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A STUDY ON GENERALIZED RICCI 2-RECURRENT SPACES

U. C. De and S. Bandyopadhyay

Abstract. The object of the present paper is to study some properties of generalized Ricci
2-recurrent spaces. At �rst it is proved that every 3-dimensional generalized Ricci 2-recurrent
space is a generalized 2-recurrent space. In section 3, it is shown that for such a space Ricci-
principal invariant is 1=2R. In section 4 we �nd a necessary condition for such a space to be a
Ricci-recurrent space. Next it is proved that a conformally symmetric Ricci 2-recurrent space is
a generalized 2-recurrent space and a conformally symmetric generalized Ricci 2-recurrent space
with de�nite metric and zero scalar curvature can not exist. Lastly an example of a generalized
Ricci 2-recurrent space is also constructed.

1. Preliminaries

A non at Riemanian space Vn (n > 3) is called a generalized 2-recurrent space
[1] if its curvature tensor satis�es

Rhijk;lm = �mRhijk;l + almRhijk (1.1)

where alm is non-zero and a comma denotes covariant di�erentiation with respect
to the metric tensor gij . �m and alm are called its vector and tensor of recurrence.
Such a space has been denoted by G(2kn). In generalizing this concept we intend
to study Riemannian space whose Ricci tensor is non-zero and satis�es a relation
of the form

Rij;lm = �mRij;l + almRij (1.2)

where �m and alm have the same meaning as before. Such a space shall be called a
generalized Ricci 2-recurrent space and will be denoted by G(2Rn). If in particular,
�m = 0, then the space reduces to a Ricci 2-recurrent space introduced by Chaki
and Roychowdhary [2]. In 1952, Patterson [3] introduced a type of Riemannian
space Vn (n > 3) the Ricci tensor of which satis�es Rij;k = �kRij and Rij 6= 0
for some non-zero vector �k . He called such a space Ricci-recurrent and denoted
an n-dimensional space of this kind by Rn. Now from (1.1) and (1.2) it is easily
seen that every G(2kn) is a G(2Rn), but the converse is not in general true. Here
we prove that every G(2R3) is a G(2k3). According to Chaki and Gupta [4], an
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n-dimensional (n > 3) Riemannian space is called conformally symmetric if its
Weyl's conformal curvature tensor

Ch
ijk = Rh

ijk�
1

n� 2
(gijR

h
k�gikR

h
j;+�hkRij��

h
j;Rik)+

R

(n� 1)(n� 2)
(�hkgij��

h
j;gik)

(1.3)
satis�es

Ch
ijk;l = 0 (1.4)

where R is the scalar curvature.

In the present paper we consider G(2Rn) for n > 3.

2. 3-dimensional generalized Ricci 2-recurrent space

It is known [5] that for a V3

Rhijk = ghk�ij � ghj�ik + gij�hk � gik�hj (2.1)

where
�ij = (Rij �

R
4
gij): (2.2)

Now for a G(2R3) we have

Rij;lm = �mRij;l + almRij : (2.3)

Transvecting (2.3) with gij we get

R;lm = �mR;l + almR: (2.4)

From (2.2) we have by virtue of (2.3) and (2.4)

�ij;lm��m�ij;l�alm�ij = Rij;lm��mRij;l�almRij�(R;lm��mR;l�almR)
gij
4

= 0

or �ij;lm = �m�ij;l + alm�ij . Therefore from (2.1) it follows that

Rhijk;lm = �mRhijk;l + almRhijk :

Thus we can state the following theorem:

Theorem 1. Every G(2R3) is a G(2k3).

3. Tensor of recurrence and Ricci principal invariant
in a G(2Rn) with non-zero scalar curvature

We see from (2.4) that if R is constant, then R = 0 for alm 6= 0. Again from
(2.4)

�mR;l � �lR;m + (alm � aml)R = R;lm �R;ml = 0:

Hence if alm is symmetric, then �m, R;l are co-directional.

