !; l�1 = l1 and c�0 = c� = l�1 = l1:

If we put q = p=(p�1) for 1 < p <1, then l�p = lq . The spaces c
� and c�0 are norm

isomorphic with l1. Further, we have kak� = kak1 for all a 2 l�1.

Let A be an in�nite matrix of complex numbers and An = (ank)
1
k=0 be the

sequence in the nth-row of A. By (X;Y ) we denote the class of all matrices A that
map the set X � ! into the set Y � !. Thus

A 2 (X;Y ) if and only if

8><
>:

An 2 X� for all n

and

A(x) = (An(x))
1
n=0 2 Y for all x 2 X:

The most important result in the theory of matrix transformations is

Theorem 2.2 ([18, Theorem 4.2.8, p. 57) Matrix transformations between BK
spaces are continuous.

All our results are obtained from the characterization of the class (X; l1):

Theorem 2.3. ([10, Lemma 4.1]) Let X be a BK space.

(a) Then A 2 (X; l1) if and only if

kAk� = sup
n
kAnk

� <1 where kAnk
� = sup

n
fjAn(x)j : kxk = 1g (2.1)

for n = 0; 1; . . . .

(b) Further, if (bk)1k=0 is a Schauder basis of X, Y and Y1 are BK spaces
with Y1 a closed subspace of Y , then A 2 (X;Y1) if and only if A 2 (X;Y ) and
A(b(k)) 2 Y1 for all k.

Let T be a triangle, i.e. tnk = 0 for all k > n and tnn 6= 0 (n = 0; 1; . . . ).
Further let B be a positive triangle. A subset X of ! is called normal if x 2 X and
jykj 6 jxkj (k = 0; 1; . . . ) together imply y 2 X , and a norm k � k on X is called
monotonous if jykj 6 jxkj (k = 0; 1; . . . ) for x; y 2 X implies kyk 6 kxk.

Theorem 2.4. (a) Let X be a BK space with the norm k � k. Then XT is a
BK space with

kxjjT = kT (x)k for all x 2 XT ([18, Theorem 4.3.12, p. 63]):

(b) Let X be a normal BK space with monotonous norm k � k. We put

xn = (Bn(jyj
p))1=p for 1 6 p <1 (n = 0; 1; . . . )

and Y = fy 2 ! : x 2 Xg. Then Y is a BK space with kykY = kxk for all y 2 Y .

The characterizations of the classes (X;YT ) and (X;Y[B]) can be reduced to
those of (X;Y ).
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Theorem 2.5. ([9, Theorem 1] and [10, Theorem 2.4]) Let X and Y be
arbitrary sets of sequences, T a triangle and B a positive triangle.

(a) Then A 2 (X;YT ) if and only if TA 2 (X;Y ).

(b) For each m = 0; 1; . . . , let Nm denote a subset of the set f0; . . . ;mg, N =
(Nm)

1
m=0 be the sequence of the sets Nm and N be the class of all such sequences.

Further, if A is an in�nite matrix, then for each sequence N 2 N let SN (B;A) be
the matrix de�ned by

SNm(B;A) =
P

n2Nm

bmnAn; i.e. sNmk(B;A) =
P

n2Nm

bmnank (m; k = 0; 1; . . . ):

Finally, let T be a normal set of sequences. Then A 2 (X;Y[B]) if and only if

SN (B;A) 2 (X;Y ) for all N 2 N .

3. Applications

3.1. Sequences that are (N ; q)-summable or bounded. Let (qk)
1
k=0 be a

positive sequence and Q the sequence with Qn =
Pn

k=0 qk (n = 0; 1; . . . ). Further,

let the matrix Nq be de�ned by (Nq)n;k = qk=Qn (0 6 k 6 n) and (Nq)n;k = 0
(k > n) for all n. Then we de�ne the sets

(N; q)0 = (c0)Nq
; (N; q) = cNq

and (N; q)1 = (l1)Nq

of sequences that are (N; q) summable to naught , summable and bounded.

We shall write U for the set of all sequences u such that uk 6= 0 (k = 0; 1; . . . ).
For u 2 U , let 1=u = (1=uk)

1
k=0.

Theorem 3.1. (cf. [1, Theorem 2]) (a) Let X be a BK space with basis
(b(k))1k=0, u 2 U and c(k) = (1=u)b(k) (k = 0; 1; . . . ). Then (c(k))1k=0 is a basis of
Y = u�1 �X.

