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1. Introduction

The methods of algebro-geometric integration have been developed in the �rst
place for solving nonlinear partial di�erential equations such as Korteveg-de Vries,
Sine-Gordon, Kadomtsev-Petriashvili, . . . They were applied also to the classical,
mechanical integrable systems. The Kowalevskaya top is one of the most celebrat-
ed [1].

The �rst L-A pair for Kowalevskaya top (KT) was found by Perelomov in
1981 [2]. In 1984 Bogoyavlensky modi�ed this L-A pair for the system with mag-
netic �eld included [3]. Three years later, Reyman and Semenov-Tian-Shansky
obtained L-A pair with spectral parametar for generalized KT called Kowalevskaya
gyrostat (KG) [4]. Bobenko and Kuznetsov have noticed that removing the �rst
column and the �rst row of the last Lax matrix one can get the Lax matrix for
Goryachev-Chapligin gyrostat [5] (GCG).

In this note we start from Reyman and Semenov-Tian-Shansky L-A pair, in
order to get L-A pairs for KG and GCG with magnetic �eld. The resulting matrices
have all the symmetries necessary for procedure of algebro-geometric integration
described in [6].

2. The Kowalevskaya gyrostat

The Kowalevskaya gyrostat in a magnetic �eld is a system given by the Hamil-
tonian

H =
1

2

�
M2

1 +M2
2 + 2M2

3 + 2M3

�
� pi � �2:

Corresponding algebra is generated by Mi; pi; �i and relations

fMi;Mjg = �ijkMk; fMi; pjg = �ijkpk; fMi; �jg = �ijk�k

(Other brackets are 0).
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The equations of motion are:

_M1 = M2M3 + M2 + �3

_M2 = �M1M3 � M1 � p3

_M3 = p2 � �1

_p1 = 2p2M3 � p3M2 + p2

_p2 = p3M1 � 2p1M3 � p1

_p3 = p1M2 � p2M1

_�1 = 2�2M3 � �3M2 + �2

_�2 = �3M1 � 2�1M3 � �1

_�3 = �1M2 � �2M1

Using standard notation p� = p1 � ip2;M� = M1 � iM2 we have:

Proposition. The system is equivalent to

_L(�) = � [L(�); A(�)] ;

where

L(�) = i
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�
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�
+ 2�

p3+i�3
�

�M�
p
�

+i�
�

�
T

3
7775

and

A(�) =
i

2

2
64

T 0 M� 0
0 �T 0 �M+

M+ 0 �T �2�
0 �M� 2� T

3
75

where T = 2M3 + .

Lemma. The matrices L(�) satisfy the relations:

L(��) =

�
��3 0
0 �3

�
L(�)

�
��3 0
0 �3

�

L(�)T = �

�
�2 0
0 �2

�
L(�)

�
�2 0
0 �2

�

where the Pauli matrices �i are

�2 =

�
0 �i
i 0

�
; �3 =

�
1 0
0 �1

�

The equations of motion are linearizable on the Jacobian of the spectral curve �
de�ned by � : det(L(�)��E) = 0. According to Lemma, there are two commuting
involutions �1; �2 on �

�1(�; �) = (��; �); �2(�; �) = (�;��):
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So, procedure of algebro-geometric integration is the same as in the case of Kowalev-
skaya gyrostat (see [6]).

3. The Goryachev-Chapligin case

The Goryachev-Chapligin gyrostat in a magnetic �eld is described by the
Hamiltonian

H =
1

2
(M2

1 +M2
2 + 4M2

3 + 4M3)� 2p1 � 2�2:

It is integrable under the conditions:

M1p1 +M2p2 +M3p3 = 0

M1�1 +M2�2 +M3�3 = 0

Corresponding L-A pair is given by the formulas:

L = i

2
4

2

3
 p3+i�3

�
�M+

�p3+i�3
�

�T � 2

3


�p++i�+
�

� 2�

�M�
p
�

+i�
�

�
+ 2� T

3
5

A = i

2
4�M3 � T 0 �M+

0 �T �2�
�M� 2� T + 2

3


3
5

where T = 2M3 +
2

3
. The matrices L(�) have the property

L(��) =

2
4�1 0 0

0 1 0
0 0 �1

3
5L(�)

2
4�1 0 0

0 1 0
0 0 �1

3
5 :

Further integration repeats the steps of integration without magnetic �eld.
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