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CONVERGENCE OF A FINITE DIFFERENCE METHOD FOR

THE HEAT EQUATION | INTERPOLATION TECHNIQUE

Dejan Bojovi�c and Bo�sko S. Jovanovi�c

Abstract. In this paper we show how the theory of interpolation of function spaces can be
used to establish convergence rate estimates for �nite di�erence schemes. As a model problem we
consider the �rst initial-boundary value problem for the heat equation with variable coe�cients
in a domain (0; 1)2 � (0; T ]. We assume that the solution of the problem and the coe�cients
of equation belong to corresponding Sobolev spaces. Using interpolation theory we construct a
fractional{order convergence rate estimate which is consistent with the smoothness of the data.

1. Introduction

For a class of �nite di�erence schemes for parabolic initial-boundary value
problem, estimates of the convergence rate consistent with the smoothness of data,
are of major interest, i.e.
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Here u = u(x; t) denotes the solution of the original initial-boundary value prob-
lem, v denotes the solution of corresponding �nite di�erence scheme, h and � are

discretisation parameters, W
s;s=2
2 (Q) denotes a Sobolev space, W

s;s=2
2 (Qh� ) de-

notes a discrete Sobolev space, and C is a positive generic constant, independent
of h; � and u. If parameters h and � satisfy the condition k1h

2 � � � k2h
2,

k1; k2 = const > 0, then we obtain the estimate
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For problems with variable coe�cients the constant C depends on the norms of
coe�cients.

A standard technique for the derivation of such estimates is based on the
Bramble-Hilbert lemma [2]. In this paper we expose an alternative technique,
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based on the theory of interpolation of Banach spaces. Estimate (2) was derived
in the paper [3], by the same technique, for r = 2 and 2 � s � 4 in the domain
Q = (0; 1)� (0; T ]. In this paper we derive estimate (2) for r = 2 and 2 � s � 4 in
the domain Q = (0; 1)2 � (0; T ].

2. Interpolation of Banach spaces

In this paper we use the K-method of real interpolation [10,12]. Let fA1; A2g
be an interpolation pair. De�ne the functional

K(t; a) = K(t; a; A1; A2) = inff ka1kA1+tka2kA2 j a 2 A1+A2; a = a1+a2; ai 2 Ai g:
It is obvious that, for a �xed t 2 (0;1), K(t; a) is a norm in A1 + A2, equivalent
to the standard norm kakA1+A2 . For 0 < � < 1, 1 � q <1, let us de�ne the space
(A1; A2)�;q as follows:

(A1; A2)�;q =

�
a 2 A1 +A2 : kak(A1;A2)�;q =

�Z 1

0

�
t��K(t; a)

�q dt
t

� 1
q
<1

�
;

and for q =1
(A1; A2)�;1 =

�
a 2 A1 +A2 : kak(A1;A2)�;1 = sup

0<t<1
t��K(t; a) <1	

:

The space (A1; A2)�;q is an interpolation space. The corresponding interpola-
tion functor F(fA1; A2g) = (A1; A2)�;q is of the type �, i.e.

kLk(A1;A2)�;q!(B1;B2)�;q � kLk1��A1!B1
kLk�A2!B2

;

An analogous assertion holds true for bilinear operators:

Lemma 1. Let A1 � A2, B1 � B2 and C1 � C2 and let L:A2 � B2 ! C2 be
a continuous bilinear form whose restriction on A1 � B1 is a continuous maping
with values in C1. Then L is continuous maping from (A1; A2)�;p�(B1; B2)�;q into
(C1; C2)�;r, 0 < � < 1, 1=r = 1=p+ 1=q � 1 � 0, and

kLk(A1;A2)�;p�(B1;B2)�;q!(C1;C2)�;r � kLk1��A1�B1!C1
kLk�A2�B2!C2

:

As an example of interpolation spaces, let us consider the Sobolev spaces W s
p

[1]. For noninteger positive s one sets W s
p (R

n ) = Bs
p;p(R

n ), where Bs
pp is a Besov

space [12].

For 0 � s1, s2 <1, s1 6= s2, 0 < � < 1, 1 � q <1 we have [12]:�
W s1

p (Rn );W s2
p (Rn )

�
�;q

= Bs
p;q(R

n ) ; s = (1� �)s1 + �s2 :

In such a way, for q = p and noninteger s = (1� �)s1 + �s2, we obtain�
W s1

p (Rn );W s2
p (Rn )

�
�;p

=W s
p (R

n ) ; s = (1� �)s1 + �s2 :

For p = 2 this relation holds without restrictions, i.e.:

(W s1
2 (Rn );W s2

2 (Rn ))�;2 = W s
2 (R

n ) :



Converegence of a �nite di�erence method for the heat equation . . . 259

Hence, W s
2 (R

n ) are interpolation spaces. The same result holds for Sobolev spaces
in a domain 
 with su�ciently smooth boundary.

