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EXTREME VALUES OF THE SEQUENCES OF INDEPENDENT
RANDOM VARIABLES WITH MIXED DISTRIBUTIONS

Pavle Mladenovié

Abstract. In this paper we consider some examples of the sequences of independent random
variables with the same mixed distribution. In these cases we determine the type of extreme value
distribution and the normalizing constants.

1. Introduction

Let (X,) be a sequence of independent random variables with the common
distribution function F'. If for some constants a,, > 0 and b,,

X
P{lréljaé(nX] Sa + bn} —q G(z), (1.1)

where G is non-degenerated distribution function, then the function G belongs
to one of three classes of the mazimum stable distributions, and the functions in
these classes have the following forms (maybe after linear transformation of the
argument):

Type I. G1(z) = exp(—e™%), —00 < x < +00;

Type IL. Go(2) {07 fr<0 >0
e II. x) = or some «a > 0;
P 2 exp(—z~%), ifz>0,
exp(—(-z)%), ifz <0,
Type IIL. G3(z) = { xp(=(=2)") R for some a > 0.
1, ifz > 0.

These three types of distributions are called the extreme values distributions.
If for some distribution functions F' and G the relation (1.1) holds true, then we
say that the common distribution function F' of the random variables X7, Xa,
X3, ... belongs to the domain of attraction of the function G. We shall use the
notation M,, = max{Xy,...,X,}. The constants a,, > 0 and b,, from the relation
(1.1) are called the normalizing constants. Note that for a,, > 0, the inequality
M, < x/an + by is equivalent to a, (M, —b,) < .
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2. Necessary and sufficient conditions for convergence
to the extreme value distributions

If for some distribution function F' there exists a domain of attraction, then it
is determined by the asymptotic behaviour of the tail 1 — F(x), as £ — +00. The
following useful theorem 1.5.1 from [1] holds true:

THEOREM 1. [1] Let (X,,) be a sequence of independent random variables with
the common distribution function F(z), —oo < < 400, (u,) a sequence of real
numbers, 0 < 7 < 400 and M,, = max{X1, Xs,...,Xn}. Then, the equality

lim P{M, <un}=¢",

n—oo

holds true if and only if lim,,_ o n(l — F(u,)) = 7.

Necessary and sufficient conditions for the function F' to belong to some domain
of attraction can also be formulated as in the following theorem 1.6.2 from [1]:

TueoreM 2. [1] Let (X,,) be a sequence of independent random variables with
the common distribution function F, and xp = sup{z| F(z) < 1}. Necessary and
sufficient conditions for the function F to belong to the domain of attraction of
possible types are given by:

Type 1. There exists a strictly positive function g(t) defined on the set (—oo,x ),
1—F(t+zg(t)) _
m——""—¢ % holds

h that l b th lity 1i
suc at for every real number x the equality tle 1= F(t)

true.
1—F(t
Type II. xr = 400 and lim & =x~%, for some a > 0 and all x > 0.
t—oo 1 — F(t)
1—F(xp — hx)

Type IIl. zp < 400 and lim = x%, for some a > 0 and all x > 0.

hio 1 — F(zp —h)
3. Mixed distributions

Let X; and X» be random variables with distribution functions Fj(z) and
F»(x), respectively, and

X = { X, with probability p,
~ | X, with probability ¢,

where p + ¢ = 1. The distribution function of the random variable X is given by
F(z) = P{X <z} = pP{X1 <z} + ¢P{Xs < 7}
= pFi(2) + ¢Fa(2).

The distribution of probability determined by the distribution function F is called
the mixture of the distributions determined by the functions F; and F5.
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We shall consider some examples of sequences of independent random variables
with common mixed distribution. In these cases we are going to determine the type
of extreme value distribution and the normalizing constants.

3.1. Mizture of normal distributions. Let (X,) be a sequence of independent
random variables with normal N(0,1) distribution and M, = max{Xi,...,X,}.
As is well known, the limiting distribution of the maximum M,, is given by

—z

P{a,(M, —b,) <z} —e° , n— o0, (3.1)

where the normalizing constants a, and b,, are

llnlnn + Indn
an=VvV2lnn, b,=vV2lnn - ————. 3.2
2  /2lnn (32)

CoROLLARY. Let (Y;,) be a sequence of independent random variables with
normal N (m,o?) distribution. Then, we have X,, = (Y, — m)/o € N(0,1). If
M, = max{Xy,...,X,} and M,, = max{Y1,...,Y,}, then

