SOME REMARKS ON MONOTONICALLY STAR COUNTABLE SPACES

Authors

  • Y.-K. Song Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Nanjing 210023, P.R. China Author
  • W.-F. Xuan College of Science, Nanjing Audit University, Nanjing 210093, P.R. China Author

DOI:

https://doi.org/10.57016/MV-hhZV2935

Keywords:

Star finite, monotonically star finite, star countable, monotonically star countable, star Lindel{ö}f, monotonically star Lindel{ö}f

Subjects:

54D20, 54D30, 54D40

Abstract

A topological space $X$ is monotonically star countable if for every open cover $\mathcal U$ of $X$ we can assign a subspace$s(\mathcal U)\subseteq X$, called the kernel, such that $s(\mathcalU)$ is a countable subset of $X$, and $st(s(\mathcal U),\mathcalU)=X$, and if $\mathcal V$ refines $\mathcal U$, then $s(\mathcalU)\subseteq s(\mathcal V)$, where $st(s(\mathcal U),\mathcalU)=\bigcup\{U\in\mathcal U:U\cap s(\mathcal U)\neq\emptyset\}.$In this paper we study the relation betweenmonotonically star countable spaces and related spaces, and we also study topological properties of monotonically star countablespaces.

Downloads

Published

2023-10-15