Let us de�ne the anisotropic Sobolev space W
s;s=2
2 (Q), Q = 
� I , I = (0; T ),

as follows [5]: W
s;s=2
2 (Q) = L2(I;W

s
2 (
)) \W

s=2
2 (I; L2(
)), with the norm

kfk
W

s;s=2
2 (Q)

=

�Z T

0

kf(t)k2W s
2 (
)

dt+ kfk2
W

s=2
2 (I;L2(
))

�1=2

:

These spaces are interpolation spaces, too. For s1; s2; r1; r2 � 0, 0 < � < 1, we
have [8,12]

(W s1;r1
2 (Q);W s2;r2

2 (Q))�;2 = W s;r
2 (Q) ; s = (1� �)s1 + �s2; r = (1� �)r1 + �r2:

3. Initial-boundary value problem and its approximation

Let us consider the �rst initial-boundary value problem for parabolic equation
with variable coe�cients in the cylinder Q = 
� (0; T ] = (0; 1)2 � (0; T ]:

@u

@t
�

2P
i;j=1

Di(aijDju) = f ; (x; t) 2 Q;

u = 0 ; (x; t) 2 @
� [0; T ]; (3)

u(x; 0) = u0(x) ; x 2 
;

We assume that the generalized solution of the problem (3) belongs to the Sobolev

space W
s;s=2
2 (Q), 2 � s � 4, with the right-hand side f(x; t) which belongs to

W
s�2;s=2�1
2 (Q). Consequently, the coe�cients aij = aij(x) belong to the space of

multipliers M
�
W

s�1;(s�1)=2
2 (Q)

�
, i.e. it is su�cient that [9]:

aij 2 W s�1
2 (
) ; for 2 < s � 4 ;

aij 2 W 1+�
2 (
) ; � > 0 ; for s = 2 :

Let �! be the uniform mesh in 
 = [0; 1]2 with the step size h, ! = �! \ 
,  =
�! \ @
. Let �� be the uniform mesh in (0; T ) with the step size � , �+� = �� [ fTg,
��� = �� [ f0; Tg. We de�ne the uniform mesh in Q: Qh� = ! � �� , Q

+
h� = ! � �+�

and Qh� = �! � ��� . We assume that the condition:

k1h
2 � � � k2h

2 ; k1; k2 = const > 0

is satis�ed. We de�ne �nite di�erences in the usual manner:

vxi =
v+i � v

h
= v+i�xi ; vt(x; t) =

v(x; t+ �)� v(x; t)

�
= v�t(x; t+ �) ;

where v�i(x; t) = v(x� hri; t), and ri is the unit vector along the xi axis. We also
de�ne the Steklov smoothing operators:

T+
i f(x; t) =

Z 1

0

f(x+ hx0ri; t) dx
0 = T�i f(x+ hri; t) ;

T 2
i f(x; t) = T+

i T�i f(x; t) =

Z 1

�1

(1� jx0j)f(x+ hx0ri; t) dx
0 ;

T+
t f(x; t) =

Z 1

0

f(x; t+ �t0) dt0 = T�t f(x; t+ �) :
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We approximate problem (3) with the following �nite{di�erence scheme:

v�t + Lhv = T 2
1 T

2
2 T

�
t f ; in Q+

h� ;

v = 0 ; on  � ��� ; (4)

v = u0 ; on ! � f0g ;
where

Lhv = �0:5
2P

i;j=1
((aijv�xj )xi + (aijvxj )�xi) :

The �nite-di�erence scheme (4) is the standard symmetric scheme with the averaged
right-hand side. Note that for s � 4 the right-hand side may be a discontinuous
function, so without averaging the scheme is not well de�ned.

4. Convergence of the �nite-di�erence scheme

Let u be the solution of the initial-boundary value problem (3) and v the
solution of the �nite di�erence scheme (4). The error z = u � v satis�es the
conditions

z�t + Lhz =
2P

i;j=1
�ij + ' ; in Q+

h� ;

z = 0 ; on ! � f0g ; (5)

z = 0 ; on  � ��� ;

where

�ij = T 2
1 T

2
2 T

�
t (Di(aijDju))� 0:5((aiju�xj )xi + (aijuxj )�xi) ; ' = u�t � T 2

1 T
2
2 u�t :

We de�ne the discrete inner products:

(v; w)! = (v; w)L2(!) = h2
P
x2!

v(�; t)w(�; t) ;

(v; w)Qh�
= (v; w)L2(Qh� ) = h2�

P
x2!

