THE ZARIOUH'S PROPERTY $(gaz)$ THROUGH LOCALIZED SVEP

Authors

  • P. Aiena DEIM, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy Author
  • E. Aponte Escuela Superior Politécnica del Litoral, ESPOL, FCNM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P. O. Box 09-01-5863, Guayaquil, Ecuador Author
  • J. R. Guillén ISFODOSU, Instituto superior de formación docente Salomé Ureña, Recinto Emilio Prud'Homme, Republica Dominicana Author

Keywords:

Property $(gaz)$, localized SVEP, Browder type theorems

Subjects:

47A10, 47A11, 47A53, 47A55

Abstract

In this paper we study the property $(gaz)$ for a bounded linear operator $T\in L(X)$ on a Banach space $X$, introduced by Zariouh in [\emph{Property $(gz)$ for bounded linear operators}, Mat.\ Vesnik, {\bf 65(1)}(2013), 94–103], through the methods of local spectral theory. This property is a stronger variant of generalized $a$-Browder's theorem. In particular, we shall give several characterizations of property $(gaz)$, by using the localized SVEP.

Downloads

Published

2020-10-15