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SOME CONVERGENCE RATE ESTIMATES

FOR FINITE DIFFERENCE SCHEMES

Bo�sko S. Jovanovi�c and Branislav Z. Popovi�c

Abstract. In this work we use function space interpolation to prove some convergence rate
estimates for �nite di�erence schemes. We concentrate on a Dirichlet boundary value problem
for a second-order linear elliptic equation with variable coe�cients in the unit 3-dimensional
cube. We assume that the solution to the problem and the coe�cients of the equation belong to
corresponding Sobolev spaces.

1. Introduction

In this work we use interpolation theory to prove some convergence rate es-
timates for FDS. Our model problem will be a Dirichlet BVP for a second-order
linear elliptic equation with variable coe�cients in the unit 3-dimensional cube

 = (0; 1)3:

�
3P

i;j=1
Di(aijDju) = f in 
; u = 0 on � = @
: (1)

We shall assume that the generalized solution of the BVP belongs to the Sobolev
spaceW s

2 (
), 2 � s � 4, with the right-hand side f(x) belonging to W s�2
2 (
).

Initially we assume that the coe�cients aij(x) belong to the space of multipliers

M(W s�1
2 (
)); for this it is su�cient that [10]:

aij 2W
s�1
2 (
); for

5

2
< s � 4;

aij 2W
s�1+�
3=(s�1)(
); � > 0; for 2 � s �

5

2
:
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We also assume that the corresponding di�erential operator is symmetric and
strongly elliptic, i.e.

aij = aji;
3P

i;j=1
aijyiyj � c0

3P
i=1

y2i ; x 2 
; c0 = const > 0:

Let ! be a uniform mesh in 
 with the step size h, ! = ! \
, 
 = ! \ �, etc.
We de�ne �nite di�erences vxi and vxi in the usual manner [11]:

vxi = (v+i � v)=h; vxi = (v � v�i)=h;

where v�i(x) = v(x � hri), and ri is the unit vector along the xi axis.

We approximate the BVP with following FDS:

Lhv = T 2
1 T

2
2 T

2
3 f in !; v = 0 on 
; (2)

where Ti is Steklov smoothing operator on xi, i.e.

T+
i f(x) =

Z 1

0

f(x+ htri) dt = T�i f(x+ hri) = Tif(x+ 0:5hri)

(Hence, TiTjf = TjTif and T+
i Diu = uxi , T

�
i Diu = uxi), and

Lhv = �
1

2

3P
i;j=1

�
(aijvxj )xi + (aijvxj )xi

�
:

Let u be the solution of the BVP and v the solution of the FDS. We de�ne the
error as z = u� v. Pur aim is to show that

ku� vkW 2
2 (!)

� C � hs�2kukW s
2 (
)

; 2 � s � 4; (3)

where C is positive constant depending of the coe�cients, but independent of h
and u.

The �nite-di�erence scheme (2) is the standard symmetric FDS [11] with aver-
aged right-hand side. Note that for s � 7=2 the right-hand side is a discontinuous
function, so without averaging the FDS is not well-de�ned.

Estimates of the type

ku� vkWk
p (!)

� C � hs�kkukW s
p (
)

(4)

are said to be consistent with the smoothness of the solution of the BVP [9].

The same technique is used in papers of B.S. Jovanovic [6] (constant coe�cient
case) and [7], [14] (n = 2).

Estimates of type (4) have been obtained for a broad class of elliptic problems
by Lazarov, Makarov, Samarski, Jovanovi�c, S�uli, Ivanovi�c etc (see [5, 8, 9, 12]). As
a rule the Bramble-Hilbert lemma [3] and results of Dupont and Scott [4] are used
for proving those results.
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2. Interpolation of Banach Spaces

Let A0 and A1 be two Banach spaces, linearly and continuosly embedded in a
topological linear space A. Two such spaces are called interpolation pair fA0; A1g.
Consider also the spaces A0 \ A1 and A0 + A1 with corresponding norms (see [2,
13]).

Let us introduce a category C0, whose objects A;B;C; . . . are Banach spaces,
and whose morphisms are bounded linear operators L 2 L(A;B), and a category
C1, whose objects are interpolations pairs fA0; A1g; fB0; B1g, . . . and whose mor-
phisms are L 2 L(fA0; A1g; fB0; B1g), where L(fA0; A1g; fB0; B1g) denotes the
set of bounded linear operators from A0 + A1 into B0 +B1, whose restrictions on
Ai belong to the set L(Ai; Bi); i = 1; 2.