P
t2�+�

v(x; t)w(x; t) = �
P
t2�+�

(v; w)! ;

and the discrete Sobolev norms:

kvk2! = (v; v)! ; kvk2Qh�
= (v; v)Qh�

;

kvk2
W 2;1

2 (Qh� )
= kvk2Qh�

+
2P

i=1
kvxik2Qh�

+
2P

i;j=1
kvxixjk2Qh�

+ kv�tk2Qh�
:

The following assertion holds true :

Lemma 2. Finite-di�erence scheme (5) satis�es a priori estimate

kzkW 2;1
2 (Qh� )

�
2P

i;j=1
k�ijkQh�

+ k'kQh�
: (6)
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In such a way, the problem of deriving the convergence rate estimate for �nite-
di�erence scheme (4) is now reduced to estimating the right-hand side terms in
(6).

We decompose term �ij in the following manner: �ij =
P7

k=1 �ijk , where

�ij1 = T 2
1 T

2
2 (aijT

�
t DiDju)� (T 2

1 T
2
2 aij)(T

2
1 T

2
2 T

�
t DiDju) ;

�ij2 = (T 2
1 T

2
2 aij � aij)(T

2
1 T

2
2 T

�
t DiDju) ;

�ij3 = aij(T
2
1 T

2
2 T

�
t DiDju� 0:5(u�xixj + uxi�xj )) ;

�ij4 = T 2
1 T

2
2 (DiaijT

�
t Dju)� (T 2

1 T
2
2 Diaij)(T

2
1 T

2
2 T

�
t Dju) ;

�ij5 = (T 2
1 T

2
2 Diaij � 0:5(aij;xi + aij;�xi))(T

2
1 T

2
2 T

�
t Dju) ;

�ij6 = 0:5(aij;xi + aij;�xi)(T
2
1 T

2
2 T

�
t Dju� 0:5(u�ixj + u+i�xj )) ;

�ij7 = 0:25(aij;xi � aij;�xi)(u
�i
xj � u+i�xj ) :

Let us derive the estimate (2) for s = 2 ; r = 2.

The value �ij1 in the node (�; t) 2 ! � ftg can be represented in the form

�ij1(�; t) = 1

h2

ZZ
e

k(�1; �2)aij(�1; �2)T
�
t DiDju(�1; �2; t)d�1d�2�

� 1

h2

ZZ
e

k(�1; �2)aij(�1; �2)d�1d�2 � 1

h2

ZZ
e

k(�1; �2)T
�
t DiDju(�1; �2; t)d�1d�2

(7)

where e = (x1 � h; x1 + h)� (x2 � h; x2 + h) and

k(�1; �2) =

�
1� j�1 � x1j

h

��
1� j�2 � x2j

h

�
:

From (7) immediately follows:

j�ij1(�; t)j � C

h
kaijkC(�e)kT�t u(�; t)kW 2

2 (e)

Summation over the mesh ! yields:

k�ij1(�; t)k! � CkaijkC(
)kT�t u(�; t)kW 2
2 (
)

� CkaijkW 1+�
2 (
)kT�t u(�; t)kW 2

2 (
)

From here, summing over the mesh �+� we obtain

k�ij1kQh�
� CkaijkW 1+�

2 (
)kukW 2;1
2 (Q) :

Analogous estimates hold true also for the other terms �ijk and for term '.

In these estimates we assume that u 2 W
2+";1+"=2
2 (Q), " > 0. In such a way we

obtain the estimates:

k�ijkQh�
� CkaijkW 1+�

2 (
)kukW 2+";1+"=2
2 (Q)

; and (8)

k'kQh�
� Ckuk

W
2+";1+"=2
2 (Q)

: (9)

From (6), (8) and (9) we obtain estimate (2) for s = 2 ; r = 2.
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Let us derive estimate (2) for s = 3 ; r = 2.

The value �ij1 in the node (�; t) 2 ! � ftg can be represented in the form

�ij1(�; t) = 1

2h4

ZZZZ
e�e

k(�1; �2)k(�1; �2)

�Z �1

�1

D1aij(�1; �2)d�1+

Z �2

�2

D2aij(�1; �2)d�2

�

� (T�t DiDju(�1; �2; t)� T�t DiDju(�1; �2; t))d�1d�2d�1d�2 ; (10)

From here, using Cauchy{Schwarz's and H�older's inequality we obtain

j�ij1(�; t)j � CkaijkW 1
p (e)

kT�t u(�; t)kW 2
2p
p�2

(e) ; p > 2 :

Summing over the meshes ! and �+� , using the imbeddings W 2
2 (
) � W 1

p (
), we
simply obtain

k�ij1kQh�
� ChkaijkW 2

2 (
)
kuk

W
3;3=2
2 (Q)

:

Analogous estimates hold true also for the other terms �ijk and for term '. In
such a way we obtain the estimates:

k�ijkQh�
� ChkaijkW 2

2 (
)
kuk

W
3;3=2
2 (Q)

; and (11)

k'kQh�
� Chkuk

W
3;3=2
2 (Q)

: (12)

From (6), (11) and (12) we obtain estimate (2) for s = 3 ; r = 2.