M, —
P{an(M, —b,) <z} = P{an<7m - bn) < w}
o
= P{ﬁn(ﬁn —by) <z} — exp(—e), n— oo,

where the constants a,, and Zn are given by:

- an vV2Ilnn
p = — = )
g g

Inlnn +1ndnr
2v2Inn

THEOREM 3. Let (Z,) be a sequence of independent random variables such that

gn=m+abn=m+av21nn—a

Z {N(ml,a%), with probability p, for all m,

N(ms,02), with probability g,
where p+ q=1. Let us denote M} = max{Zy,...,Z,}. If

(a) o1 > 02, my,ma € R or (b) o1 = 09 and my > mao,
then for every real number x the equality

lim P{aX(M} —b5) <z} =e°

n—oo

(3.3)

holds true, where the constants a), and b}, are given by

V2lnn o1 ( 47r)
al = , bi=mi+01vV2lnn — ————{(Inlnn+1n— ). 3.4
o1 ! ! 2v21Inn p? (3.4)
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REMARK. Since M in distribution is the same as an, then all normalizing

constants with a? /a@,, — 1 and a%(bnp — b%) — 0 will work. The maximum M}
asymptotically comes from Fj.

Proof of Theorem 3. Let ¢(z) = (2r)~"/2e=%"/2 and &(x) = [*_ o(t) dt. We
shall use the following asymptotic relation
1-®(z) ~z7 p(z), z— oco. (3.5)

If X; € N(mi,0?), i = 1,2, then distribution function of the random variable X;
can be represented in the form

Fi(z) = P{X: < 2} = P{Xl_mlgm_ml}:@<x_ml>, i=1,2.
g1 g1 g1

Distribution function of the random variable Z, has the form F(z) = pFi(x) +
gF»(x). Using this representation of F(z) we obtain

1- F(t) =p[1—q><t_m1)] +q[1—<1><t_m2)]
o1 g2
po1 t—m1 qoo t—MQ
~ 7 ® + ©
—mi g1 t—mo 02
) o

- 55 [ e [ (5) )
\/%tf";nl [ %(t_ml)z]u +0(1)), t— oo;
LT g om s tomml)

— exp (_ wg(t)(;— m1)> exp (_ wzzgjgt)) (tt—_ff;;)(i ;-QO(S))‘
For g(t) = o1/(t — m1), we get 1 1
= f(—t ;(%q(t)) =e e <_2(taf(;i1)2> 1+ xaf(tl— w2 L+ e)
—e ", as t— 4oo.

Using theorem 1 we conclude that the distribution function F'(x) belongs to the
domain of attraction of type I, i.e. there exist constants a) and b}, such that the
following equality holds true:

. z _e~®

lim P{M; < a_*+b:“} =e ¢ .

n—oo
n

The constants a} and b}, can be determined as follows: let us first determine
the constant u,, such that 1 — F(u,) ~ Le ™ as n — o i.e.

1
1 —pFi(un) — qF5(uy) ~ Ee’z, n — 00.
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Using the equalities Fi(un) = ®((un, — m1)/o1) and Fy(u,) = @((un — m2)/02)
and asymptotic relation (3.5), we obtain

Up — M Up — M
e I ]
o1 g2
po1 Up — M1 qo2 Unp — M2
~ © + ®
Up — M1 o1 Up, — My 02
1 x

~ —e 7, as n — 00.
n

1 —pFi(un) — qFs(un)

Let us denote: v, = (un, —my)/o1 and w, = (u, — my)/oy. For large values of n
the inequality v, < w, holds true, and

p«p(vn) +q<p(wn) _ 1 (ﬂe—vﬁ/z_l_ie—wi/z)
Un Wn \/271' Un Wn
L p —v2/2( Vn ¢ —(w2—v2)/2>
=— P14 d twn-d)/2)
\/271' Un P wn
Let A, = w2 —v2 = (U, — m1)?/0% — (up, — m2)?/03. If 01 > 03 > 0, then
1 1)\,
Ap=|—=— =3 |u, +Au, + B — +00, as n— o0.
o 07

If 01 = 02 = ¢ and m1 > ma, then A, = [2up(m1 — ma) + m3 — m?]/o? — +o0,
as n — 00. In both cases we have the following asymptotic equality

n 1 - 2
p(p(vn) +q<;9(w ) _ r, vn/2(1 4 0(1)), as n — oo.

