Authors
-
J. Angoa
Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Mexico
Author
-
Y. F. Ortiz-Castillo
Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Mexico
Author
-
Á. Tamariz-Mascarúa
Departamento de Matemáticas, Facultad de Ciencias UNAM, Mexico
Author
Keywords:
Hyperspaces, Vietoris topology, -hyperbounded spaces, pseudo--bounded spaces, normal and -embedded spaces
Subjects:
54B20, 54D99, 54D15, 54C45
Abstract
and denote thehyperspaces of non-empty closed and non-empty compact subsets of, respectively, with the Vietoris topology. For an infinitecardinal number , a space is -hyperbounded iffor every family of non-empty compactsubsets of , is a compact set,and a space is pseudo--bounded if for each countablefamily of non-empty open subsets of , there exists acompact set such that each element in hasa non-empty intersection with . We prove that is-hyperbounded if and only if is-hyperbounded, if and only if is initially-compact. Moreover, is pseudocompact if andonly if is pseudo--bounded. Also, we show than if is normal and -embbeded in , then is -hyperbounded, and is -bounded if andonly if is -hyperbounded, for every infinite cardinalnumber .