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SOME PROPERTIES OF A CLASS OF POLYNOMIALS
Gospava B. Djordjevié

Abstract. In the paper [2], R. André-Jeannin studied a class of polynomials U, (p,q; ).
In this paper we consider a new class of polynomials U, .. (p, ¢; ) and determine the coefficients
Cn,1k(P,q) of these introduced polynomials. Also, we define the polynomials f, ..(p,q; z), which
are the rising diagonal polynomials of U, .. (p, g; ).

1. Introduction

In the paper [2], R. André-Jeannin studied a class of polynomials U, (p, ¢; z).
These polynomials are given by

Un(p,q:2) = (x + p)Un—1(p, ;%) — qUn—2(p. g3 ), n>2,

with starting polynomials Uy(p, ¢; ) = 0 and Uy (p,q;x) = 1. The particular cases
of these polynomials are: Fibonacci polynomials, Pell polynomials ([6]), Fermat
polynomials of the first kind ([5], [3]), Morgan-Voyce polynomials of the second kind
([1]), Chebyschev polynomials of the second kind ([5]). In this paper, we consider a
more general class of polynomials U, ,, (p, ¢; ©), where n, m are nonnegative integers.
These polynomials are given by the following recurrence relation

Un,m(p7 q; SC) = (x +p)Un—1,m(p7 q; SC) - qUn—m,m(p7 q; CC), n Z m, (11)
with starting polynomials:
Uom(D,;2) =0, Upm(p,gsx) =(x+p)™ ', n=12....m—-1 (12

The parameters p and ¢ are arbitrary real numbers. Note that the polynomials
Un,3(p, q; x) are studied in [4].

Let us denote by ay, as, ..., a,, the real or complex numbers, such that
Zai =, Zaiaj =0, ..., aas---a,=(-1)"gq (1.3)
i=1 i<j
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266 G. Dordevié

Also, in this paper, we define the polynomials f, ,.(p,¢;x), which are the rising
diagonal polynomials of Uy, ., (p, ¢; z).

2. Polynomials U, ,,(p, q;x)

Let us write U, ,»(x) instead of U, . (p,¢;x). From (1.1) and (1.2), we find
the first m + 2 terms of the sequence {Up, ., (x)}:

UO,m(x) =0, Ul,m(x) =1, UQ,m(x) =T+p,..., Um,m(x) = (SC +p)m_1’ (2 1)
Un+1,m(z) =(z +p)™ — g '

From (2.1) and by induction on n, we can say that there is a sequence {c, x(p,q)},
n > 0, k > 0, of numbers such that

n+1m chmk D, q ) (22)

k>0

where ¢, x(p,¢q) =0 for n < k, and ¢, .(p,q) = 1.
The main purpose of this section is to determinate the coefficients ¢, x(p, ¢).

Comparing the coefficients of z* in two members of (2.2), by (1.1), we get
Cn,k(Pyq) = Cn-1,6-1(P, @) + PCn—1,6(P, @) — GCn—m k(P q), (2.3)
for n > m, and k£ > 1. Now, we are going to prove the following result.

LEMMA 2.1. For all k > 0, we have

(1 —pt+gt™) ™" = 3" d, sk (pog) 7, (2.4)
n>0
where
b/l k+n—(m-—1r\/n—(m-1r\ ,_
k(P q) = 2_:0 (—1)Tqr< h ) < . )p” mro(2.5)

Proof. Firstly, let us define the generating function of the sequence U, . (2)

by
= Z Upi1,m(x) ™. (2.6)
n>0
From (1.1) and (2.6), we find
fla,t)y=(1—(z+pt+qg™) " (2.7)
Hence, from (2.6) and (2.7), we get
0" f(x,1)

=kt (1= (@ +p)t+qt™) P =S"0W L@t @)
n>0

oxk
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For x = 0in (2.77), we get
1k
(P, 0) = 75 Uﬁﬁm m (D¢ 0) = EU,(LQH,C,m(O,q;p)-
From (2.4), we obtain

S ot = (1 pt+qt™)

n>0
k-l—’l’l m—1\n
= ()" Lingp— gemt)
n>0
q"(k+n—(m—1)r)lpr—m"
=21
n>0 r>0 k"l"' mT)'
[n/m]
n rofn+k—(m-=1)r\/n—-—(m-1r\ ,_ .
=>"t Z(—l)q( ]E )>( (T )>p :
n>0 r=0

Comparing coefficients of ¢, from the last equalities, we get (2.5). This com-
pletes the proof. m

THEOREM 2.1. The coefficients ¢, (p, q) are given by the following formula

cni(pyq) = [(n_zk):/m](_l)rqr <n - (77]”: - 1)7‘) <n —k +£m - ].)7">pnkmr. (2.8)

r=0

Proof. Firstly, from (1.1), we deduce
Un+1,m(p7q;x) = Un+1,m(07q;x +p) (29)
Using (2.2), from (2.9) we have

k
cn,k(p7Q) = EUr(H»)l m(p7q7 ) k|Ur(L+)1 m(07q7p)

From the last equalities and (2.4), we get

1 & ,
Cn+k,k(p7Q) = HUi-I-)1+k7m(p’ q; 0) = dn,k(p,q)- (29 )

Then, from (2.97), we get
[(n—k)/m]
n—(m-Ur\/n—k—(m-1r g
" , — —1)g" P" 711'(‘7
Cn i (Py q) z:% ( )Q< P )( .
which completes the proof. m
THEOREM 2.2. The coefficients ¢, x(p,q) satisfy the following relation

1 acn,k(p7Q)

