New congruences for overcubic partition function
Keywords:
Overcubic partitions, congruences, theta functionSubjects:
11P83, 05A15, 05A17Abstract
In 2010, Byungchan Kim introduced a new class of partitionfunction $\overline{a}(n)$, the number of overcubic partitions of$n$ and established $\overline{a}(3n+2)\equiv 0\pmod{3}$. Our goalis to consider this function from an arithmetic point of view inthe spirit of Ramanujan's congruences for the unrestrictedpartition function $p(n)$. We prove a number of results for$\overline{a}(n)$, for example, for $\alpha \ge 0$ and $n \ge 0$,$\overline{a}(8n+5)\equiv 0\pmod{16}$, $\overline{a}(8n+7)\equiv0\pmod{32}$, $\overline{a}(8\cdot3^{2\alpha+2}n+3^{2\alpha+2})\equiv 3^{\alpha}\overline{a}(8n+1)\pmod{8}$.
Downloads
Published
2018-01-15
Issue
Section
Articles
License
Copyright (c) 2018 Authors retain copyright to their work.
This work is licensed under a Creative Commons Attribution 4.0 International License.