(b) Let u 2 U be a sequence such that

ju0j 6 ju1j 6 � � � and junj ! 1 (n!1);

and T a triangle with tnk = 1=un (0 6 k 6 n) and tnk = 0 (k > n) for all n. Then
(c0)T has AK.

We have by Theorems 2.4 and 3.1:

Theorem 3.2. (cf. [1, Corollary 1]) Each of the sets (N; q)0, (N; q) and

(N; q)1 is a BK space with

kxkNq
= sup

n

���� 1

Qn

nP
k=0

qkxk

����:
If Qn ! 1 (n ! 1), then (N; q)0 has AK, and every sequence x = (xk)

1
k=0 2

(N; q) has a unique representation

x = le+
1P
k=0

(xk � l)e(k) where l 2 C is such that x� le 2 (N; q)0.
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Let the operator �+ : ! ! ! be de�ned by

�+x = ((�+x)k)
1
k=0 = (xk � xk+1)

1
k=0:

Theorem 3.3. (cf. [1, Theorem 5]) Let T be a triangle such that

kTk = sup
n

�
nP

k=0

jtnkj

�
<1 and limn!1 tnk = 0 (k = 0; 1; . . . );

(c0)T have AK and Y = (c0)T � le. Then f 2 Y � if and only if

f(x) = l�f +
1P
k=0

akxk with a 2 Y �, where l 2 C is such that

x� le 2 (c0)T and �f = f(e)� l
1P
k=0

ak.

Theorem 3.4. (cf. [1, Theorem 6]) Let �+ : ! ! ! be de�ned by ��x =
((�+x)k)

1
k=0. We put

N0 = (1=q)�1 � ((Q�1 � l1)�+ \ (Q�1 � l1));

N = (1=q)�1 � ((Q�1 � l1)�+ \ (Q�1 � c));

N1 = (1=q)�1 � ((Q�1 � l1)�+ \ (Q�1 � c0)):

(a) Then (N; q)�0 = N0, (N; q)� = N and (N; q)�1 = N1.

(b) Let Qn !1 for n!1. Then f 2 (N; q)�0 if and only if

f(x) =
1P
k=0

akxk with a 2 N0 and kfk� = supn

�
n�1P
k=0

Qk

�����+ ak
qk

����+ janQn=qnj

�
:

Then f 2 (N; q)� if and only if

f(x) = l�f +
1P
k=0

akxk with a 2 N where l is such that

x� le 2 (N; q)0 and �f = f(e)� l
1P
k=0

ak

and kfk� = j�f j+ supn

�
n�1P
k=0

Qk

�����+ ak
qk

����+ janQn=qnj

�
.

It follows from Theorems 2.3, 3.2 and 3.4:

Theorem 3.5. Let Qn !1 (n!1) and consider the conditions

sup
n

�
n�1P
k=0

Qkj�+(ank=qk)j+ jQnank=qnj

�
<1 (3.1)
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(3:2) AnQ=q 2 c for all n (3:3) AnQ=q 2 c0 for all n

(3:4) lim
n!1

ank = 0 for all k (3:5) lim
n!1

ank = lk for all k = 0

(3:6) lim
n!1

1P
k=0

ank = 0 (3:7) lim
n!1

1P
k=0

ank = l

Then

A 2 ((N; q)0; l1) if and only if (3:1);

A 2 ((N; q); l1) if and only if (3:1) and (3:2);

A 2 ((N; q)1; l1) if and only if (3:1) and (3:3);

A 2 ((N; q)0; c0) if and only if (3:1) and (3:4);

A 2 ((N; q)0; c) if and only if (3:1) and (3:5);

A 2 ((N; q); c0) if and only if (3:1); (3:2); (3:4) and (3:6);

A 2 ((N; q); c) if and only if (3:1); (3:2); (3:5) and (3:7):

The conditions for A 2 ((N; q)1; (N; p)1) etc. are obtained by replacing the entries
of A above by the entries of C = TA where tnl = pl=Pl (0 6 l 6 n) and tnl = 0
(l > n) for all n.