2.1
kE+1 op (2.10)

Cn,k+1 (p7 Q)
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Proof. Supposing that n > 1, and using (2.9), we see that
U (0, a;0) = UR).(0, 42 + p),
where the superscript in parentheses denotes the k-th derivative with respect to x.
Using Taylor’s formula and (2.2), we get
L ,
Cnk(D,q) = EUml,m(O,q;p). (2.10%)
Differentiating (2.10") with respect to p (g is fixed), we get

acn,k b, q 1 k
% — EU£+t}2n(0’q’p) = (k —+ ].)Cn,k+1(p7Q)'

Hence, we deduce that

_ 1 acn,k(p7Q)
Cn,k+1 (]L Q) = k—+1 Tv

which completes the proof. m

Now we mention some particular cases:
(i) If m = 2, then (2.8) becomes (see [2])

[(n—Fk)/2] e\ (n—k—r
k)= 3 <—1)’“q’"( . ) ( )p"“ﬂ

r

(ii) For m = 3, (see [4]), (2.8) yields

[(n 2k)/3] n—2r\[/n—k-—2r
cn,k(p7Q) = Z (_1)7‘q7‘< k > < >pn—k—3'r‘.

r
r=0

Also, the last formula can be written in the following form:

[(n 2k)/3] n—3r\/n-—2r
Cn,k(p7Q) = Z (_1)TqT< k > ( )pnkST'

r
r=0

(iii) If & = 0, from (2.8), we get

Cn,O(p7Q) = Z (_l)TqT

r=0

be/m] (n —(m—=1)r

r ) = Un+1,m(p7Q70)'
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3. Determination of ¢, x(p,q) as a polynomial in (a1, s, ..., am)
We are going to prove the following theorem.

THEOREM 3.1. The coefficients ¢, k(p,q) are given by

kE+q k+1 k+im\ 4 i
k(D)= Y < k1>< k2>< L >a1a2~~~a,;;'. (3.1)

i1+t =n

Proof. Using (1.3) and (2.4) we get

> dug(p,a)t" = (1= pt+qt™) Y
n>0

— (1 _ alt)f(k+1) . (1 _ aQt)f(k‘Fl) . (1 _ amt)f(k+1) ,

so that
Z dn,k(p7 Q) t" =
n>0
n k+'Ll k+l2 k+lm i i T,
Sse T () (P
n>0 21+t =n
where
k+1 k+i k+im\ 4 i
dn,k(pvq): Z ( k 1)( k 2)( k >0411042“"'047;:’.
11+ Fim=n

From (2.9) and by the last equality, we get

Cn k(P q) = dn—i k(P q) =

_ ¥ ki) (k+i) | (k+in) o
o - k k k ! me
i1t =n—k

This completes the proof. m

We mention some particular cases of (3.1):

(i) For m = 2, from (3.1) we get the well-known equality (see [2])
catn= 5 (T (M1 )atad
i+j=n—*k
(ii) For m = 3, equality (3.1) becomes

o= T ()

i+j+s=n—k

W n
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(iii) If kK =0, by (3.1), we get

Cn,O(pv Q) = Z a’il aéz ve CV;L.,;; = Un+1,m(p7 q, 0)
i1 Him=n

4. Rising diagonal polynomials

In this section we define and study the polynomials f,, m(p, ¢;z). These poly-
nomials are the rising diagonal polynomials of the polynomials Uy, ,, (p, ¢; z). Hence,

we have
n/m]

[
fn+1,m(p7q;x) = Z Cnflc,/c(p7Q)xk7 (41)
k=0

where fo m(p,¢;x) = 0.
Now, we are going to write the coefficients ¢, x(p, ¢) in the following form

Table 4.1.
n/k 0 1 2 m—1|m|m+1
1 1 0 0 0 0 0
2 P 0 o (o] o
3 P2 2 1 0o |o| o
m—1|pm2| (m—2)pm3 (m2_2)pm_4 - 0 0 0
m pm—l (m _ 1)pm—2 (m2—1)pm—3 1 0
m+1| p™ mp™ 1 ()pm 2 ... mp |1 0

If we put f, m(x) instead of f, ..(p,q; ), then from table 4.1, we get the first
five terms of the sequence {f, m(p,q; x)}:

fO,m(x) =0, fl,m(x) =1, f2,m(x) =D f3,m(x) = p2 +z,

4.2
fam(z) = p* + 2pa. (4.2)
In general, the following theorem holds:

THEOREM 4.1. The polynomials f, m(x) satisfy the following recurrence rela-
tion

fn+1,m(x) = pfn,m(x) + xfnfl,m(x) - an+lfm,m(x)v n Z m — 1. (43)
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Proof. From (4.2), we see that (4.3) holds for n = 4. By induction on n,
supposing that (4.3) is true for n > 4, by (4.1) and (2.3) we get
[n/m]
fn+1,m(x) = Cn,O(pvQ) - an—m,o(pa q) + Z Cnfk,k(pvQ)xk
k=1

[(n=1)/m] [(n=2)/m]
=p > @+ Y s pi(pg)a”
k=0 k=0

[(n—m)/m]
¢ Y Camrp(pa)t
k=0
= pfn,m(x) + xfnfl,m(x) - qfn+1fm,m(1')-

Now, the statement (4.3) follows immediately from the last equalities. m

REMARK 4.1. For m = 2 in (4.3) we have the polynomials f,(p, ¢; z) (see [2]).
Namely, we get the following recurrence relation

fn(x) = pfnfl(x) + (J,' - Q)fnf2(x)'
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