Some calculus of the composition of functions in Besov-type spaces

Authors

  • M. Moussai Laboratory of Functional Analysis and Geometry Spaces, Mohamed Boudiaf University of M'Sila, 28000 M'Sila, Algeria Author
  • M. Saadi Laboratory of Functional Analysis and Geometry Spaces, Mohamed Boudiaf University of M'Sila, 28000 M'Sila, Algeria Author

Keywords:

Besov spaces, Besov-type spaces, Littlewood-Paley decomposition, composition operator

Subjects:

46E35

Abstract

In the Besov-type spaces $B^{s,\tau}_{p,q}(R^n)$, we will prove that thecomposition operator $T_f: g \to f \circ g$ takes both$B^{s}_{\infty,q}(R^n)\cap B^{s,\tau}_{p,q}(R^n)$ and $W^1_{\infty}(R^n)\cap B^{s,\tau}_{p,q}(R^n)$ to $B^{s,\tau}_{p,q}(R^n)$, under somerestrictions on $s, \tau, p,q$, and if the real function $f$ vanishes at the origin and belongs locally to $B^{s+1}_{\infty,q}({R})$.

Downloads

Published

2018-04-15