A functor F : C1 ! C0 is called an interpolation functor if A0 \ A1 �
F(fA0; A1g) � A0 + A1 for every interpolation pair fA0; A1g, while for every
morphism L 2 L(fA0; A1g; fB0; B1g), F(L) is the restriction of the operator L on
F(fA0; A1g).

The corresponding Banach space A = F(fA0; A1g) is called an interpolation
space.Obviously A0 \ A1 and A0 +A1 are interpolation spaces.

If the inequality

kLkF(fA0;A1g)!F(fB0;B1g) � CkLk1��A0!B0
kLk�A1!B1

;

where 0 < � < 1 and C = const � 1, is satis�ed for every morphism L of category
C1, the interpolation functor F is said to be of the type �.

Let us consider the so called complex interpolation method [13]. We de�ne
the following sets of complex numbers: S = fz 2 C : 0 < Rz < 1g and S = fz 2
C : 0 � Rz � 1g. For a given interpolation pair fA0; A1g we introduce the set
M(A0; A1) of continuous functions f : S ! A0 + A1, analytic in S, which satisfy
the following conditions:

(i) sup
z2S

kf(z)kA0+A1 <1,

(ii) f(j + it) 2 Aj ; j = 0; 1; t 2 R,

(iii) the mapings t! f(j + it); j = 0; 1, are continuous on t, and

(iv) kfkM(A0;A1) = max

�
sup
t2R

kf(it)kA0 ; sup
t2R

kf(1 + it)kA1

�
<1.

For 0 < � < 1 with [A0; A1]� we denote the set of elements a 2 A0 +A1 which
satisfy the conditions:

(i) there exists a function f 2M(A0; A1) such that f(�) = a, and

(ii) kak[A0;A1]� = inf
f2M(A0;A1)

f(�)=a

kfkM(A0;A1) <1:

The space [A0; A1]� de�ned in that way is an interpolation space. The cor-
responding interpolation functor F(fA0; A1g) = [A0; A1]� is of the type �, with
constant C = 1. Analogous assertion holds true for bilinear operators [13]:
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Lemma 1. Let A0 � A1; B0 � B1; C0 � C1 and let L : A1 � B1 ! C1 be
a continuous bilinear form whose restriction on A0 � B0 is a continuous maping
with values in C0. Then L is continuous maping from [A0; A1]� � [B0; B1]� into
[C0; C1]�, and

kLk[A0;A1]��[B0;B1]�![C0;C1]� � kLk1��A0�B0!C0
kLk�A1�B1!C1

:

3. Spaces Hs
p ; B

s
pq and W s

p

As examples of interpolation function spaces we consider the spaces of Bessel
potentials Hs

p , the Besov spaces Bs
pq and the Sobolev spaces W s

p (see [1], [2]
and [13]). The spaces Hs

p and Bs
pq are spaces of distributions. We know that

D(Rn ) � Hs
p(R

n ) and Bs
pq � D0(Rn ) where D(Rn ) = C10 (Rn ) is the set of in-

�nitely di�erentiable functions with compact support, and D0(Rn ) is the set of
distributions. For s = 0; H0

p (R
n ) = Lp(R

n ), where Lp is the Lebesgue space of
integrable functions. For 1 < p < 1 the Sobolev spaces W s

p are de�ned in the
following manner:

W s
p (R

n ) =

�
Hs
p(R

n ); s = 0; 1; 2; . . .

pps(Rn ); 0 < s 6= integer
(5)

with the norm de�ned as

kfkW s
p
=

�P
k<s

jf jp
Wk

p
+ jf jpW s

p

�1=p
;

where

jf jW r
p
=

8>>>><
>>>>:

� P
j�j=r

R
Rn

jD�f(x)jpdx

�1=p
; r = 0; 1; 2; . . .

� P
j�j=[r]

R
Rn

R
Rn

jD�f(x)�D�f(y)jp

jx�yjn+p(r�[r]) dxdy

�1=p

; 0 < r 6= integer:

Here � = (�1; . . . ; �n) is a multi-index, j�j = �1 + � � � + �n; x = (x1; . . . ; xn) 2
Rn ; jxj = (x1+ � � �+xn)

1=2; D� = D�1
1 � � �D�n

n = (@=@x1)
�1 � � � (@=@xn)

�n and [r]
is the integer part of r. Obviously, W s

p (R
n ) � Lp(R

n ); s � 0.