Un Wn vV 27l' Un
Hence, the constant u,, should be determined from the conditions u, = o1v, +m1

and

n 1
pM ~—e " as n — oo. (3.6)
Un, n

Asymptotic relation (3.6) can be transformed in the following way:
1 . Un,
e .M
- @(vn)
—Inn—lnp—2+1nv, —Inp(v,) — 0,
1 v2
—1nn—1np—:c+1nvn+§1n27r+?—>0‘ (3.7)

— 1

)

It follows from (3.7) that v2/(2lnn) — 1 as n — oo, and
1
lnv, = §(In2 +1Inlnn) + o(1). (3.8)

The relation (3.7) can also be writen in the form
2
vn

1
7=x+1nn+lnp—§1n27r—1nvn+o(1). (3.9)
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Now let us substitute the value of Inwv,, from (3.8) into (3.9). We obtain

v
2

> 1 1 1
= =x—|—1nn+1np—§ln27r—§1n2—§1nlnn+o(l)

1 1
=zx+lnn+Ilnp-— §ln47r— §1n1nn—|—o(1)7

x+1np—%1n47r—%lnlnn+ ( 1 )}
o .

v2 = 21nn{1+
Inn

Inn

Note that Inp — 3Indr = —3In 77. Using the formula 1 +2 = 1+ 32 + o() as
z — 0, we get

Inp—Llndr— Linl
on = VETn{1 4 TR IR (L)

2lnn Inn

1 1. 4r 1 1
=21 1+ — ——In— —=1Inl — .
nn{ + 21nn<x 5 n p2 3 n nn) +O<1nn>}

Since u,, = m1 + o1v,, it follows that

01T o1 47 1
Uy = +my 40 v21nn—7<1nlnn+ln—)+o< )
vV2Ilnn ! ! 2v/21Inn p? Vinn

x
On the other hand u, ~ — + b5, as n — co. Consequently it is easy to obtain the
a

normalizing constants a; and b}, in the form (3.4). m

3.2. Mizture of Cauchy distributions. Let (X,) be a sequence of indepen-
dent random variables with the Cauchy distribution K(1,0), determined by the
distribution function

1 1
F(x) = B + - arctg x.
Let us denote M,, = max{X;,...,X,}. For x > 0 we have

1-F r— tg(t 1
(tr) _ 3 —arcte(te) 1, (3.10)
1-F(t) 5 —arctgt x

Indeed, on substituting arctgt = 7/2 — ¢, we obtain t = tg(n/2 — ) = ctg,

t—o0

. 71' .
lim (5 —arctgt) t= 11913%)190‘@;19— 1.

Similarly, 1tlim (g — arctg(tx)) tr = 1, and (3.10) follows easily. In this case, the

distribution function F' belongs to the domain of attraction of the function Ga(z),
and we have the type II of limiting distribution. The normalizing constants are
an = 1/v, and b, = 0, where the constant ~,, can be determined from the equality

1 1 1
1—F(yn) = 5~ ;arctg% =
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Hence, v, = tg(% — Z) = ctg Z. For every z > 0 we have:

n

™ -1
lim P{Mn “tg— < x} =e * .
n— oo n

CoROLLARY. Let (Y,,) be a sequence of independent random variables with
the Cauchy distribution K (), 0), which is determined by the distribution function

1 1 —
F(z) = 3 + ;arctg; Let us denote M,, = max{Yy,...,Y,} and Y,,/A = X,,.

Then, M, = AM,. It is easy to see that the random variables Y,./A has K(1,0)
distribution. Since the inequality M, tg > < x is equivalent to %Mn tgr < x, it

follows that the normalizing constants in this case are given by @, = %tg Z and

n

b, = 0. For these values of normalizing constants and every x > 0 we have

. 1~ ™ 1
lim P{XMn-thSx}:e .

n—oo

THEOREM 4. Let K(\;,0) be the class of random variables with the distribution
function Fy(z) = 1 + Larctg 3, 0 =1,2. Let (Z,) be a sequence of independent

random variables such that for every m,

7 e { K(\,0), with probability p,
" K(X2,0), with probability g,

where p+q =1, and M} = max{Z,,...,Z,}. Then, for all z > 0 we have

li P{ T M < } —o7? (3.11)
im — M, <zxp=¢ . .
o T ) S

RemARK. For Cauchy variables with different scale parameters, M, will come
from either of the two parent distributions, which explains why the extremal distri-
bution is also a mixture. More specifically, for pure Cauchy variables, 7 M,,/n\ — U
with Fy(z) = e=2"". In a sample of size n from the mixture of two Cauchy distri-
butions one observes approximately np and ng variables of the two types, and hence
M =~ max(My(L},), Mffl)) in distribution. Since Fy is a max-stable distribution, this
explains the result.

