REFINING NUMERICAL RADIUS INEQUALITIES OF HILBERT SPACE OPERATORS
DOI:
https://doi.org/10.57016/MV-mrhd2011Keywords:
Numerical radius, operator norm, inequalitySubjects:
47A12, 47A30Abstract
Several upper estimates for the numerical radius of Hilbert space operators are given. Among many other inequalities, it is shown that \begin{align*}{{\omega }^{2}}\left( A \right)\le \frac{1}{4}\left\| {{\left| A \right|}^{2}}+{{\left| {{A}^{*}} \right|}^{2}} \right\| +\frac{1}{2}\omega \left( {{A}^{2}} \right)-\frac{1}{2}\underset{\left\| x \right\|=1} {\mathop{\underset{x\in \mathscr H}{\mathop{\inf }}\,}}\,{{\left( \sqrt{\left\langle {{\left| A \right|}^{2}}x,x \right\rangle } -\sqrt{\left\langle {{\left| {{A}^{*}} \right|}^{2}}x,x \right\rangle } \right)}^{2}}.\end{align*}
Downloads
Published
2023-01-15
Issue
Section
Articles
License
Copyright (c) 2023 Authors retain copyright to their work.
This work is licensed under a Creative Commons Attribution 4.0 International License.