From Bianchi identity we get

Rh
ijk;h +Rik;j �Rij;k = 0: (3.1)
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Covariant di�erentiation of (3.1) gives Rh
ijk;hm + Rik;jm � Rij;km = 0. Now by

virtue of (1.2)

Rh
ijk;hm = akmRij � ajmRik + �m(Rij;k �Rik;j): (3.2)

Trnsvecting (3.2) with gij and using the formula Rr
i;r =

1

2
R;i we obtain

1

2
R;km = akmR� ajmR

j

k +
�m
2
R;k (3.3)

whence

ajmR
j

k =
1

2
akmR: (3.4)

Now by the similar argument as in [2] we get the following theorem:

Theorem 2. In a G(2Rn) with non-zero scalar curvature the tensor of re-

currence alm is not symmetric in general and its rank is less than n. Also alm is

symmetric if and only if �m and R;l are co-directional. Further, for such a space,

one Ricci principal invariant is 1

2
R.

4. G(2Rn) (R 6= 0) of de�nite metric

In this section we consider a G(2Rn) with non-zero scalar curvature for which

RijRij =
1

2
R2 (4.1)

holds. Then from (4.1) it follows 2RijRij;l = RR;l. Di�erentiating both sides of
the previous equation covariantly, we get

Rij
;mRij;l +RijRij;lm =

1

2
R;lR;m +

1

2
RR;lm: (4.2)

But

RijRij;lm = Rij(almRij + �mRij;l) = almR
ijRij + �mR

ijRij;l

=
1

2
almR

2 +
1

2
�mRR;l =

1

2
R(almR+ �mR;l) =

1

2
RR;lm:

By virtue of this, (4.2) reduces to Rij
;mRij;l =

1

2
R;lR;m. Put Sijk = Rij;k � ��kRij ,

where ��k = R;k=R. Then

SijkSijk = gmkRij
;mRij;k � ��mg

mkRijRij;k � �kg
mkRhlRhl;m + gmk��m��kR

ijRij

=
1

2
gmkR;mR;k � gmk��mRR;k +

1

2
��m��kg

mkR2 = 0: (4.3)

If the space is of de�nite metric, then (4.3) gives Sijk = 0, whence Rij;k =
��kRij . We can therefore state the following theorem:

Theorem 3. Every G(2Rn) of de�nite metric whose scalar curvature is dif-

ferent from zero and for which RijRij =
1

2
R2, is an Rn.
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5. Conformally symmetric G(2Rn)

It is well known that for a conformally symmetric Riemannian space, it holds

Rij;k �Rik;j =
1

2(n� 1)
(R;kgij �R;jgik): (5.1)

Let us suppose that aG(2Rn) with R 6= 0, is conformally symmetric. The conformal
curvature tensor can be written in the form

Chijk = Rhijk �Dhijk (5.2)

where

Dhijk = �hkgij � �hjGik + �ijghk � �ikghj ; (5.3)

�ij =

�
Rij �

R

2(n� 1)
gij

�
: (5.4)

Now
Rhijk;l �Dhijk;l = Chijk;l = 0: (5.5)

On account of (5.1) and (5.4),

�ij;k � �ik;j =
1

n� 2

�
Rij;k �Rik;j +

1

2(n� 1)
(R;jgik �R;kgij)

�
= 0:

Hence
�ij;k = �ik;j : (5.6)

From (5.4) we have as a consequence of (1.2)

�ij;kl = akl�ij + �l�ij;k : (5.7)

Now (5.5) gives
Rhijk;lm = Dhijk;lm: (5.8)

On account of (5.8) and (5.3) we have Rhijk;lm = almRhijk + �mRhijk;l. Also
equations (5.6) and (5.7) give akl�ij = aij�ik. Multiplying both sides by gkl we get
��ij = ajlg

kl�ik where � = gklakl.