3.2. Spaces of sequences of mth order di�erences. Let m be a positive
integer. We de�ne the operators �(m), �(m) : ! ! ! by

(�(1)x)k = �(1)xk = xk � xk�1; (�(1)x)k = �(1)xk =
kP

j=0
xj (k = 0; 1; . . . );

�(m) = �(1) ��(m�1); �(m) = �(1) � �(m�1) (m > 2):

We shall write X(�(m)) = X�(m) = fx 2 ! : �(m)x 2 Xg for X 2 fl1; c; c0g.

Theorem 3.6. ([10, Proposition 1, Theorem 1]) (a) The sets l1(�(m)),
c(�(m)) and c0(�

(m)) are BK spaces,

kxk�(m) = sup
k
j(�(m)x)k j = sup

k

����
mP
j=0

(�1)j
�
m
j

�
xk�j

����:

(b) We de�ne the sequences bk(m) by

b(�1)n (m) =

�
m+ n

n

�
; and, for k > 0, b(k)n (m) =

�
0; (n 6 k � 1);�
m+n�k�1

n�k

�
; (n > k):

Then every sequence x = (xk)
1
k=0 2 c0(�

(m)) has a unique representation

x =
1P
k=0

�k(m)b(k)(m) where �k(m) = (�(m)x)k (k = 0; 1; . . . );
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and every sequence x = (xk)
1
k=0 2 c(�(m)) has a unique representation

x = lb(�1)(m) +
1P
k=0

(�k(m)� l)b(k)(m) where l = limk!1(�(m)x)k:

Given any sequence a we de�ne the sequence R(m)(a) by

R
(1)
k (a) =

1P
j=k

aj (k = 0; 1; . . . ); R(m)(a) = R(1)(R(m�1)(a)) (m > 2)

provided the series converge. Further we write

R(m)(X) = fx 2 ! : R(m)(x) 2 X g for any X � !.

Theorem 3.7. ([10, Theorem 3, Lemma 4]) We put

M�
1(m) = (((km))�1 � cs) \ R(m)(l1);

M�
0 (m) =

� \
v2c+0

(�(m)v)�1 � cs

�
\ R(m)(l1):

Then

(c(�(m)))� = (l1(�(m)))� =M�
1(m); (c0(�

(m)))� =M�
0 (m);

(l1(�(m)))� 6= (c0(�
(m)))� ;

kak� =
1P
k=0

jR(m)
k j on (c0(�

(m)))� ; (c(�(m)))� and (l1(�(m)))� :

Since obviously An(b
(�1)(m)) =

1P
j=0

�
m+ j

j

�
anj and, for k > 0,

An(b
(k)(m)) =

1P
j=k

�
m� 1 + j � k

j � k

�
anj for all n,

we conclude from Theorems 3.6, 2.3 and 3.7:

Theorem 3.8. We consider the conditions

M(l1(�(m)); l1) = sup
n
kR(n)(An)k1 <1; (3.8)

(3:9) An 2 (k(m))�1 � cs (3:10) An 2
T
v2c+0

(�(m)v)�1 � cs

(3:11) lim
n!1

An(b
(k)(m)) = 0; k > 0 (3:12) lim

n!1
An(b

(k)(m)) = lk; k > 0

(3:13) lim
n!1

An(b
(k)(�1)) = 0 (3:14) lim

n!1
An(b

(k)(�1)) = l�1:
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Obviuosly (l1(�(m)); l1) = (c(�(m)); l1), and

A 2 (l1(�(m)); l1) if and only if (3:8) and (3:9);

A 2 (c0(�
(m)); l1) if and only if (3:8) and (3:10);

A 2 (c0(�
(m)); c0) if and only if (3:8); (3:10) and (3:11);

A 2 (c0(�
(m)); c) if and only if (3:8); (3:10) and (3:12);

A 2 (c(�(m)); c0) if and only if (3:8); (3:9); (3:11) and (3:13);

A 2 (c(�(m)); c) if and only if (3:8); (3:9); (3:12) and (3:14):

3.3. Spaces of sequences that are �-strongly convergent or bounded.
Let � = (�n)

1
n=0 be a nondecreasing sequence of positive reals tending to in�nity.