For �1 < s < 1; 1 < p < 1; " > 0 and 1 � q0 � q1 � 1 the folloving
imbeddings hold true [13]:

Bs+"
p;1(Rn ) � Bs

p1(R
n ) � Bs

pq0(R
n ) � Bs

pq1 (R
n ) � Bs

p;1(Rn ) � Bs�"
p1 (Rn );

Hs+"
p (Rn ) � Hs

p(R
n ) and

Bs
p;minfp;2g(R

n ) � Hs
p(R

n ) � Bs
p;maxfp;2g(R

n ): (6)

For �1 < t � s <1; 1 < p � q <1; 1 � r � 1 and s� n=p � t� n=q we also
have

Bs
pr(R

n ) � Bt
qr(R

n ) and Hs
p(R

n ) � Ht
q(R

n ):
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The following assertion holds true [13]:

Lemma 2. For �1 < s0; s1 <1; 1 < p0; p1 <1; 1 � q0 <1; 1 � q1 � 1
and 0 < � < 1 we have�

Hs0
p0 (R

n ); Hs1
p1 (R

n )
�
�
= Hs

p(R
n ) and (7)�

Bs0
p0q0(R

n ); Bs1
p1q1(R

n )
�
�
= Bs

pq(R
n ); (8)

where

s = (1� �)s0 + s1;
1

p
=

1� �

p0
+

�

p1
;

1

q
=

1� �

q0
+

�

q1
:

From (7), (8) and (5), for s0; s1 � 0, it follows that�
W s0

p (Rn );W s1
p (Rn )

�
�
=W s

p (R
n ); s = (1� �)s0 + s1; (9)

if s0; s1 and s are all integer, or fractional numbers. For p = 2 from (6) it follows
that W s

2 (R
n ) = Hs

2 (R
n ) = Bs

22(R
n ) and (9) holds without the restriction that s0,

s1 and s are of the same kind.

The previous results hold for the spaces Hs
p ; B

s
pq andW

s
p in a bounded domain


 � Rn which satis�es the cone condition. Here we assume that s � 0 forHs
p spaces,

and s > 0 for Bs
pq spaces.

4. Convergence of Finite Di�erence Schemes

Let u be the solution of the BVP (1) and let v be the solution of the FDS (2).
The error z = u� v satis�es the conditions

Lhz =
3P

i;j=1
 ij ; in !; z = 0 on 
; (10)

where

 ij = TDi(aijDju)�
1

2

�
(aijuxj )xi + (aijuxj )xi

�
; Tu = T 2

1 T
2
2 T

2
3 u; i; j = 1; 2; 3:

Let (v; w)! = (v; w)L2(!) = h3
P

x2! v(x)w(x) and kvk
2
! = (v; v)! denote the

discrete inner product and the discrete L2-norm on !. We also de�ne the discrete
Sobolev norm

kvk2W 2
2 (!)

= kvk2! +
3P
i=1

kvxik
2
!i +

3P
i=1

kvxixik
2
! +

3P
i<j

kvxixjk
2
!ij ;

where !i and !ij are subsets of ! where corresponding �nite di�erences are well
de�ned.

The following assertion holds true [5]:

Lemma 3. The FDS (10) satis�es the a priori estimate

kzkW 2
2 (!)

� C �
3P

i;j=1
k ijk!: (11)
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The problem of deriving the convergence rate estimates for thr FDS (2) is
reduced to estimating the right-hand side terms in (11). Let us decompose  ij in

the following manner:  ij =
P7

k=1  ijk , where

 ij1 = T (aijDiDju)� (Taij)(TDiDju);

 ij2 = (Taij � aij)(TDiDju);

 ij3 = aij
�
TDiDju� 0:5(uxixj + uxixj )

�
;

 ij4 = T (DiaijDju)� (TDiaij)(TDju);

 ij5 = [TDiaij � 0:5(aij;xi + aij;xi)] (TDju);

 ij6 = 0:5(aij;xi + aij;xi)
h
TDju� 0:5(u�ixj + u+ixj )

i
;

 ij7 = 0:25(aij;xi + aij;xi)(u
�i
xj + u+ixj ):