Let us derive estimate (2) for s = 4; r = 2.

From (10), using the representation

T�t DiDju(�1; �2; t)� T�t DiDju(�1; �2; t) =

=

Z �1

�1

T�t D1DiDju(�1; �2; t)d�1 +

Z �2

�2

T�t D2DiDju(�1; �2; t)d�2 ;

and Cauchy-Schwarz's and H�older's inequality we obtain

j�ij1(�; t)j � ChkaijkW 1
p (e)

kT�t u(�; t)kW 3
2p
p�2

(e) ; p > 2 :

Summing over the meshes ! and �+� , using the imbeddings W 3
2 (
) � W 1

p (
) and

W 4
2 (
) �W 3

2p=(p�2)(
), we simply obtain

k�ij1kQh�
� Ch2kaijkW 3

2 (
)
kukW 4;2

2 (Q) :

Analogous estimates hold true also for the other terms �ijk and for term '. In
such a way we obtain the estimates:

k�ijkQh�
� Ch2kaijkW 3

2 (
)
kukW 4;2

2 (Q) ; and (13)

k'kQh�
� Ch2kukW 4;2

2 (Q) : (14)

From (6), (13) and (14) we obtain estimate (2) for s = 4 ; r = 2.

Let us de�ne the operators Aij and B as follows:

�ij = Aij(aij ; u) and ' = B(u) :
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The operator Aij is, obviously, bilinear. From (8), (11) and (13) it follows that it

is a bounded bilinear operator from W 1+�
2 (
) �W

2+";1+"=2
2 (Q) to L2(Qh� ), from

W 2
2 (
)�W

3;3=2
2 (Q) to L2(Qh� ) and from W 3

2 (
)�W 4;2
2 (Q) to L2(Qh� ) with the

norm:

kAijkW 1+�
2 (
)�W

2+";1+"=2
2 (Q)!L2(Qh� )

� C ; (15)

kAijkW 2
2 (
)�W

3;3=2
2 (Q)!L2(Qh� )

� Ch : (16)

kAijkW 3
2 (
)�W

4;2
2 (Q)!L2(Qh� )

� Ch2 : (17)

Applying Lemma 1, from (16) and (17) it follows that Aij is a bounded bilinear
operator from�

W 3
2 (
);W

2
2 (
)

�
�;2
� �

W 4;2
2 (Q);W

3;3=2
2 (Q)

�
�;2

= W 3��
2 (
)�W

4��;2��=2
2 (Q)

to
(L2(Qh� ); L2(Qh� ))�;1 = L2(Qh� ) ;

and
kAijkW 3��

2 (
)�W
4��;2��=2
2 (Q)!L2(Qh� )

� Ch2�� ; 0 < � < 1 :

Finally, we obtain the estimate:

k�ijkQh�
� Ch2��kaijkW 3��

2 (
)kukW 4��;2��=2
2 (Q)

; 0 < � < 1 :

Setting 4� � = s, we obtain the estimate:

k�ijkQh�
� Chs�2kaijkW s�1

2 (
)kukW s;s=2
2 (Q)

; 3 < s < 4 : (18)

Similarly, from (15) and (16), by interpolation, we obtain the estimate:

k�ijkQh�
� Chs�2kaijkW s�1+�(3�s)

2 (
)
kuk

W
s+"(3�s);(s+"(3�s))=2
2 (Q)

; 2 < s < 3 : (19)

Analogously, we obtain the estimate of term ':

k'kQh�
� Chs�2kuk

W
s;s=2
2 (Q)

; 3 < s < 4 ; (20)

k'kQh�
� Chs�2kuk

W
s+"(3�s);(s+"(3�s))=2
2 (Q)

; 2 < s < 3: (21)

Finally, from (8){(14), (18){(21) and (6) we obtain the main result of this
paper:

Theorem. Finite-di�erence scheme (4) converges in the norm of the space

W 2;1
2 (Qh� ) and, with condition k1h

2 � � � k2h
2, the following estimate holds true:

ku� vkW 2;1
2 (Qh� )

� Chs�2(max
i;j

kaijkW s�1+�(3�s)
2 (
)

+ 1)kuk
W

s+"(3�s);(s+"(3�s))=2
2 (Q)

;

2 � s � 3 ;

ku� vkW 2;1
2 (Qh� )

� Chs�2(max
i;j

kaijkW s�1
2 (
) + 1)kuk

W
s;s=2
2 (Q)

; 3 � s � 4 :

The second estimate is consistent with the smoothness of data, while the �rst esti-
mate is \almost" consistent with the smoothness of data.
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