Proof of Theorem 4. The distribution function of the random variable Z,, is

1 T T
F(x) = B + garctg N + %arctg N

— 00

1
It is easy to prove that tlim t(g - arctg(at)) = — for a > 0. Consequently, for
a
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every x > 0 we obtain the following relations:

pact bz qact b
Z_Zar 22 _ L arcte —=
1—F(t.’1§')_2 s g)\l T g)\g
1-Fit) 1 p t g
— — —arctg — — — arctg —
2 ™ ' g)\l ™ ' g)\z

tz arctt—x -f—tz arctt—x
3 &) T2 S %

- t7r arct ¢ +t7r arct t
Z _ arcte — Z _arcte —
PP 3 8% ) TE\ 2 SDW

— p—)\l/aH—q)\z/x = l, as t — oo.
PAL + qA2 T
It follows from theorem 2 that the function F' belongs to the domain of attraction of
the function Ga, i.e. in this case we have the type II of extreme value distribution.
The normalizing constants are a = 1/, and b}, = 0, where 1 — F(vy,) = 1/n. This

equation can be transformed equivalently as follows:

T arct i + T arct ) _ I
YnP 2 g)\l Tnq 2 g)\z —n’)'n-

From the last equality we obtain pA; + gAs — E'yn — 0, as 7y, — oo. Consequently,
n

A A 1
n(pAs + ¢Az) and a} = — ~ — T Nowitis easy to derive
™

e have ~,, ~
wenaven Yo n(PA1 + gA2)

the equality (3.11). m

3.3. Mixture of uniform and truncated ecponential distribution. Let (X,,) be
a sequence of independent random variables with the uniform UJ0, ¢] distribution.
The distribution function of the random variable X, is given by Fi(z) = z/c,
0<z<c Forn 27 >0it follows from the equality 1 — Fy(u,) = 7/n that
un = ¢(1 — 7/n). Using theorem 1 we obtain P{M, < ¢(1 —7/n)} — e 7 as
n — oo. For x < 0 and 7 = —z we obtain P{Z(M, —c) < 2} — €, as n — oc.
Hence, in this case we have the extreme value distribution of type III, where @ = 1.
The normalizing constants are a, = = and b, = c.

Let (Y,,) be a sequence of independent random variables with the same trun-
cated exponential distribution £(A,¢). This distribution is determined by the dis-
tribution function Fy which is given by Fy(z) = 0 for x < 0, Fa(z) =1 for z > ¢
and

1—e .
F2($)2m7 if O<x<0
For z < 0 and 7 = —x, it follows from theorem 1 that

Ac _
lim P{Mn <o el +o<1>} s
n— oo )\n n

In this case we also obtain the limiting distribution of type III. The normalizing
constants are given by @, = An(e** —1)~! and b, = c.



Extreme values of the sequences of independent random variables ... 37

TuEOREM 5. Let U[0,c] be the class of random wariables with the uniform
distribution on the interval [0,c] and E(A, c) the class of random variables with the
truncated exponential distribution. Let (Z,) be a sequence of independent random
variables such that for every n,

7z { Ul0,¢], with probability p,
" E(N\¢), with probability q,
where p+q = 1. If M} = max{Zi,...,2Z,}, then for every x < 0 the following
equality holds true:

1
lim P{M; <c+ %(% - ) } _ (3.12)

n—oo e}\c -1

Proof. The distribution function of the random variable Z,, is given by
—Az
_px 1—e

It is easy to prove that for every z > 0 the equality

lim 1— F(c— hx) .

hlo 1—F(c—x) ’
holds true. Using theorem 2 we conclude that the function F' belongs to the domain
of attraction of the function G3. The normalizing constants are b = ¢ and a) =
n/k, where k should be determined. Using theorem 1 we obtain that for < 0 the
condition P{M,, < ¢+ zk/n} — €® as n — 00, can be writen in the form:

k
1—F<c—|——x>~—£, n — 00,
n

n
1— —Xc,—Xkz/n
1- P c+k—x _q( S )N—E, n — 00,
c 1—e*e n
k Ak 1
1-p- P _ %{1—6‘“+6‘“—x+0<—>} ~ _E’ n — 00.
cn 1—e e n n n
k —AcgA\k
Now, we obtain that e At T s — oo Consequently, the
en n(l—e*e) n
A -1
constant k is given by k = (g + e/\ciql) , and the equality (3.12) holds true. m
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