Compact-like properties in hyperspaces

Authors

  • J. Angoa Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Mexico Author
  • Y. F. Ortiz-Castillo Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Mexico Author
  • Á. Tamariz-Mascarúa Departamento de Matemáticas, Facultad de Ciencias UNAM, Mexico Author

Keywords:

Hyperspaces, Vietoris topology, α-hyperbounded spaces, pseudo-ω-bounded spaces, normal and C-embedded spaces

Subjects:

54B20, 54D99, 54D15, 54C45

Abstract

CL(X) and K(X) denote thehyperspaces of non-empty closed and non-empty compact subsets ofX, respectively, with the Vietoris topology. For an infinitecardinal number α, a space X is α-hyperbounded iffor every family {Sξ:ξ<α} of non-empty compactsubsets of X, ClX(ξ<αSξ) is a compact set,and a space X is pseudo-ω-bounded if for each countablefamily U of non-empty open subsets of X, there exists acompact set KX such that each element in U hasa non-empty intersection with K. We prove that X isα-hyperbounded if and only if K(X) isα-hyperbounded, if and only if K(X) is initiallyα-compact. Moreover, K(X) is pseudocompact if andonly if X is pseudo-ω-bounded. Also, we show than ifK(X) is normal and C-embbeded in CL(X), thenX is ω-hyperbounded, and X is α-bounded if andonly if X is α-hyperbounded, for every infinite cardinalnumber α.

Downloads

Published

2013-07-15