ON THE PARTIAL NORMALITY OF A CLASS OF BOUNDED OPERATORS
Keywords:
Conditional expectation, hyponorma, , weakly hyponorma operators, spectrumSubjects:
47B47Abstract
In this paper, some various partial normality classes of weightedconditional expectation type operators on $L^{2}(\Sigma)$ areinvestigated. For a weakly hyponormal weighted conditional expectation type operator $M_wEM_u$, we show that the conditionalCauchy-Schwartz inequality for u and w becomes an equality. Assuming thisequality, we then show that the joint point spectrum is equal to the pointspectrum of $M_wEM_u$. Also, we compute the approximate point spectrum of $M_wEM_u$ and we prove that under a mild condition the approximate point spectrum and the spectrum of $M_wEM_u$ are the same.
Downloads
Published
2020-07-15
Issue
Section
Articles
License
Copyright (c) 2020 Authors retain copyright to their work.
This work is licensed under a Creative Commons Attribution 4.0 International License.