REFINING NUMERICAL RADIUS INEQUALITIES OF HILBERT SPACE OPERATORS

Authors

  • M. A. S. Khorasani Department Mathematics, Amirkabir University of Technology, No. 424, Hafez Ave.,15914, Tehran, Iran Author
  • Z. Heydarbeygi Department of Mathematics, Torbat-e-Heydarieh Branch, Islamic Azad University (IAU), Torbat-e-Heydarieh, Iran Author

DOI:

https://doi.org/10.57016/MV-mrhd2011

Keywords:

Numerical radius, operator norm, inequality

Subjects:

47A12, 47A30

Abstract

Several upper estimates for the numerical radius of Hilbert space operators are given. Among many other inequalities, it is shown that \begin{align*}{{\omega }^{2}}\left( A \right)\le \frac{1}{4}\left\| {{\left| A \right|}^{2}}+{{\left| {{A}^{*}} \right|}^{2}} \right\| +\frac{1}{2}\omega \left( {{A}^{2}} \right)-\frac{1}{2}\underset{\left\| x \right\|=1} {\mathop{\underset{x\in \mathscr H}{\mathop{\inf }}\,}}\,{{\left( \sqrt{\left\langle {{\left| A \right|}^{2}}x,x \right\rangle } -\sqrt{\left\langle {{\left| {{A}^{*}} \right|}^{2}}x,x \right\rangle } \right)}^{2}}.\end{align*}

Downloads

Published

2023-01-15