Partial isometries and norm equalities for operators

Authors

  • Safa Menkad Department of Mathematics, Faculty of Science, Hadj Lakhdar University, Batna, Algeria Author

Keywords:

Closed range operator, Moore-Penrose inverse, injective norm, partial isometry, normal operator, EP operator, operator equality

Subjects:

47A30, 47A05, 47B15

Abstract

Let H be a Hilbert space and B(H) the algebraof all bounded linear operators on H. In this paper we shallshow that if AınB(H) is a nonzero closed rangeoperator, then the injective norm AA++A+Aλ attains its minimal value 2if and only if A/A is a partial isometry.Also we shall give some characterizations of partial isometriesand normal partial isometries in terms of norm equalities foroperators. These characterizations extend previous ones obtainedby A. Seddik in [On the injective norm and characterization ofsome subclasses of normal operators by inequalities or equalities,J. Math. Anal. Appl. 351 (2009), 277–284], and by M. Khosravi in[A characterization of the class of partial isometries, LinearAlgebra Appl. 437 (2012)].

Downloads

Published

2015-10-15