The value  ij1 in the node x 2 ! can be represented in the form

 ij1 =
1

h6

Z
� � �

Z
e�e

�(�1; �2; �3)�(�1; �2; �3)[aij(�1; �2; �3)� aij(�1; �2; �3)]�

�DiDju(�1; �2; �3) d�1d�2d�3d�1d�2d�3;

(12)

where e = (x1 � h; x1 + h)� (x2 � h; x2 + h)� (x3 � h; x3 + h) and

�(�1; �2; �3) =

�
1�

j�1 � x1j

h

��
1�

j�2 � x2j

h

��
1�

j�3 � x3j

h

�
:

Now, from (12) it follows that:

j ij1j �
C

h3=2
kaijkC(�e)kDiDjukL2(e) �

C

h3=2
kaijkC(
)kukW 2

2 (e)
:

From here, summing over the mesh ! we obtain

k ij1k! � C � kaijkC(
)kukW 2
2 (
)

� C � kaijkW 1+"
p (
)kukW 2

2 (
)
; " > 0; p � 3: (13)

Transforming aij(�1; �2; �3)� aij(�1; �2; �3) in (12) to integral form

aij(�1; �2; �3)� aij(�1; �2; �3) =

Z �1

�1

D1aij(�1; �2; �3) d�1+

+

Z �2

�2

D2aij(�1; �2; �3) d�2 +

Z �3

�3

D3aij(�1; �2; �3) d�3

(14)

and exchanging �i and �i, we obtain

 ij1 =
1

2h6

Z
� � �

Z
e�e

�(�1; �2; �3)�(�1; �2; �3)�

"Z �1

�1

D1aij(�1; �2; �3) d�1+

+

Z �2

�2

D2aij(�1; �2; �3) d�2 +

Z �3

�3

D3aij(�1; �2; �3) d�3

#
�

� [DiDju(�1; �2; �3)�DiDju(�1; �2; �3)] d�1d�2d�3d�1d�2d�3:

(15)
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Finally, transforming DiDju(�1; �2; �3)�DiDju(�1; �2; �3) in (15) to integral form
(like in (14)) and applying H�older's inequality, we obtain

j ij1j � C � h1=2kaijkW 1
p (e)

kukW 3
2p=(p�2)

(e); p > 2:

From here, summing over the mesh !, and using the imbeddings W 3
p � W 1

p and

W 4
2 �W 3

2p=(p�2) for p � 3, we obtain

k ij1k! � C � h2kaijkW 1
p (
)

kukW 3
2p=(p�2)

(
)

� C � h2kaijkW 3
p (
)

kukW 4
2 (
)

; p � 3:
(16)

Estimates analogous to (13) and (16) hold true for the other terms  ijk [14] and so
we obtain

k ijk! � C � kaijkW 1+"
p (
)kukW 2

2 (
)
; " > 0; p � 3 (17)

k ijk! � C � h2kaijkW 3
p (
)

kukW 4
2 (
)

; p � 3: (18)

The mapping (aij ; u)!  ij is bilinear. From (17) and (18) it follows that it is
a bounded bilinear operator from W 1+"

p (
)�W 2
2 (
) to L2(!) and from W 3

p (
)�

W 4
2 (
) to L2(!). Applying Lemma 1, from (17) and (18) it follows that  ij is a

bounded bilinear operator from
�
W 1+"

p (
);W 3
p (
)

�
�
�
�
W 2

2 (
);W
4
2 (
)

�
�
to L2(!),

with the norm M � C � h2�. According to Lemma 2, (8) and (9)�
W 1+"

p (
);W 3
p (
)

�
�
= B1+"+�(2�")

pp (
) and
�
W 2

2 (
);W
4
2 (
)

�
�
=W 2+2�

2 (
):

Setting 2 + 2� = s, we obtain

k ijk! � C � hs�2kaijkBs�1+"(2�s=2)
pp (
)

kukW s
2 (
)

; p � 3; 2 < s < 4: (19)

Combining (11) and (17){(19) we have thus proved the following result:

Theorem. The FDS (2) converges in the norm of the space W 2
2 (!) and fol-

lowing estimate, which is consistent with the smoothness of the data, holds true

ku�vkW 2
2 (!)

� C �hs�2 �max
ij

kaijkBs�1+"(2�s=2)
pp (
)

� kukW s
2 (
)

; p � 3; 2 � s � 4:
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