Now considering aij is symmetric we obtain

�Rij =
R

2

n� 2

n� 1
aij +

R

2

�

n� 1
gij : (5.9)

Multiplying the above equation by Rij we have

�RijR
ij =

R

2

n� 2

n� 1
aijR

ij +
R�

2(n� 1)
gijR

ij : (5.10)

But multiplying (3.5) by gkm we obtain ajmR
jm = 1

2
R�. Hence (5.10) gives

�RijR
ij =

nR2�

4(n� 1)
. Since R 6= 0, if � = 0, (5.10) would give aij = 0. Hence

� 6= 0. Therefore RijR
ij =

nR2

4(n� 1)
. Thus we get
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Theorem 4. A conformally symmetric G(2Rn) is a G(2kn) and when the

tensor of recurrence is symmetric then the length of Ricci tensor is
nR2

4(n� 1)
.

Now by covariant di�erentiation of (5.1) it follows

Rij;kl �Rik;jl =
1

2(n� 1)
(R;klgij �R;jlgik): (5.11)

By virtue of (2.4) and (1.2) the equation (5.11) reduces to the form

akl

�
Rij �

1

2(n� 1)
Rgij

�
+ �l

�
Rij;k �

1

2(n� 1)
R;kgij

�
=

= ajl

�
Rik �

1

2(n� 1)
Rgik

�
+ �l

�
Rik;j �

1

2(n� 1)
R;jgik

�
:

Hence on account of (5.1) we obtain

akl

�
Rij �

1

2(n� 1)
Rgij

�
= ail

�
Rik �

1

2(n� 1)
Rgik

�
: (5.12)

Transvecting (5.12) with Rj
p and using the relation (3.5),

akl

�
RriR

r
p �

1

2(n� 1)
RRip

�
=

1

2
Rapl

�
Rik �

1

2(n� 1)
Rgik

�
:

But it follows from (5.12) that

1

2
R

�
Rik �

1

2(n� 1)
Rgik

�
apl =

1

2
R

�
Rip �

1

2(n� 1)
Rgip

�
akl:

Hence �
RriR

r
p �

1

2(n� 1)
RRip

�
akl =

1

2
R

�
Rip

1

2(n� 1)
Rgip

�
akl:

Therefore

RriR
r
p =

n

2(n� 1)
RRip �

1

4(n� 1)
R2gip: (5.13)

Now if R = 0, (5.13) reduces to RriR
r
p = 0 or RriRri = 0 (by contraction with

gip). So, for de�nite metric Rij = 0, which is not possible. Hence we obtain the
following theorem:

Theorem 5. A conformally symmetric generalized Ricci 2-recurrent space

with de�nite metric and zero scalar curvature can not exist.

6. Example of a generalized Ricci 2-recurrent space

For this section let the greek index runs over 2, 3, . . . , n � 1 and the latin
index runs over 1, 2, . . . , n. We de�ne the metric g in Rn, n > 4 by the formula [6]

ds2 = Q(dx1)2 +K��dx
�dx� + 2dx1dxn (6.1)

where [K�� ] is a symmetric and non-singular matrix consisting of constants, and
Q is independent of xn.
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The only components of Christo�el symbols Rhijk , Rij , not identically zero
are those related to�

�

11

�
= �

1

2
K��Q:�;

�
n

11

�
= �

1

2
Q:1;

�
n

1�

�
= �

1

2
Q:�;

R1��1 =
1

2
Q:��; R11 = �

1

2
K��Q:��

(6.2)

where [K��] = [K�� ]
�1.

Let Q = K��x
�x�e2x

1

where

[K��] =

2
64
1 0 . . . 0
0 1 . . . 0
: : : : : : : : : : : : :
0 0 . . . 1

3
75 :

So [K�� ] = [K�� ]. Now

K��K
�� = n� 2; Q:�� = 2K��e

2x
1

; Q:��� = 0; K��Q:�� = 2(n� 2)e2x
1

:
(6.3)

Hence from (6.2) and (6.3) the only non zero components of Rij , Rij;l, Rij;lm are

R11 = (n� 2)e2x
1

; R11;1 = 2(n� 2)e2x
1

; R11;11 = 4(n� 2)e2x
1

:

So, R11;11 = R11;1 + 2R11. Hence Rij;lm = almRij + �mRij;l where

alm =

�
2; for l = m = 1,

0; otherwise,
and �m =

�
1; for m = 1,

0; otherwise.
Hence Vn is a generalized

Ricci 2-recurrent space.
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