If (n(�))1�=0 is a sequence such that 0 = n(0) < n(1) < n(2) < � � � , then we shall
write Kh�i = fk 2 Z : n(�) 6 k 6 n(� + 1) � 1g, and �� and max� for the sum
and maximum taken over all k in Kh�i. We de�ne the matrices B = (bnk)

1
n;k=0,

~B = (~b�k)
1
�;k=0 and �(�) by

bnk =

8<
:

1

�n
(0 6 k 6 n)

0 (k < n)
and ~b�k =

8<
:

1

�n(�+1)
(k 2 Kh�i)

0 (k =2 Kh�i):

�nk(�) =

8><
>:
��n�1 (k = n� 1)

�n (k = n) (n = 0; 1; . . . ) where ��1 = 0

0 (otherwise):

The following sets were de�ned in [12]:

c0(�) = ((c0)[B])�(�); ~c0(�) = ((c0)[ ~B])�(�);

c(�) = fx 2 ! : x� le 2 c0(�)g; ~c(�) = fx 2 ! : x� le 2 ~c0(�)g;

c1(�) = ((l1)[B])�(�); ~c1(�) = ((l1)[ ~B])�(�):

Theorem 3.9. ([8, Theorem 2(c)]) The spaces c0(�), c(�) and c1(�) are BK
spaces with

kxk0 = kB(j�(�)(x)j)k1 = sup
n>0

�
1

�n

nP
k=0

j�kxk � �k�1xk�1j

�
;

c0(�) has AK; every sequence x = (xk)
1
k=0 2 c� has a unique representation

x = le+
1P
k=1

(xk � l)e(k) where l 2 C is such that x� le 2 c0(�).
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A sequence � = (�n)
1
n=0 of positive reals is called exponentially bounded if

there is an integer m > 2 such that for all integers � there is at least one �n in the
interval [m� ;m�+1). It is known (cf. [7, Lemma1]) that a nondecreasing sequence
� = (�n)

1
n=0 of positive reals is exponentially bounded if and only if the following

condition holds:

There are reals s 6 t in the open unit interval such that for some

subsequence (�n(�+1))
1
�=0; s 6

�n(�)

�n(�+1)
6 t for all � = 0; 1; . . .

(E)

A subsequence (�n(�+1))
1
�=0 of an exponentially bounded sequence � = (�n)

1
n=0

that satis�es condition (E) will be called an associated subsequence. From now
on, let � = (�n)

1
n=0 always be a nondecreasing exponentially bounded sequence of

positive reals and (�n(�+1))
1
�=0 an associated subsequence.

Theorem 3.10. ([8, Theorem 2]) We have c0(�) = ~c0(�), c(�) = ~c(�) and
c1(�) = ~c1(�). The norms kxk0 and

kxk = k ~B(j�(�)(x)j)k1 = sup
�>0

�
1

�n(�+1)
�� j�kxk � �k�1xk�1j

�

are equivalent on c0(�), c(�) and c1(�). Thus each of the spaces c0(�), c(�) and
c1(�) is a BK space with k � k (cf. [18, Corollary 4.2.4, p. 56).

Theorem 3.11. ([9, Lemma2]) We put

C(�) =

�
a 2 ! :

1P
�=0

�n(�+1)max�

����
1P
k=n

ak
�k

���� <1

�
;

kakC(�) =
1P
�=0

�n(�+1)max�

����
1P
k=n

ak
�k

���� foa all a 2 C(�):

Then (c0(�))
� = (c(�))� = (c1(�))� = C(�) and kak� = kakC(�) on C(�).

As in the previous sections, it is now easy to characterize the classes (X;Y )
where X = c1(�), c(�), c0(�) and Y = l1; c; c0; c1(�); c(�); c0(�). For instance,
if we put �n(�nanj) = �nanj � �n�1an�1;j and

M(c1(�); c1(�)) = sup
m

�
max
Nm

�
1P
�=0

�k(�+1)max
�

����
1P
j=k

1

�j

�
1

�m

P
n2Nm

�n(�nanj)

�����
��

;

then A 2 (c1(�); c1(�)) if and only ifM(c1(�); c1(�)) <1 and A 2 (c(�); c(�))
if and only if M(c1(�); c1(�)) <1,

lim
m!1

�
1

�m

mP
n=0

j�n(�n(ank � lk))j

�
= 0 for all k,

lim
m!1

�
1

�m

mP
n=0

�����n

�
�n

�
1P
k=0

ank � lk

������
�
= 0:
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